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1. Introduction
In this paper, we will consider the system

P19t — k(px +¥)x =0,

o0

P2¥ee — b + / g(S)Yxx(t —s)ds +k(px +¥) + 80, =0,
0
P36t — BOrxx — BOxx + 8 =0 (1.1)
with positive constants p1, 02, p3, k, b, B8, § together with initial conditions
00 =900, ©(-,00=¢1, Y0 =¢o, Y:(-.0)=¢1, 0(,0)=6p (12)
and boundary conditions
¥x(0,0) =@x(1,5) =¥ (0,0) =¥ (1,£) =6(0,£) =0(1,£) =0, (13)

where the functions ¢, ¥ and 6 depend on (x,t) € [0, 1] x [0, c0) and model the transverse displacement of a beam with
reference configuration (0, 1) C R, the rotation angle of a filament and the temperature difference respectively.
In 1921, Timoshenko [23] gave, as a model for a thick beam, the following system of coupled hyperbolic equations

pug = (k(ux — @), in(0,L) x (0, 400),
Lo = (Elgy)x +k(ux — @) in(0, L) x (0, +00), (14)
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where t denotes the time variable and x is the space along the beam of length L, in its equilibrium configuration, u is
the transverse displacement of the beam and ¢ is the rotation angle of the filament of the beam. The coefficients p, I,,
E, I and k are respectively the density, the polar moment of the inertia of a cross section, Young's modulus of elasticity,
the moment of inertia of a cross section, and the shear modulus.

This system (1.4) has been studied by many authors and results concerning existence and asymptotic behavior have been
established. Kim and Renardy [9] considered (3.1.4) together with two linear boundary controls of the form

k(o(L,t) —ux(L,t)) =oue(L,t), Vt=0,
Elgx(L,t) = —Bei(L,t), Vt>0,

and established an exponential decay result. They also provided numerical estimates to the eigenvalues of the operator
associated with system (3.1.4). Yan [24] generalized the result of [9] by considering nonlinear boundary conditions of the
form

k(¢(L7 t) - uX(Lv t)) = f] (Ut(L, t))v vt > 07
—Elpx(L, t) = fo(ee(L, 1)), Vt=>0,

where fq, f, are functions with polynomial growth near the origin. Raposo et al. [18] studied (3.1.4) with homogeneous
Dirichlet boundary conditions and two linear frictional dampings and proved that the energy decays exponentially. This
result is similar to the one by Taylor [21] but, as he mentioned, the originality in his work lies on the semigroup theory
method, which was developed by Liu and Zheng [11]. Soufyane and Wehbe [20] showed that it is possible to stabilize
uniformly (3.1.4) by using a unique locally distributed feedback. They considered

pug = (k(ux — @),  (x.) €(0,L) x (0, +00),
Logre = (Elgy)x +k(ux — @) —bx)@ (), (x,t) € (0,L) x (0, +00),

where b(x) is a positive and continuous function satisfying

b(x) > by >0, Vxelap, a1l

They proved that the uniform stability holds if and only if the wave speeds are equal; otherwise only the asymptotic stability
has been proved. This result improves an earlier one by Shi and Feng [19], where an exponential decay of the solution
energy of (3.1.4), together with two locally distributed feedbacks, had been proved. Ammar-Khodja et al. [2] considered a
linear Timoshenko-type system with memory of the form

P1¢@t — k(px + ¥)x =0,
t

P2t — brxx +fg(t — S)Yxxds +k(px+¥) =0
0

in (0, L) x (0, 00), together with homogeneous boundary conditions. They used bthe multiplier techniques and proved that

the system is uniformly stable if and only if the wave speeds are equal (% = E) and g decays uniformly. Precisely, they
proved an exponential decay if g decays in an exponential rate and polynomial decay if g decays in a polynomial rate. They
also required some extra technical conditions on both g’ and g” to obtain their result. Guesmia and Messaoudi [6] obtained
the same uniform decay results without imposing those extra technical conditions on g’ and g”. Recently, Messaoudi and
Mustafa [13] improved the results of [2,6] by allowing more general relaxation functions. They established a more general
decay result, from which the exponential and the polynomial decay results are only special cases, later, Fernandez Sare and

Mufioz Rivera [4] considered a similar Timoshenko-type system with a past history of the form

