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b Department of Mathematics, Katholieke Universiteit Leuven, Celestijnenlaan 200 B, 3001 Leuven, Belgium

Received 28 October 2011; received in revised form 23 February 2012; accepted 19 March 2012
Available online 30 March 2012

Communicated by Vilmos Totik

Abstract

We establish lower semi-continuity and strict convexity of the energy functionals for a large class of
vector equilibrium problems in logarithmic potential theory. This, in particular, implies the existence and
uniqueness of a minimizer for such vector equilibrium problems. Our work extends earlier results in that
we allow unbounded supports without having strongly confining external fields. To deal with the possible
noncompactness of supports, we map the vector equilibrium problem onto the Riemann sphere and our
results follow from a study of vector equilibrium problems on compacts in higher dimensions. Our results
cover a number of cases that were recently considered in random matrix theory and for which the existence
of a minimizer was not clearly established yet.
c⃝ 2012 Elsevier Inc. All rights reserved.
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1. Introduction

A vector equilibrium problem in logarithmic potential theory asks to find the minimizer of
a functional involving logarithmic energies of measures lying in a prescribed set. The origins
of vector equilibrium problems lie in the works of Gonchar and Rakhmanov on Hermite–Padé
approximation [17–19], where they are used to describe the limiting distributions of the poles
of the rational approximants [22]. More recently, vector equilibrium problems also appeared in
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random models related to multiple orthogonal polynomials, such as random matrix ensembles,
or non-intersecting diffusion processes; see the surveys [1,20] and the references cited therein.

The question is to prove the existence and uniqueness of such minimizer. Results are already
available in the literature [3,4,22,23] but they do not cover yet a wider class of vector equilibrium
problems arising from random matrix theory, among other things. Let us illustrate this by an ex-
ample. In [14,12,15] the two matrix model, which is a model of two coupled random matrices, is
investigated and the limiting mean eigenvalue distribution of one of the matrices is characterized
in terms of the following vector equilibrium problem. Minimize the energy functional

log
1

|x − y|
dµ1(x)dµ1(y) −


log

1
|x − y|

dµ1(x)dµ2(y)

+


log

1
|x − y|

dµ2(x)dµ2(y) −


log

1
|x − y|

dµ2(x)dµ3(y)

+


log

1
|x − y|

dµ3(x)dµ3(y) +


V1(x)dµ1(x) +


V3(x)dµ3(x) (1.1)

over vectors of measures (µ1, µ2, µ3) where µ1 and µ3 are measures on R, µ2 is a measure
on the imaginary axis iR, and they have respective total masses ∥µ1∥ = 1, ∥µ2∥ = 2/3 and
∥µ3∥ = 1/3. Moreover, µ2 is constrained by a measure σ appearing in the problem, that is
σ −µ2 has to be a (positive) measure. The external fields V1 and V3 in (1.1) are given continuous
functions on R and V1 has polynomial growth at infinity, while V3 has compact support.

The existence of a unique minimizer (µ∗

1, µ
∗

2, µ
∗

3) plays a crucial role in the two matrix model
investigation. Indeed, an important step for its asymptotic analysis is to normalize the associated
Riemann–Hilbert problem at infinity, a procedure which is possible because of the existence of
such a minimizer, and as a consequence the first component µ∗

1 turns out to be the limiting mean
eigenvalue distribution of one of the random matrices. Nevertheless, the proof of existence and
uniqueness presented in [14,15] is rather complicated and moreover incomplete since the lower
semi-continuity of the energy functional (1.1) was implicitly assumed but not proved. There are
other random models for which the existence of a unique minimizer for an associated vector
equilibrium problem has not clearly been established and which will be covered by this work.
Examples are non-intersecting squared Bessel paths models [10,21] and a Hermitian random
matrix model with an external source [5].

In the recent paper [4], Beckermann et al. establish lower semi-continuity and existence of
minimizers for vector equilibrium problems in situations more general than known before, but
under an hypothesis of compactness (namely the presence of strongly confining external fields,
in case of unbounded sets) which is not present in the example (1.1). It is the aim of this work to
extend the methods of [4] so as to cover the above examples. We restrict in this work to positive
definite interaction matrices, while the work [4] also includes semi-definite interaction matrices.

