
Vision Research 40 (2000) 3427–3434

A Bayesian model for the measurement of visual velocity

David Ascher, Norberto M. Grzywacz *
The Smith-Kettlewell Eye Research Institute, 2318 Fillmore St, San Francisco, CA 94115, USA

Received 8 July 1999; received in revised form 9 May 2000

Abstract

Several models have been proposed for how the brain measures velocity from the output of motion-energy units. These models
make some unrealistic assumptions such as the use of Gabor-shaped temporal filters, which are non causal, or flat spatial spectra,
which are invalidated by existing data. We present a Bayesian model of velocity perception, which makes more realistic
assumptions and allows the estimation of local retinal velocity regardless of the specific mathematical form of the spatial and
temporal filters used. The model is consistent with several aspects of speed perception, such as the dependence of perceived speed
on contrast. © 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

There exist several models of velocity perception
based on the distributed output of motion-energy units
tuned in the spatial-frequency (SF) and temporal-fre-
quency (TF) domains (Heeger, 1987; Grzywacz &
Yuille, 1990; Schrater & Simoncelli, 1998). However, all
of these models make one or more assumptions that are
not realistic. Some models assume that the spatial
frequency spectrum is flat (Heeger, 1987), which has
been shown not to be true in measured spectra of
natural scenes (e.g. Field, 1987; van der Schaaf & van
Hateren, 1996; Ruderman, 1997). Other models do not
make that assumption, but assume non-causal, Gabor
temporal filters, because of their forgiving mathematical
properties (Grzywacz & Yuille, 1990). These limitations
could raise doubts about the validity of such models.
Here, we present an alternative model, which addresses
both of these concerns. One important feature of our
model is that it was developed within the Bayesian
framework. This means that the performance of the
model reflects optimal treatment of internal noise.

2. Theory

2.1. Intuition

Fig. 1 is a schematic of the distributed responses to a
stimulus translating at a constant velocity of a set of
motion-energy units tuned to different SF and TF. As
shown by Grzywacz and Yuille (1990), with some as-
sumptions about the shapes of the temporal and spatial
filters which underly the tuning of the mechanisms, the
speed can be computed exactly by estimating the best-
fitting line. Our model investigates how this speed can
be estimated when some of those assumptions are vio-
lated, and other, less restrictive, assumptions are made
instead.

Our model preserves the assumption by Grzywacz
and Yuille (1990) that the temporal bandwidth of the
motion energy unit is much broader than its spatial
bandwidth. This is a realistic assumption as demon-
strated by published estimates on these bandwidths
(Watson, 1986; Wilson, McFarlane, & Phillips, 1983).
However, unlike some other models (Grzywacz &
Yuille, 1990; Heeger, 1987), our model does not assume
that the temporal filters of the underlying motion-en-
ergy units have Gabor-shaped profiles. This is because
these filters are non-causal (the response at a given time
depends on the stimulus later in time) and the shapes of
the temporal filters which have been found to fit psy-
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chophysical data do not have a Gabor-like profile
(Watson, 1986; Fredericksen & Hess, 1998; Ascher &
Grzywacz, 2000). Nevertheless, the filters are still linear
and their outputs are processed by a nonlinearity (such
as a half-wave rectifying power law, Heeger, 1993;
Simoncelli & Heeger, 1998), a requirement which is
consistent with known physiology of complex cells in
visual cortex (Emerson, Bergen, & Adelson, 1992). The
model also requires that within the SF bandwidth of a
given filter, the power spectrum of any given stimulus
varies little. Because natural image spectra are not flat
(Field, 1987; van der Schaaf & van Hateren, 1996;
Ruderman, 1997), this requirement leads to a piecewise
flat approximation of the spectrum. This approxima-
tion argues for a large number of narrowly tuned
channels, which is consistent both with psychophysical

Fig. 2. This figure illustrates the normalization process described in
Eq. (4), using the same stimulus as for the top panel of Fig. 1. The
normalization of two of the filters is depicted. The circles on the
bottom panel indicate a ratio of a filter’s response by the sum of the
responses of all the filters with same SF tuning. Only two normaliza-
tions are fully illustrated, to avoid clutter.