P1¢@e — k(px + ¥)x =0,

[o.¢]
P2Vt — bxx + f (&) Yxx(t —s)ds + k(px+ ¥) =0,
0
where pq, 02, k, b are positive constants and g is a positive twice differentiable function satisfying, for some constants
ko, k1,ka > 0,

g6 >0,  —kog(®) <g'® < —kig®), [g"|<ka(®), VE>0,

o0

B:b—/g(s)ds>0,
0
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and showed that the dissipation given by the history term is strong enough to stabilize the system exponentially if and only
if the wave speeds are equal. They also proved that the solution decays polynomially for the case of different wave speeds.
For Timoshenko systems in thermoelasticity, Mufioz Rivera and Racke [16] considered

,01 (Ptt - G(‘P}n \//) = 07 (X7 t) € (O’ L) X (O’ +OO);
P2Vt — bk +k(ox +¥) +y0x =0, (x,1) €(0,L) x (0, +00),
030 —kOxx + v ¥ix =0, (x,t) € (0,L) x (0, 4+00),

under appropriate conditions of o, p;, b, k, v, they proved several exponential decay results for the linearized system and
a nonexponential stability result for the case of different wave speeds. Messaoudi et al. [14] studied

PP — 0 (@x, ) + e =0, (x,t) € (0,L) x (0, +00),

P2V — bk + k(ex +¥) + pOx =0,  (x,t) € (0, L) x (0, +00),
P36 +yax+8yix =0, (x,t) €(0,L) x (0, +00),

T0qr +q9+kOx=0, (x,t) €(0,L) x (0,+00),

where ¢ = @(x,t) is the displacement vector, ¥ = v (x,t) is the rotation angle of the filament, 6(x,t) is the temperature
difference, g = q(x, t) is the heat flux vector, p1, p2, p3, b, k, ¥, §, i, To are positive constants. The nonlinear function o is
assumed to be sufficiently smooth and satisfy

04,(0,0) =0, (0,0) =k

and

Oy (0,0) = 0y 0,0) = 0y, = 0.
Several exponential decay results for both linear and nonlinear cases have been established. Also Messaoudi and
Said-Houari [15] considered a Timoshenko-type system of thermoelasticity type IIl and proved an exponential decay similar
to the one in [14,16]. Recently, Fernandez Sare and Racke [5] considered hyperbolic Timoshenko-type vibrating systems that
are coupled to a heat equation modeling an expectedly dissipative effect through heat conduction

P19 —k(px +¥)x =0,

o0

O2¥ee — b + / g(S)Yrax(t — s)ds + k(px + ) + 86y =0,
0
P30t — qx + ¢ =0,
TGt +Bq+0x=0 (1.5)
with an exponential decaying kernel g, for T = 0, they proved the exponential stable if and only if the wave speeds are

equal.

We would like to mention other works in [1,10,12,15,3,7,8,22,23] for related models.

In the present work, we consider system (1.1), that is, we use the semigroup method to prove the exponential stability
result for equal wave speed case.
2. Preliminaries

In order to state our main result we make the following hypotheses:

g:RT — R is a differentiable function such that

g(0) >0, Fkog(t) < g'(t) < —k1g(t), |g" (0] < k28(0), (2.1)
b—/g(s)ds:E>O. (2.2)
0

We introduce

nx,t,s)=y¢x,t)—yx,t—s), t,s=0, (2.3)

then we have reformulated system (1.1) to
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019t — k(@x + ¥)x =0,
o0
02Vt — by — / ()Nl (t — 5)ds + k(gx + V) + 860 =0, (2.4)
/ .
030t — BOrxx — BOxx + 8¥xe =0,
Ne+ns—yYe=0

with initial conditions

0, 00=¢00, @C.0=¢1, Y0=¢, Y(.00=¢1, 0, 0=6, N0, =no (2.5)
and boundary conditions

x(0,0) =x(1,0) =9 (0,6) = (1,0) = 0(0,1) =0(1,1) = 0. (2.6)

We shall use the semigroup method to demonstrate the exponential stability, for this purpose we rewrite the system (2.4)
as evolution equation for

U=(0, ¢ ¥, ¥, 0,60, )T = (ur,uz, us, ug, us, ug, u7),
=AU, U(0)=Uy,

where Ug = (o, ¢1, Yo, ¥1, 00,61, n0), and A is the differential operator

0 0 0 0 0 0
ka2 g X ox 0 0 0 0
0 o0 0 d o 0 0
I b k
A=|—-Kox 0 Zda;—X1d 0 0 —2d — Jo 893 (5)ds
0 o0 0 0 0 Id 0
8 By By
0 0 0 03 /)38X ,033" 0
0 o0 0 d 0 0 — 05