2. Vector equilibrium problems on the complex plane

We first introduce few definitions commonly used in logarithmic potential theory.

2.1. Notions from potential theory

For a measure µ on C, the logarithmic energy is defined by

I (µ) =


log

1
|x − y|

dµ(x)dµ(y), (2.1)
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and the logarithmic potential at x ∈ C by

Uµ(x) =


log

1
|x − y|

dµ(y), (2.2)

whenever these integrals make sense. Here and in the following, by a measure we always mean
a positive finite Borel measure. Moreover, for two measures µ and ν on C, their mutual energy
is given by

I (µ, ν) =


log

1
|x − y|

dµ(x)dν(y), (2.3)

so that I (µ) = I (µ, µ). These definitions are naturally extended to signed measures.
For a closed subset ∆ ⊂ C and a positive number m > 0, we use Mm(∆) to denote the

set of measures µ having support supp(µ) ⊂ ∆ and total mass ∥µ∥ = m. Such a set Mm(∆)

will always be equipped with its weak topology (i.e., the topology coming from duality with the
Banach space of bounded continuous functions on ∆). The Cartesian product Mm1(∆1)× · · ·×

Mmd (∆d) of such sets carries the product topology.
A closed subset ∆ of C has positive capacity if there exists a measure with support in ∆

having finite logarithmic energy.

2.2. The class of weakly admissible vector equilibrium problems

Let us now precise the assumptions for vector equilibrium problems concerned in this Section.
Fix an integer d ≥ 1.

Assumption 2.1 (Weak Admissibility). We make the following assumptions:

(a) C = (ci j ) is a d × d real symmetric positive definite matrix.
(b) ∆ = (∆1, . . . ,∆d)t is a vector of closed subsets of C each having positive capacity.
(c) V = (V1, . . . , Vd)t is a vector of external fields where each Vi : ∆i → R ∪ {+∞} is lower

semi-continuous and finite on a set of positive capacity.
(d) m = (m1, . . . , md)t is a vector of positive numbers such that

lim inf
|x |→∞,x∈∆i


Vi (x) −


d

j=1

ci j m j


log(1 + |x |

2)


> −∞ (2.4)

for every i = 1, . . . , d, provided ∆i is unbounded.

Given C, V,∆, m satisfying Assumption 2.1, a weakly admissible vector equilibrium problem
asks for minimizing the functional

JV(µ1, . . . , µd) =


1≤i, j≤d

ci j I (µi , µ j ) +

d
i=1


Vi (x)dµi (x) (2.5)

over vectors of measures (µ1, . . . , µd) lying in Mm1(∆1) × · · · × Mmd (∆d), or in a subset
thereof. The terminology weakly admissible mainly refers to the growth conditions (2.4), since
it weakens all the growth assumptions presented in the literature, see also Remark 2.4. Indeed, it
is assumed in [22] that the ∆i ’s are compact sets, and both [4] and [23, Section VIII] require for
unbounded ∆i ’s the stronger growth condition
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lim
|x |→∞,x∈∆i

Vi (x)

log(1 + |x |2)
= +∞, i ∈ {1, . . . , d}, (2.6)

implying (2.4) for any m.
Moreover, note that there is no condition on the relative positions of the sets ∆i . They could be

disjoint (as assumed in [22, Proposition V.4.1] and [23, Theorem VIII.1.4] in case of attraction),
but they could also overlap, even in case of attraction (i.e. ci j < 0) between the measures on ∆i
and ∆ j . This feature is also present in the work [4].

Example 2.2 (Two Matrix Model). The vector equilibrium problem for the functional (1.1) has
the input data

C =

 1 −1/2 0
−1/2 1 −1/2

0 −1/2 1

 , ∆ =

R
iR
R

 , V =

V1
0
V3

 , m =

 1
2/3
1/3


which clearly satisfies the conditions (a)–(c) of Assumption 2.1. Since Cm =


2/3 0 0

t we
have

V − Cm log(1 + |x |
2) =

V1(x) −
2
3

log(1 + |x |
2)

0

V3(x)


which means that condition (d) is satisfied as well, since there exists positive constants c1, c2 and
α such that V1(x) ≥ c1|x |

α
− c2, and V3 has a compact support. Thus the vector equilibrium

problem is weakly admissible.