Fig. 1. This figure illustrates the responses of 18 spatial- and tempo-
ral-frequency tuned channels. A column corresponds to the set of
filters with a shared SF tuning, while a row corresponds to filters with
shared TF tuning. For clarity of illustration, the channels do not
overlap in the schematic — evidence suggests that their sensitivity
profiles overlap considerably. Such an arrangement of channels is the
core of a general model of speed perception (Heeger, 1987; Grzywacz
& Yuille, 1990; Simoncelli & Heeger, 1998). In the top panel, the
distribution of activities for a slowly moving stimulus are depicted by
the varying levels of gray, along with the best-fitting line, whose slope
corresponds to the most likely speed of the stimulus. In the bottom
panel, the distribution for the same stimulus moving faster is de-
picted, along with its best-fitting line.

(Wilson et al., 1983; Watson, 1986) and physiological
data (Holub & Morton-Gibson, 1981). Thus, in each
spatial-frequency band, the response is independent of
the spatial-frequency content of the scene. It follows
that the spatial-frequency content can be factored out
of the velocity-estimation process by a process
analogous to the contrast normalization used in some
other models (Heeger, 1992; Carandini, Heeger, &
Movshon, 1996). Finally, the motion of the stimulus is
assumed to be at least as long as the integration period
of the temporal filter and the stimulus size is assumed
to be much larger than the size of the receptive field.
This last assumption allows us, as in Grzywacz and
Yuille (1990), to limit the analysis to locally translatory
motions.

Given these assumptions, we can compute velocity as
sketched in Fig. 1, independently of the spatial struc-
ture of the stimulus. To eliminate spatial-structure de-
pendence, the model takes advantage of the
piecewise-flat spatial spectrum to normalize the re-
sponses of motion-energy unit outputs across TF bands
and within a SF channel, as derived below and illus-
trated in Fig. 2.
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If the filters were noise-free, then these idealized
normalized responses would allow the exact computa-
tion of the stimulus velocity. Because there is noise in
the motion sensing process, we derive an optimal esti-
mate of speed, which uses knowledge of the noise
statistics. We use the Bayesian framework in the deriva-
tion below as illustrated in Fig. 3.

2.2. Mathematical deri6ation

The model consists of a set of filters Fij, where
i�1…nr and j�1…nt with nr and nt being the number of

spatial- and temporal-frequency tunings optima, respec-
tively. The response Rij of each filter Fij to a stimulus S
at position r and time t is

Rij(r, t)= �S(r, t)�Fij(r, t)�m (1)

where � stands for convolution and m is an exponent to
be determined (see Section 4). The convolution can be
expressed using Fourier’s convolution theorem as

S�Fij(r, t)

=
1

(2p)2

&
dvr dvt S0 · F0 ij(vr, vt) e− i(vr · r+vt t)

where vr and vt, S0 and F0 are spatial frequency (times
2p), temporal frequency (times 2p), the Fourier trans-
form of the stimulus, and the Fourier transform of the
filter, respectively. If we assume that the receptive field
is small compared to the stimulus size, then we can
limit our analysis to translatory motions, which allows
us to factor S0 into a component dependent only on the
spatial structure of the stimulus, g(vr), and a velocity
dependent component, that is, S0 =g(vr)d(vr·v+vt),
where d is the Dirac delta function (Grzywacz & Yuille,
1990). Thus,

S�Fij(r, t)

=
1

(2p)2

&
dvr g(vr)F0 ij(vr, −vr·v) e− i(vr · r−vr·vt) (2)

As we assume that the SF spectrum of the stimulus
varies little within the bandwidth of the SF channels,
we can take the spatial component out of the integral
by computing the value of g at the channel’s center
frequency, Vr, and obtain