Let

H=H(0,1) x L2(0,1) x H}(0,1) x L*(0,1) x H§(0, 1) x L*(0, 1) x L3(R, Hy)

be the Hilbert space with

1
12(0,1):= :v eL%(0,1) ’ / v(x)dx:O},
0

1
Hl0,1):= {v eH'(0,1) ‘ /v(x)dx:O}
0

and norm given by
W01, = o[ |5 + o2 72 + kst + 2 o + o315 + o33 2 + o1 |07 [ e

is a Hilbert space, where Lé(RJr, H(])) denotes the Hilbert space of Hé-valued functions on R*, endowed with the inner
product

1 o
{9, ¥) L2(R*,H //g(sﬂpx(X, )Y (X, ) dsdx.
00

The domain of the operator A is defined by
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D(A) = [U eH ‘ u' e H%(0,1), ul e H}(0,1), u* e H1(0, 1),

u* € Hj(0,1), uy € H*(0, 1) NH{(0, 1), ul € LZ(RY, HY).
o0

Bu3+/g(s)u7(x,s)dseHz(o,l)mHg(o,l), u’(x,00=0}.
0

It is not difficult to prove that the operator A is the infinitesimal generator of a Co contraction semigroup [17].
We shall use the following well-known result from the semigroup theory [11].

Lemma 2.1. A semigroup of contractions {efA}@o in a Hilbert space with norm || - || is exponentially stable if and only if
(i) the resolvent set p(A) of A contains the imaginary axis and
(if)
lim sup |(ixld—A)~"| < oo
A—t00
hold.

. a1s k _ b
3. Exponential stability for o = 2

In this section we will show that the system is exponentially stable infinity provided the condition

! b
r_2 (3.1)
P1 P2
holds. Once more we use Lemma 2.1, and we have to check if the two conditions hold:
iRC p(A) (3.2)
and
3C>0, VAeR: |(ixd— 47", <C. (3.3)

First we will show (3.2) using contradiction arguments. In fact, suppose that (3.2) is not true. Then there exist w € R,
a sequence (B;)n € R with B, — w, |B| < || and a sequence of functions

Un=(ub, uZ, ud,up,up, ul, ul) € D(A) with |[Unliz =1 (34)

such that, as n — oo,

iBaUn — AUy, — 0 in'H, (3.5)
that is,

iBaul —u2 -0 inH0,1), (3.6)

iBnpruy —k(uy  +up), — 0 inL2(0, 1), (3.7)

iBaus —up — 0 inH(0,1), (3.8)
o.¢]

iBnpatiy — bud o — / g e ds +k(up  +up) +8uS, — 0 inl*(0,1), (3.9)
0

. 5 6 : 1

iBpuy —u, — 0 in Hy(0,1), (3.10)

iBnp3ul — Bus o — BuS o +up , — 0 inL?(0,1), (3.11)

iBauy +uj g —up—0 inLZ(RY, HY). (3.12)

Taking the inner product of (3.5) with U, in H and then taking its real part yields
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1 o© 1
1
_Re(AUn,Un)H:—5//g/(s)|u,71,x|2dsdx+ﬂ/|u2,x|2dx—>0.
00 0

Using the hypotheses on g, we find that
7 12 (pt pl
up — 0 inLgz(R", Hy), (3.13)
u® — 0 inH}(0,1) < L%(0,1), (3.14)
inserting (3.14) into (3.10), we obtain
u> — 0 inHY(0,1) < L*(0,1). (3.15)
Then using (3.4), we find that
2112 412 3 2 kllul 312 1 3.16
o1 Hun ”L2 +'02||un ”L2 +ﬂ”un,x”L2 + <”un,x"'un ”LZ — L (3.16)
On the other hand, denote (f, g); to represent the inner product of f, g in the space I, taking the inner product of (3.6)
with pju? in L2 and (3.7) with pju) in L2, respectively, yields
. 2
i01Bn (U,!,, U%)Lz — P ”u% ”Lz -0
and
ip1Bn(up. uy) 2 — k(uh  +up up ). — 0.
Adding and taking the real part, we get
2
kRe(up , + 3. tp ) 2 — o1 Jup | 2 — 0. (317)