Example 2.3 (Banded Toeplitz Matrices). A banded Toeplitz matrix Tn with p ≥ 1 upper and
q ≥ 1 lower diagonals has the form

Tn


jk = a j−k, j, k = 1, . . . , n, (2.7)

where apa−q ≠ 0 and ak = 0 for k ≥ p+1 and k ≤ −q −1. The limiting eigenvalue distribution
of the matrices Tn as the size n tends to infinity was characterized in [13] by means of a vector
equilibrium problem with d = p + q − 1 measures without external fields Vi . The interaction
matrix (which is tridiagonal) and the vector of masses are

C =



1 −
1
2

0 · · · · · · 0

−
1
2

1 −
1
2

...

0 −
1
2

1
. . .

...

...
. . .

. . .
. . . 0

...
. . . 1 −

1
2

0 · · · · · · 0 −
1
2

1


, m =



1
q
...

q − 1
q

1
p − 1

p
...

1
p



.



858 A. Hardy, A.B.J. Kuijlaars / Journal of Approximation Theory 164 (2012) 854–868

The sets ∆i are curves in the complex plane, where ∆q is compact but the others are unbounded.
Note that all entries of Cm are zero except for

Cm


q = 1 −
q − 1

2q
−

p − 1
2p

≥ 0.

Since ∆q is bounded, the conditions of Assumption 2.1 are satisfied even though the external
fields are all absent. The corresponding vector equilibrium problem is weakly admissible.

See [8,9] for extensions to rational Toeplitz matrices and block Toeplitz matrices which lead
to a number of interesting variations on the above vector equilibrium problem.

Remark 2.4 (Scalar Equilibrium Problems). In the scalar case d = 1 one may assume without
loss of generality that c11 = m1 = 1. Then the energy functional (2.5) with V1 = V and µ1 = µ

reduces to
log

1
|x − y|

dµ(x)dµ(y) +


V (x) dµ(x)

which differs from the one in [23] by a factor 2 in the external field term. In the setting of [23] the

external field is associated with the weight w(x) = e−
1
2 V (x), and then the equilibrium problem

is called admissible if

lim
|x |→∞

|x |w(x) = 0,

which means that the left-hand side of (2.4) is equal to +∞. In [24] the scalar equilibrium
problem is called weakly admissible if

lim
|x |→∞

|x |w(x) = γ > 0.

Observe that (2.4) is more general, since we do not require that the limit of V (x) − log(1 + |x |
2)

as |x | → ∞ exists.

2.3. Extension of the energy functional definition

Note that the energy functional (2.5) is not well defined for all measures since logarithmic
energies may take the values +∞ and −∞ (the latter cannot happen for measures with compact
support). One may restrict to measures satisfying the condition

I (µ) < +∞ and


log(1 + |x |) dµ(x) < +∞ (2.8)

so that (2.5) is always well defined, as it is done in [4,22]. But it is also possible to extend
naturally the definition of JV(µ1, . . . , µd) to situations where (2.8) is not satisfied.

We extend the energy functional (2.5) by mapping the vector equilibrium problem onto the
Riemann sphere by means of inverse stereographic projection. Namely, let

S =


(x1, x2, x3) ∈ R3

| x2
1 + x2

2 +


x3 −

1
2

2

=
1
4


(2.9)
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be the sphere in R3 centered in (0, 0, 1/2) with radius 1/2 and T : C ∪ {∞} → S the
homeomorphism defined by

T (x) =


Re(x)

1 + |x |2
,

Im(x)