S�Fij(r, t)=
1

(2p)2 g(Vr)
&

dvr F0 ij(vr, −vr·v)

× e− ivr · (r−vt)

By using the definition of the Fourier transform for F0
and putting this equation back into Eq. (1), we get

R. ij= �g(Vr)� )m& dt %Fij r+v(t %− t),t %
)m

where R. ij is the ideal response if all the assumptions
hold and in the absence of noise. If we assume that the
stimulus duration is long compared to the filter integra-
tion constant and that the stimulus is large compared to
the receptive field, then we obtain a steady state
solution

R. ij= �g(Vr)�m )&
dt %Fij(t %v, t %)

)m
(3)

which is independent of position r or time t.
To eliminate from the model’s estimation of velocity

the dependence on the spatial structure, g(Vr), we can
normalize the response of all of the filters which fall
within a spatial frequency band. The ideal, normalized
response of filter Fij to a given stimulus is thus

Fig. 3. This figure illustrates the process of estimating the stimulus (in
our case, velocity), which is most likely to account for a given noisy
measurement. The top panel depicts two detectors with overlapping
sensitivity curves. Most stimulus values (u) lead to partial activation
of the two filters R1 and R2. This is depicted in the bottom panel,
which is a phase plot; each point corresponds to a given value of u,
with the abscissa and ordinates specified by the values of R1 and R2,
respectively. The task of the model is to find the u that is most likely
given a measurement d. That u will not be necessarily closest to d in
a linear metric, but that which requires adding the least amount of
noise to yield the measurement d. In this schematic, the u % for the left
most gray dot is more likely than the u for the topmost gray dot
because, while the latter is absolutely closer to d, the latter is farther
from d in terms of standard deviations of the noise (as illustrated by
the smaller axis of the noise ellipses along the R2 dimension).
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uij=
R. ij

%
nt

j=1

R. ij

=

)&
dtFij(t %v, t %)

)m
%
nt

j=1

)&
dtFij(t %v, t %)

)m (4)

In contrast, a good model for the actual response of the
filter to a real stimulus S is Rij, and its corresponding
measurable, noisy, normalized output is

dij=
(Rij+orij

)(1+ocij
)

%
nt

j

(Rij+orij
)

(5)

where erij
is an additive noise due to subcortical pro-

cesses and ecij
is a multiplicative noise at the level of the

cortical-normalization process.1 The normalization is
assumed to occur over a large number of cells (even
though they may come from a small number of chan-
nels), and the noise erij

is assumed to be zero-mean and
independent across cells. Thus, the sum of erij

in the
denominator becomes negligible compared to the sum
over Rij and is neglected in the following derivations. A
final assumption is that erij

�Rij and ecij
�1. Hence, one

can expand Eq. (5) and neglect the term containing orij

ocij
, to obtain

dij:uij(1+ocij
+o %rij

) (6)

where o %rij
=orij

/Rij.
The goal of the model is to estimate the velocity v

from the measurements d={dij}. Thus, we wish to find
the v that maximizes the conditional probability P(v�d).
Using Bayes’ theorem, we get

P(v�d)=
P(d�v)P(v)

P(d)
(7)

Because d is given, P(d) is just a normalizing constant.
In turn, P(v) is a prior distribution and would ideally
be measured from natural images (a first attempt was
made by Dong & Atick, 1995). As argued by many, the
distribution P(v) is not flat, being biased towards slow
speeds (Ullman & Yuille, 1989; Weiss & Adelson,
1998). This bias leads the model to disambiguate speeds
in favor of slower speeds. Finally, we must specify
P(d�v). If one assumes that the filters have independent
sources of noise, then we can estimate P(d�v) as

P(d�v)=5
i, j

P(dij �v) (8)

The probability of a normalized response dij given a
speed v is the probability of that response given the
ideal response uij, since that response is deterministi-

cally related to v. We model this probability through a
zero-mean Gaussian noise with variance uij

2s c
2:

P(dij �v)=
1


2puijsc

e− ((dij−uij )2/(2uij
2sc

2)) (9)

This model assumes that the brain uses as a prior that
moving stimuli have sufficiently high contrast so that
e %rij
�ecij

. As we will see in the next section, this assump-
tion leads to interesting effects when one uses low-con-
trast stimuli in the laboratory.