Analogously, taking the inner product of (3.8) with pu# in L?(0, 1) and (3.9) with u} in L?(0, 1), respectively, yields

ip2fn (3, ud) o — pa|ud |72 — 0 (318)
and
o0
ipz,Bn(uﬁ, ug)L2 +5”U3,xuiz +/.g(s)(uz,’x, ug,x)L2 — 0. (3.19)
0

Note that from (3.13), (3.14), we have

oo

[ #6032 s 3 1) — 0
0

this used in (3.19) results in

ip2Bn(up, u3) 2 + B””ﬁ,x”iz +k(up,+up,ui),, — 0. (3.20)
Adding (3.18) and (3.20) and taking real part, we get

—pa|lup | +blud > + kRe(uh  + 3, u) o — 0, (3.21)
and adding (3.17) with (3.21), we have

Bl o2 + Kl + udls = o712 = o2 w72 0. (3.22)

Consequently, from (3.16) and (3.22), we deduce that

- 1
Bllup o + kllup Rl = 5 (3.23)

2

1
I R s (3.24)

Also, it is clear that s ﬁ]—%uﬁ € L(R*, H}). Then multiplying (3.12) with ﬁiﬁuﬁ in LZ(R*, H)) gives
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4
7 Up 1.7 4 T 4 4
ilul, — + —(u, ., u — —(u;,u — 0. (3.25)
(452) ke 0~ et by

4
Using (3.8) we have that ;—2 is bounded in Hé(O, 1), and using (3.13) we get that the first term of (3.26) converges to zero.
This yields

2

o0
4
u 1 7 4
n - _Z/g(s)(unls,un),_]é ds — 0, (3.26)
H0 lsn 0

Bn

bo

4
where by = f0°° g(s)ds. We now prove that the second term in (3.26) converges to zero. In fact, using again that 2—: is
bounded in H}(0, 1), (2.1) and (3.13), we have

e.¢] oo
—i/g(s)(u7 ) o ds| = —/g’(S)(u7 ﬁ) ds
,3% s? 71/ Ho [Bnl "5 By H}
0 0
o0
ko |u? /
<—| 2 g ug )]y ds
Bl | Bn |12 Jin (&)
0
ko~/bo | u?
<ol )L o, (3.27)
[Bnl || Bn H} g
Therefore, we can deduce from (3.26) that
ut
n : 1
— —0 inHy(0,1),
Bn
it follows from (3.8) that
ul -0 inHy0,1), (3.28)
and using (3.28) in (3.23), we get
2 1
kllup+unliz = 5 (3.29)

2

We want to show that this is a contradiction if the basic condition (3.1) holds.
Multiplying (3.9) by (u} , +u3) in L*(0, 1), we have

o0

iBnp2(up, up , +1p) 2 — (Euﬁ,xx + / g)up ((s)ds, (up , + ufl)x>
12
0
2
+ k” urll,x + ug ||L2 + ‘S(ug,x’ u111,x + ug)]_z — 0. (3.30)
Note that by (3.14), we have that the last term of (3.30) converges to zero. Then we get
x
; i 2
iBno2 (up Uy +17),2 — (buﬁ’xx + / g(s)u; () ds, (up,+ uﬁ)x> +kuh 4]z — 0. (3.31)
0 2

Also, multiplying (3.7) by }(bu3 , + [5° g(s)u] ,(s)ds) in L2(0,1) results in

o0 o0

P11, [ -
_,%,3” (buﬁfr / g(s)u,z,x(s)ds,uﬁ) — (buﬁ,x—i- / g(S)u] (s)ds, (u;,x+uﬁ)x) —0. (3.32)
0 L2 0 L2
Then, adding (3.31) and (3.32), we obtain
oo
. 01, [z 2
iBnpa(up, up , +u3) 2 — z%ﬁn <buﬁ’x + / g()u; (s)ds, u,%) +k|up+ud|, — 0. (3.33)
0 L2
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On the other hand, multiplying (3.6) by pouf, (3.8) by ip2Bnu3 and —pou? , in L2(0, 1), respectively, yields

—iBnpa(u, u,11,x)L2 — p2(up, u%’x)L2 -0, (3.34)
B2oal|u |2 + iBupa(uf. u3) . — 0. (3.35)
—iBup2(up, up )2 + P2(up up )2 — 0. (3.36)