1 + |x |2
,

|x |
2

1 + |x |2


, x ∈ C (2.10)

and T (∞) = (0, 0, 1). Then, the following metric relation holds, see [2, Lemma 3.4.2],

|T (x) − T (y)| =
|x − y|

1 + |x |2


1 + |y|2
, x, y ∈ C, (2.11)

where | · | denotes the Euclidean norm.
For a measure µ on C we use T∗µ to denote its push forward by T , that is, T∗µ is the measure

on S characterized by
f (s) dT∗µ(s) =


f

T (x)


dµ(x) (2.12)

for every Borel function f on S . If µ and ν are two measures on C satisfying the condition (2.8),
then (2.11), (2.12) easily yield

I

T∗µ, T∗ν


= I (µ, ν) +

1
2
∥ν∥


log(1 + |x |

2) dµ(x)

+
1
2
∥µ∥


log(1 + |x |

2) dν(x). (2.13)

As a consequence, we obtain for µi ’s which satisfy (2.8)

JV(µ1, . . . , µd) =


1≤i, j≤d

ci j I (T∗µi , T∗µ j ) +

d
i=1


Vi (x) dT∗µi (x) (2.14)

where the new external fields Vi : T (∆i ) → R ∪ {+∞} are defined by

Vi

T (x)


= Vi (x) −


d

j=1

ci j m j


log(1 + |x |

2), x ∈ ∆i . (2.15)

The condition (2.4) thus states that the Vi ’s are bounded from below. In case ∆i is unbounded,
we extend the definition of Vi by putting

Vi (0, 0, 1) = lim inf
|x |→∞, x∈∆i


Vi (x) −


d

j=1

ci j m j


log(1 + |x |

2)


. (2.16)

Then Vi is a lower semi-continuous function defined on a closed subset of S . Thus, (2.14)
motivates the following definition.

Definition 2.5. We extend the definition of the energy functional (2.5) to all vectors of measures
in Mm1(∆1) × · · · × Mmd (∆d) by setting

JV(µ1, . . . , µd) =


1≤i, j≤d

ci j I (T∗µi , T∗µ j ) +

d
i=1


Vi (x) dT∗µi (x)

if I (T∗µi ) < +∞ for every i = 1, . . . , d, (2.17)
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where the Vi ’s are defined by (2.15) and (2.16), and

JV(µ1, . . . , µd) = +∞ otherwise. (2.18)

The main result of this work is the following.

Theorem 2.6. Let C,∆, V and m satisfy Assumption 2.1, and let JV be the associated energy
functional given by (2.17), (2.18) in Definition 2.5. Then the following hold:

(a) The sub-level set
(µ1, . . . , µd) ∈ Mm1(∆1) × · · · × Mmd (∆d) | JV(µ1, . . . , µd) ≤ α


(2.19)

is compact for every α ∈ R. In particular JV is lower semi-continuous.
(b) JV is strictly convex on the set where it is finite.

The following is an immediate consequence of Theorem 2.6.

Corollary 2.7. The functional JV admits a unique minimizer on Mm1(∆1) × · · · × Mmd (∆d),
as well as on any closed convex subset of Mm1(∆1) × · · · × Mmd (∆d) that contains at least
one element where JV is finite.

The case of upper constraints is also covered by Corollary 2.7. Indeed, given any subset
J ⊂ {1, . . . , d} and (possibly unbounded) measures (σ j ) j∈J , the subset of vectors of measures
(µ1, . . . , µd) ∈ Mm1(∆1)×· · ·×Mmd (∆d) satisfying µ j ≤ σ j for j ∈ J is closed and convex.

A question of interest is whether the component of such minimizer satisfy the condition (2.8)
or not. If the answer is affirmative, then by uniqueness the minimizer coincide with the one
of [4], at least when the Vi ’s satisfy the strong growth condition (2.6). We relate this question to
the regularity of logarithmic potentials, see Remark 3.9.

Remark 2.8 (Good Rate Function). Note that the condition (a) of Theorem 2.6 is what is
necessary to have a good rate function in the theory of large deviations [11]. More precisely
Theorem 2.6 yields that

(µ1, . . . , µd) → JV(µ1, . . . , µd) − min JV (2.20)

is a good rate function on Mm1(∆1) × · · · × Mmd (∆d) as well as on every closed subset of
Mm1(∆1) × · · · × Mmd (∆d).