How do we calculate from these equations the most
likely speed given the actual normalized responses of
the filters (dij)? By substituting Eq. (4) for uij in Eq. (9),
one gets an expression of P(dij �v), which is explicit on v.
Inserting this expression in Eq. (8), gives the explicit
dependence on v of P(d�v). This dependence multiplied
by P(v) provides a formula for P(v�d) explicitly on v
(Eq. (7)). This formula is all we need to estimate the
most likely velocity given the filter data. We find the v
that maximize this probability P(v�d). In other words,
we use the maximum likelihood of this probability
distribution to identify the velocity v that is most likely
to have yielded the observed responses d.

3. Simulations

Some interesting psychophysical and physiological
results on velocity perception can be accounted for by
this model. One well-known psychophysical result is the
effect of contrast on perceived speed. As shown by
Thompson (1982), at temporal frequencies below 8 Hz,
a decrease in contrast reduces perceived speed, while at
higher temporal frequencies, reductions in contrast in-
crease perceived speed. To test whether the model can
account for this contrast effect, we implemented our
model with qualitatively realistic filters. The impulse
responses of the filters were Alpha functions, as used by
Watson and Ahumada (1985) (but the argument in the
next paragraph shows that this choice is not crucial).
Using Watson’s notation, the parameters for our low-
pass filter were t=4.12 ms and n=9. The bandpass
filter used t=3.88 ms, k=1.33, n1=9, n2=10, and
j=0.8. The specific values of these parameters are
somewhat meaningless as the profiles chosen are only
rough approximations of the channel profiles. The im-
portant features of these profiles is that they overlap
over the relevant range of temporal frequencies, and
that one filter is more sensitive at the low-TF range,
while the other is more sensitive at the high-TF range.
Prior distributions were computed assuming sc=0.05.
Test filters were then calculated for a variety of con-
trasts with an additive noise of 1.5 e−5, and a probabil-
ity distribution was computed from these responses for
each velocity and test contrast. The velocity match was
chosen to be the velocity that corresponded to the peak

1 Physiological studies have consistently shown that cortical noise is
approximately proportional to response, that is, multiplicative (Snow-
den, Treue, Erickson, & Andersen, 1991; Tolhurst, Movshon, &
Dean, 1983).
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Fig. 4. Simulation results. This plot shows the computed ratio of
perceived speed by veridical speed as stimulus speed varies for a
variety of stimulus contrasts. The thick black line corresponds to a
contrast of 4%, the dotted line to a contrast of 8% and the dashed
line to a contrast of 40%. Whereas at high contrasts, perceived speed
is veridical, at low contrast, perceived speed is underestimated and
overestimated for low and high speeds, respectively.

perceived velocity at low velocities is determined mostly
by the highpass filter responses (and conversely at high
velocities).

To understand the net effect of additive noise on
average perceived velocity, one then needs to under-
stand how small shifts in the response d of the high-pass
filter affect the perceived velocity. As can be seen in the
middle panel, a small shift up in d shifts the perceived
speed to a slightly higher velocity. A small shift down in
d, on the other hand, shifts the perceived velocity to very
low values, as the filter flattens out at low velocities.
According to our model, this imbalance in the effect on
perceived velocity on the highpass filter probability map
is the source of the effect reported by Thompson — at
low contrast, slow stimuli appear to move slower. The
converse effect, also noted by Thompson, is explained
by a similar analysis at high velocities, and is controlled
by the shape of the lowpass filter.