Since u3 — 0 in H}(0,1) < L?(0, 1), we obtain from (3.35) that

iBnp2(up. u3),, — 0. (3.37)
Adding (3.33), (3.34) and (3.37), we deduce that

o0

. 0, (: 2
—iBnp2 (Ui, ut )2 — l%ﬂn (buﬁqx + / g(s)u; ((s)ds, uﬁ) +k|up+up|;:— 0. (3.38)
0 L2

Now, from (3.12), we have

: 7 7 4 : 2 2
iBlly x4 Up ys — Up, — 0 in Lg(RT, 1),

then, multiplying by flu7 in L2(R*, L?) results in

N Pl,7 2 . Pibo 4 o

lﬁn?(un,x’ u”)Lé(R*—,LZ) + ?( n,xs» u")Lé(R‘*,LZ) - lﬁn k (un,xv un)LZ — 0. (3-39)
Using similar argument used in (3.27), we can conclude

L1 7 2

?( n,sx» un)Lé(R*,Lz) -0,
then it follows from (3.39) that

p1bo 4 2

T(u,,,,x, up);2 — 0. (3.40)
Multiplying (3.8) by —"‘,—(”Ouﬁ.x in L2(0, 1) yields

., Ptho 3 pibo 4

iBa . (up. upr )2 + T(un,x’ up)2 = 0, (3.41)
then, adding (3.40) and (3.41), we get

.. p1bo, 3 5

iBn k ( n’un,x)L2 — 0. (3.42)
Finally, adding (3.38) and (3.42), we obtain

) . p1b . p1bo 2
—iBup2(up. up )2 + lﬂnT(ug, up )+ IT(uﬁ, up )z Hkfub +us|, =0,

and using that b =b — by, we obtain
. P1 P2 2
lﬂnb<? - ?>(uﬁ u%’X)L2 +k||u,17,x +ul |2 —o.
using (3.1), then

k] up 4wz 72 0.

which contradicts (3.29). Thus (3.2) is proved.
To complete the result about exponential stability, we now prove (3.3). Note again the resolvent equation (iAld — A)U =
F € 'H is given by
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izl —u?=f1,

irpru® —k(uy + ), = p1 f2,

iad —ut = f3,
oo

irppu® —bul, — /g(s)uzx(s) ds +k(up +u?) +sus = pa f4,
0

iau® —ub=f>,

irp3u® — Bud, — Buy, + Suy = p3 f°,

i’ +ul —ut=f7,

where bg = f0°o g(s)ds, b=b — bg > 0. To prove (3.3) we will use a series of the lemmas.

307

(3.43)
(3.44)
(3.45)

(3.46)

(3.47)
(3.48)
(3.49)

Lemma 3.1. Let us suppose that the conditions (2.1) and (2.2) on g hold. Then there exists a positive constant C, being independent

of F such that
1 1 o0
2
ﬂ/lufﬁl dx+//g<s)|u1|dsdx<C||U||H||F||H.
0 00

Proof. Multiplying (3.44) by u? (in L2(0, 1)), we get
1

zA,Oz/|u2\ dx+k [ (up +u?)u? dx—,o1/f2u2dx

O\_

and, using Eq. (3.43),
1 1 1 1
iAp2/|u2|2dx - i)»k/(u}( +ud)uldx=py / leﬁdx—i—k/(u}{ +u) fldx.
0 0 0 0
On the other hand, multiplying Eq. (3.46) by u* and integrating over [0, 1], we get

1

1 1 1 oo 1
ixp2/|u4|2dx+5/u u_ﬁdx—i—f/g(s)uZu_f}dsdx—i—kf ul 43 u4dx+5/u u4dx—,02ff4u4dx.
0 0 00 0 0

0

Substituting u* given by (3.49), (3.45) into (3.51), we get

1 1 1 00
iAp2/|u4|2dx—ik5/|ui|2dx—iA//g(s)|uZ|2dsdx
0 00

1 1 oo 1
—i)\k/(u}(—i—u u3dx+//g(s)u uxsdsdx+5/ufiﬂdx
0 00 0

1 1

1 1 oo
=p2/f4lﬁdx+5/u,3<f_,?dx+k/(u,](+u3)f_3dx+//g(s)u)7(f_x7dsdx.
0 0 0 00
Also, multiplying Eq. (3.48) by ub, we obtain

1
lAp3/|u6| dx+ﬂ/]u6| dx—,B/u u dX—,O3/f6LFdX‘
0

Inserting (3.47) into (3.53), and adding (3.51), (3.52), using (2.1) and taking the real part our conclusion follows.