Whenever the minimizer of an energy functional JV describes the typical limiting behavior
in an interacting particle system, it would be interesting to find out if there is indeed a large
deviation principle associated with it. Some results in this direction are obtained in [16] for
Angelesco ensembles, see also [6]. However for the energy functional (1.1) that is relevant for
the eigenvalues of a random matrix in the two matrix model this remains an open problem.

The extension of the definition for JV leads us to consider vector equilibrium problems on
compact sets in higher dimensional spaces, for which we provide a general treatment in the next
section. Theorem 2.6 will appear as a consequence of this investigation, see Section 3.3.

3. Vector equilibrium problems on compacts in Rn

In this section, let d, n ≥ 1 and K ⊂ Rn be a compact set with positive capacity. We now
provide a general treatment for vector equilibrium problems involving d measures on K .
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We first consider in Section 3.1 vector equilibrium problems involving measures with unit
mass and no external field, for which we claim lower semi-continuity and strict convexity, see
Theorem 3.2. We then show how such result easily extends to vector equilibrium problems with
general masses and external fields, see Theorem 3.4. The proof of Theorem 3.2, which is the
main part of Section 3, is given in Section 3.2. Finally, we come back to weakly admissible
vector equilibrium problems on C and provide a proof for Theorem 2.6 in Section 3.3, as a
corollary of Theorem 3.4.

3.1. Introduction

For measures on K , we again use the definitions (2.1)–(2.3) where | · | stands for the Euclidean
norm. This notation was already used in (2.13) for measures on the sphere S ⊂ R3.

The following result is a consequence of [7, Theorem 2.5].

Proposition 3.1. Let µ and ν be measures on K having finite logarithmic energy and same total
mass ∥µ∥ = ∥ν∥. Then I (µ − ν) ≥ 0 with equality if and only if µ = ν.

As a consequence of Proposition 3.1 and of the fact that K has finite diameter, we obtain
for any measures µ and ν supported in K having finite logarithmic energy that I (µ, ν) is finite.
Indeed one can assume ∥µ∥ = ∥ν∥ = 1 without loss of generality and then we have

I (µ, ν) =


log

1
|x − y|

dµ(x)dν(y) ≥ log
1

diamK
> −∞.

Moreover by Proposition 3.1

I (µ, ν) =
1
2


I (µ) + I (ν) − I (µ − ν)


≤

1
2


I (µ) + I (ν)


< +∞.

Given a d × d symmetric positive definite matrix C = (ci j ), we consider the quadratic map
defined for vectors of measures (µ1, . . . , µd) on K by

J0(µ1, . . . , µd) =




1≤i, j≤d

ci j I (µi , µ j ) if all I (µi ) < +∞,

+∞ otherwise.

(3.1)

The central result of this section is the following.

Theorem 3.2. For any d × d symmetric positive definite matrix C, the functional J0 defined
in (3.1) is lower semi-continuous on M1(K )d and strictly convex on the set where it is
finite.

The proof of Theorem 3.2 is given in Section 3.2. We first show how Theorem 3.2 applies to
vector equilibrium problems with external fields on K with the following data.

Assumption 3.3.

(a) C = (ci j ) is a d × d real symmetric positive definite matrix.
(b) V = (V1, . . . , Vd)t is a vector of external fields where each Vi : ∆i → R ∪ {+∞} is lower

semi-continuous and finite on a set of positive capacity.
(c) m = (m1, . . . , md)t is a vector of positive numbers.
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A vector equilibrium problem asks to minimize the following energy functional

JV(µ1, . . . , µd) = J0(µ1, . . . , µd) +

d
i=1


Vi (x)dµi (x), (3.2)

where J0 is as in (3.1), over vectors of measures (µ1, . . . , µd) lying in Mm1(K )×· · ·×Mmd (K )

(or in some closed convex subset thereof). A consequence of Theorem 3.2 is the following.