Fig. 5. Schematic of the density functions (P(d�v)) for a lowpass
(upper panel) and bandpass (middle panel) filters, and an explanation
of how the bandpass filter determines perceived speed at low speeds
and at low contrasts. See text for details.

of that probability distribution. Fig. 4 shows the results
of a simulation of our model. The model shows the
same qualitative behavior as human observers (see for
example Figs. 1 and 2 in Thompson, 1982). Specifically,
at low contrast, the model underestimates perceived
velocity at low velocities, and overestimates it at high
velocities. Judgments become more veridical as contrast
increases.

An intuition for how the misperception of velocity at
low contrasts occurs can be drawn by analyzing the
schematic of the filter-response distributions shown in
Fig. 5. The top panel shows the probability distribution
for the low-pass filter’s normalized response (labeled d0)
as a function of velocity. As can be seen, high normal-
ized responses for the low-pass filter are associated with
low velocities, and low normalized responses are associ-
ated with high velocities. The converse relationships are
shown in the middle panel for the high-pass filter. The
process of determining perceived speed from these filters
given a specific stimulus speed is shown in the lower
panel. For the speed shown (chosen low for purposes of
illustration), the distributions of P(d�v) for the two
filters can be sliced out of the upper panels. The multi-
plication of those two probability distributions yields a
joint distribution, the peak of which determines the
chosen, perceived velocity. At low velocities, the P(d�v)
distribution is broader for the lowpass filter than for the
highpass filter (this is because the multiplicative noise
has more impact when the response is larger — see
lower panel). The narrower highpass distribution has
the most impact on the location of the peak in the
compound probability distribution. In other words, the
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At low contrast, the contribution of the additive noise
erij

is not negligible. This is shown in Fig. 5 by the fairly
broad band of responses. As a result, at low contrast, the
noise of the system fails the prior assumptions (the
assumption of no additive noise). On the other hand, at
high contrast, the additive noise becomes relatively
negligible compared to the absolute responses and thus,
there is no violation of the prior assumptions by the
noise, causing the estimated speed to become more
veridical.

We also would like to point out another result that
this model explains due to the use of multiplicative noise.
Several studies have examined the contrast-dependence
of neuronal noise and found it to scale with mean firing
rate (e.g. Tolhurst, Movshon, & Dean, 1983; Snowden
et al., 1991). As soon as the contrast level reaches a
certain level, most of the noise in our model follows the
same multiplicative relationship.

4. Discussion

How reasonable are the assumptions of the model?
We already justified the assumptions of wide temporal
and narrow spatial bandwidths. Here, we address four
more: first, the assumption of linear detectors is consis-
tent with physiological data (Ikeda & Wright, 1975;
Tolhurst, Movshon, & Thompson, 1981; De Valois &
De Valois, 1990) and appears in a wide range of models
of motion (Adelson & Bergen, 1985; Watson & Ahu-
mada, 1985). Second, the model uses the absolute value
raised to a power as the nonlinearity on the output of
the detectors. Other nonlinearities are allowable. In
Appendix A, we show that any half-wave or full-wave
rectifying power function can be used. However, any
other nonlinearity would not allow the factorization of
g(Vr) and the TF-dependent term in Eq. (3) (see Ap-
pendix A). Hence, this provides a strong rationale for
why the brain might use rectifying power functions as its
filter nonlinearities, as in models of motion perception
(Heeger, 1993; Simoncelli & Heeger, 1998). Third, the
assumption of independence of filters is also very com-
mon, although work by Zohary, Shadlen, and Newsome
(1994) has shown that due to anatomical connections,
cells in MT may not have completely independent noise.
A way to incorporate inter-channel noise dependence is
to eliminate Eq. (8) and to use multidimensional Gaus-
sian distributions with cross dij terms instead of Eq. (9).
Such changes would lead to diagonal ellipses in Fig. 3.
Fourth, the last assumptions, namely those regarding the
small size of the receptive field and short integration time
relative to the size and duration of the stimulus respec-
tively, are important; they allow us to consider only
translatory (Eq. (1)), steady state (Eq. (3)) motions. One
can predict the errors that the model may make in cases
where either or both of these assumptions are not met.