(3.50)

(3.51)

(3.52)

(3.53)
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Lemma 3.2. With the same hypotheses as in Lemma 3.1, there exists C > 0 such that

pz/|u4| dx < Cl|UII#IIFll3¢ + CIU IR (Jud] o + ut + u?] o)

Proof. Multiplying (3.46) by [y~ g(s)u’ds in L2(0, 1), we get

zpo//g(s)u ul dsdx—l—/
1 oo
= / / g(s)u? fAdsdx.
00

From Lemma 3.1, we obtain

1, o©
/ /g(s)u ds
0'o

oo

/g(s)u,z ds

0

and
g(s)uZuﬁdsdx} < ClU I I Flln.

4

Substituting iAu’ given by (3.49) into (3.54), using

1 oo 1 1 oo
Reiﬁ//g(s)uzu‘ldsdx} < %/|u4}2d><+Cff|g/(5)||uZ|ZdeX
00 0 00

and using (2.1), our conclusion now immediately follows from Lemma 3.1.

1 oo
dx—l—k//g(s) Uy +u u7dsclx 8//g(s)u ubdsdx
00

00 1 o0
dx < /g(s)dS//g(S)|u | dsdx < C|U Il [l
0 00

(3.54)

Lemma 3.3. With the same hypotheses as in Lemma 3.1, for any &1 > 0 there exists C, > 0, at most depending on &1, such that

' 2 1/2
bf!ui\ dx < Ce, < CIUII3¢ /I Fll¢ + CIUII3,

Proof. Multiplying of (3.46) by u? yields

i,\pzf u3dx+b/|u3| dx—i—//g(s)u uj dsdx

1
—l—k/ Uy +u )u3dx+8/u u3dx—p2/f4u3dx.
0

0

Substituting iau? given by (3.45) into (3.55), we get

1 1
5/|u)3(‘2dx+k/. ul 4+ u)ud dx
0

0
1 1

:pZ/\u“fdx—ffg(s)u,fuﬁdsdx+5/ idx+pz/f4u3dx+,02/ u* f3dx.
0 00 0

IEI5 fuy 127 2+ €11 [ o

(3.55)

(3.56)
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On the other hand, multiplying (3.44) by [y'u3(y)dy we get

1 X 1 1 X
im/uz([mdy)dx—k/ ul 43 (/uB(y)dy) x=pi [ 2 (/u%y)dy) (357)
0 0 0 0 0
Using (3.45), we have
1 1 X
k/ ul +u3 u3dx:p1/u2</u4(y)dy)dx
0 0 0
1 X 1 X
o | u2< f3(y)dy) e+ | f2< / Wdy) dx. (3:58)
0 0 0 0

Finally, using (3.58) in (3.56) and using that

1 X
Re{pl |7/ u4<y>dydx] <erp w2 + Cey o2t |,
0 0

taking the real part and using Lemmas 3.1 and 3.2, our conclusion follows. O
Our next step is to estimate the term Hu}( + u3||%2. Here we shall use condition (3.1).

Lemma 3.4. With the same hypotheses as in Lemma 3.1, together with condition (3.1), for any & > 0 there exists C¢, > 0, at most
depending on &5, such that

[ lud 40l < Cou Ul Fl + e + 201 |42 .

Proof. Multiplying (3.46) by ul + u3, we have

1

1
iroo | ut(u} +ud) dx+k/|u +u? dx—i—(S/u ul +ud)
0

+

o | O _

[ee) 1
(I3u,3< + / g(s)ul ds) (uf + u3)xdx = py / FAHuf +ud)dx. (3.59)
0 0

Substituting (u} 4+ u3)y given by (3.44) into (3.59), we get

1 o 1
J— — b —
4uldx + iApZ/u4u3dx —ix%/uiuzdx—i—k/\u;—i—uﬂzdx
0 0 0

irp2

o
S

Ih I
1

1 1 oo 1 oo
_ b _
+8fu ux+u3 dx —ix %f/g(s)u,fuzdsdx — %//g(s)u7f2dsdx ;:1 /uf(fzdx
0 00 00

0

I3

1
= / FAH(ut +u3)dx. (3.60)
0
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Substitute u' given by (3.43) and u* given by (3.45) into (I1), then
1 1