Theorem 3.4. If C, V and m satisfy Assumption 3.3, then the functional JV defined in (3.2) is
lower semi-continuous on the compact set Mm1(K ) × · · · × Mmd (K ) and strictly convex on
the set where it is finite. Thus JV admits a unique minimizer on Mm1(K ) × · · · × Mmd (K ), as
well as on every closed convex subset of Mm1(K ) × · · · × Mmd (K ) that contains at least one
element where JV is finite.

Proof of Theorem 3.4. Since Vi is lower semi-continuous, there exists an increasing sequence
(V M

i )M of continuous functions on K such that supM V M
i = Vi . By monotone convergence, the

map

µ →


Vi (x)dµ(x) = sup

M


V M

i (x)dµ(x)

is lower semi-continuous on M1(K ), being the supremum of a family of continuous maps, and
so is the linear map

(µ1, . . . , µd) →

d
i=1


Vi (x)dµi (x) (3.3)

on M1(K )d . Thus JV is lower semi-continuous on M1(K )d by Theorem 3.2. Since (3.3) is a
linear map in the µi ’s which is bounded from below, we also find from Theorem 3.2 that JV is
strictly convex on the part of M1(K )d where it is finite, which proves the theorem in case all
mi = 1.

For the case of general masses mi > 0, we note that if µi = miνi for i = 1, . . . , d, then

JV(µ1, . . . , µd) =


1≤i, j≤d

ci j mi m j I (νi , ν j ) +

d
i=1

mi


Vi (x) dνi (x). (3.4)

The matrix (ci j mi m j )
d
i, j=1 is symmetric positive definite which implies by what we just proved

that the right-hand side of (3.4) is lower semi-continuous on M1(K )d and strictly convex on
the set where it is finite. Then the same holds for the left-hand side seen as a functional on
Mm1(∆1) × · · · × Mmd (∆d), and Theorem 3.4 follows. �

In the next subsection we prove Theorem 3.2.

3.2. Proof of Theorem 3.2

For µ = (µ1, . . . , µd) ∈ M1(K )d , we also write J0(µ) = J0(µ1, . . . , µd) for convenience.

Proof of strict convexity. Being a positive definite matrix, we note that C admits a Cholesky
decomposition

C = Bt B (3.5)
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where B = (bi j ) is upper triangular and bi i > 0 for i = 1, . . . , d . The factorization (3.5) implies
that

J0(µ) =

d
i=1

I


d

j=1

bi jµ j


(3.6)

whenever µ1, . . . , µd have finite logarithmic energy. �

We prove the following statement, which is similar to [4, Proposition 2.8].

Proposition 3.5.

(a) Let µ = (µ1, . . . , µd), ν = (ν1, . . . , νd) be vectors of probability measures on K having
finite logarithmic energy. Then J0(µ − ν) ≥ 0 with equality if and only if µ = ν.

(b) J0 is strictly convex on

µ ∈ M1(K )d

| J0(µ) < +∞

.

Proof. (a) The Cholesky decomposition C = Bt B yields (similar to (3.6))

J0(µ − ν) =

d
i=1

I
 d

j=1

bi j (µ j − ν j )


(3.7)

and, since for any 1 ≤ i ≤ d the signed measure
d

j=1 bi j (µ j − ν j ) has total mass zero, each
term in the right-hand side of (3.7) is non-negative by Proposition 3.1. Thus J0(µ − ν) ≥ 0.
Equality holds if and only if

d
j=1 bi j (µ j − ν j ) = 0 for every i = 1, . . . , d , and this means that

µ = ν since B is invertible.
(b) Let µ, ν ∈ M1(K )d satisfy J0(µ), J0(ν) < +∞. Then each component has finite

logarithmic energy, and we obtain by bilinearity of (µ, ν) → I (µ, ν) that

J0


tµ + (1 − t)ν


= t J0(µ) + (1 − t)J0(ν) − t (1 − t)J0(µ − ν)

for every 0 < t < 1. Then part (b) follows from part (a). �

Proof of lower semi-continuity. The next proposition is the main step in establishing lower
semi-continuity of J0 at the points where it is infinite. The proof is inspired from the one of
[4, Proposition 2.11]. �

Proposition 3.6. Let (µN )N =

(µN

1 , . . . , µN
d )


N be a sequence in M1(K )d satisfying J0(µ
N )

< +∞ for all N . Assume there exists k ∈ {1, . . . , d} such that

lim
N→∞

I (µN
k ) = +∞.