These may correspond to human illusions or biases, such
as the increase in apparent speed for short-duration
stimuli reported by Giaschi and Anstis (1989), that
radial motion appears to move faster than translatory
motion (Bex & Makous, 1997), and that apparent speed
of rotating displays varies with display scale (Werkhoven
& Koenderink, 1993).

Our model’s use of normalization is not unusual.
Several models have proposed that the output of V1 cells
is normalized by the aggregate response of a set of
related cells (Grzywacz & Yuille, 1990; Smith &
Grzywacz, 1993; Heeger, 1991, 1993; Simoncelli &
Heeger, 1998). Our model proposes that the purpose of
the normalization is to allow the velocity-computation
system to discount variations in the spatial structure of
the stimulus, not just contrast as in other models. More
generally, we postulate that the brain may use selective
normalization to extract many types of stimulus invari-
ance at various hierarchical levels of the visual pathway.
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Appendix A

In the derivation of Eq. (3), we used as our nonlinear-
ity on the output of the convolution the absolute value
raised to a power. We now investigate the general form
of the nonlinearities that can be used in the derivation
above. For the derivation to hold, the nonlinearity
cannot interfere with the factorization of the spatial
component g(Vr). In other words, we need to know what
nonlinear functions f satisfy f(xy)= f1(x)f2(y), where f1

and f2 are two unknown functions. By setting y=1, one
gets f(x)= f1(x)f2(1) and thus if f(x)"0, then f(x) and
f1(x) are proportional. Similarly, f(x) and f2(x) are
proportional. Hence,

kf(xy)= f(x)f(y) (10)

where k is a constant. Let us explore the consequences
of Eq. (10) for the nonlinearity f. When one sets y=0,
one obtains f(0)=k−1f(0)f(x), and thus f(0)=0 (since
as we show below, f(x) is not a constant). Given that
kf(x)= f(1)f(x), as long as f(x)"0, f(1)=k. Moreover,
f(x)=k−1f(−1)f(−x), which leads to f(x)=
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k−2f(−1)2f(x), and so if f(x)"0, then f(−1)=9k.
Without loss of generality, we limit ourselves to k]0.

To derive a general form for f from Eq. (10), we
consider the derivative of f

f: (x)= lim
e�0

f(x+e)− f(x)
e

Using Eq. (10), we get

f: = lim
e�0

k−1f(x)f(1+e/x)− f(x)
e

Factoring out f(x) and defining e %=e/x, we obtain

f: = lim
e%�0

f(x)
x

k−1f(1+e %)−1
e %

=
f(x)

x
k−1f: (1)

Since k−1f(1)=1 as shown above.
Defining a=k−1f: (1), one gets

xf: (x)=af(x) (11)

As this is a first-order, homogeneous, ordinary differen-
tial equation, there is guaranteed to be a unique solu-
tion for each initial condition. When x=0, f: (x) is
undefined in Eq. (11), since f: (0)=af(0)/0 and f(0)=0.
Thus there are two different ranges that must be ad-
dressed independently: x\0 and xB0. When x\0,
the initial condition is uniquely specified by f(1)=k.
The solution is f(x)=kxa, as one can verify by insert-
ing it in Eq. (11) and checking the initial condition.
When xB0,f(x)=k−1f(−1)f(−x)=k−1f(−1)k(−
x)a=9k(−x)a.

Hence, the general form of the nonlinearity that one
can use instead of �·�m to derive Eq. (3) is

f(x)=
!kxa x]0
9k(−x)a xB0

(12)

Eq. (12) includes �·�m as a particular case. If we abandon
the requirement that f(x)"0 and require that x\0 in
the arguments following Eq. (10) (corresponding in the
velocity model to a requirement that g(Vr)\0), then
we can also accommodate a half-wave rectifying
nonlinearity

f(x)=
!kxa x]0

0 xB0
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