1
11=ik,0/ ?dx—,Oz/ 4de+p2/f317,%dx
0

0
Using (3.45) we get
1 1
= —p2/|u4|2dx— pZ/u“Fdx.
0 0
Finally, a substitution of u” given by (3.49) yields

1

w|§

0

From (3.45) we can rewrite I3 as

1 o
b b
= ’%//g(s)u u2dsdx — 'O]kO/ + 2 0/f3 u?dx —
0 0

Using (3.61)—(3.63) in (3.60), we get

1 oo b 1 oo
//g(s)uzsﬁdsdx— %/uﬁlﬁdx— %//g(s)fju_zdsdx.
00 00

1 1 1
iAb(ﬁ——>/ 3u2 dx /u +u3| dx=p /|u4| dx — 6/u (ul +u3)d
0 0 0

0 o\_

Now, using (3.1) and the previous lemmas, our claim follows.

Lemma 3.5. There exists C > 0 such that

pr [[107 dx < ChUllFle + Akl + 2.

Proof. Multiplying Eq. (3.44) by u', we get
1

iAmfu uldx +k u +u? uxdx_mffzu]dx

O\’_‘

%,_z
I

Substituting u' given by (3.43) into I4 and taking real parts, we get

0

1

0

[o¢]
/ 2(s) flu? dsdx.
0

0

u4f_3dx+p2/u3f_,3dx+ (

b —
L/uifzdx

k

p1bo
2__

1
g(s)qu_stdx—i—psz“(u}+u3)dx
0

)

/

(3.61)

(3.62)

(3.63)

flu u2 dx
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1
o /|u2|2dx< CIU I IF Il + 2k uf + 13 |2 + C[ud|2,.
0

Using Lemma 3.3, for &; sufficiently small, our conclusion follows. 0O

Lemma 3.6. With the same hypotheses as in Lemma 3.1, for any €3 > 0 there exists C¢, > 0, at most depending on €3, such that

RS

1
282
/Illf(lztixéaa3 IIUIIHIIFIIH+7||u§H2dX- (3.64)
0

Proof. Multiplying Eq. (3.48) by u>, we have
1 1 1 1 1
iAp3 / ubuS dx — B / ugxﬁdx — ﬂ/ugxlﬁdij S/uﬁlﬁ dx=p3 / fGLFdX. (3.65)
0 0 0 0 0

Substituting u® given by (3.43) into (3.64), taking real parts, and using Lemmas 3.1-3.5 and Young's inequality, our conclu-
sion follows. 0O

Now we are in the position to prove the main result of this section.

Theorem 3.1. Let us assume hypotheses (2.1) and (2.2) on g and suppose that condition (3.1) holds. Then the heat conduction Timo-
shenko system is exponentially stable.

Proof. It remains to show (3.3). Let U = (u!, u?, u?,u®, u®, ub, u”)T, F = (f1, f2, f3, f4, f>, fS, fT satisfy (3.43)-(3.49),
then, from Lemma 3.1, we get

o3 [ul|% + W77 < U F . (3.66)
g

From Lemma 3.2, for &, > 0, there exists C; > 0 such that

b
p2|[ut |2 < ClIF U I3 + 5l |5+ %kllui +u?|2,. (3.67)
Also, from Lemma 3.3, we obtain

bllud |7, < Cey IFI3cIUIl3¢ + €101 U2 |52 + £2k]|ul + u? | 7,. (3.68)

On the other hand, from Lemma 3.5, we have
2 2

klluy +u? |7, < C3llFlln Ul + (61 + e2) o1 |u?] 7. (3.69)

From Lemma 3.5, we obtain
2 2

2(e1 + €2)p1||u?|| 2 <2(e1 + eI Flm U I3 + 8(e1 + )k |Juy + 1|1 (3.70)

Adding (3.66) and (3.67), we get
2 2

(1 —8e1 4+ e2)k|Juy + 1|12 + (61 + e2)p1 |u®|| 2 < CIF Ul (3.71)

Finally, from Lemma 3.6, we get

282¢3

5 |ul | dx. (3.72)

1
e3B 2
O [l ax<coutnetFin+
0
From (3.66), (3.67), (3.68), (3.71) and (3.72), we obtain for &1, &3, €3 sufficiently small, that there exists C > 0 independent
of A, F, U such that

IUNI3, < CIF|%,,

this completes the proof. O
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