Then

lim
N→∞

J0(µ
N ) = +∞.

Proof. We may assume k = d without loss of generality. By (3.6) and the fact that B is upper
triangular, we have for every N ,

J0(µ
N ) =

d−1
i=1

I


d

j=1

bi jµ
N
j


+ b2

dd I (µN
d ). (3.8)



864 A. Hardy, A.B.J. Kuijlaars / Journal of Approximation Theory 164 (2012) 854–868

Note that the map µ → I (µ) is lower semi-continuous on M1(K ). For compact K ⊂ R2
≃ C

this is proved in [22, Chapter 5, Theorem 2.1] for example, but the proof applies without any
modification to higher dimensions. Thus by Proposition 3.5(b) it has a unique minimizer ω on
M1(K ). One can moreover show that this minimizer has constant logarithmic potential Uω on
K up to a set E of zero capacity (see [23, Theorem I.1.3 and Remark I.1.6]), and that µ(E) = 0
for any measure µ on K having finite logarithmic energy (see [23, Remark I.1.7]).

Then, Proposition 3.1 yields for i = 1, . . . , d,

I


d

j=1

bi jµ
N
j −


d

j=1

bi j


ω


≥ 0,

which implies for i = 1, . . . , d − 1 that

I


d

j=1

bi jµ
N
j


≥ 2


d

j=1

bi j


I


d

j=1

bi jµ
N
j , ω


−


d

j=1

bi j

2

I (ω). (3.9)

Since Uω
= ρ is constant on K \ E , it easily follows that I (ω) = ρ and

I


d

j=1

bi jµ
N
j , ω


=

d
j=1

bi j


Uω(x) dµN

j (x) =


d

j=1

bi j


I (ω),

where the last equality holds since Uω
= I (ω) on K \ E and µN

j (E) = 0 for every j = 1, . . . , d.
Using this in (3.9) we find

I


d

j=1

bi jµ
N
j


≥


d

j=1

bi j

2

I (ω). (3.10)

Summing (3.10) over i = 1, . . . , d − 1 and using (3.8), we find that

J0(µ
N ) ≥

d−1
i=1


d

j=1

bi j

2

I (ω) + b2
dd I (µN

d ).

Thus if I (µN
d ) → +∞ as N → ∞ we also have J0(µ

N ) → +∞ which completes the proof of
Proposition 3.6. �

The next proposition deals with lower semi-continuity of J0 at points where it is finite. We
follow the lines of the proof of [4, Proposition 2.9] and simplify it by considering a different way
to approximate measures.

Proposition 3.7. Let (µN )N =

(µN

1 , . . . , µN
d )


N be a sequence in M1(K )d satisfying J0(µ
N )

< +∞ for all N . Assume (µN )N converges towards a limit µ = (µ1, . . . , µd) with J0(µ) <

+∞. Then

lim inf
N→∞

J0(µ
N ) ≥ J0(µ). (3.11)

Proof. We embed Rn into Rn+1 in the obvious way, namely if (e1, e2, . . . , en+1) is the standard
orthonormal basis of Rn+1 then we identify Rn with the linear span of e1, . . . , en . In this way we
also consider K ⊂ Rn as a subset of Rn+1.
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For r > 0, let δr be the Dirac measure at the point ren+1 = (0, 0, . . . , 0, r) ∈ Rn+1. For a
measure µ on Rn we then have that the convolution µ ∗ δr yields a measure on Rn+1 which is
the translation of µ along ren+1. Then for each N , the quantity J0(µ

N
− µN

∗ δr ), where the
convolution is taken componentwise, makes sense and is non-negative by Proposition 3.5(a). As
a consequence we have

J0(µ
N ) + J0(µ

N
∗ δr ) ≥ 2


1≤i, j≤d

ci j I

µN

i ∗ δr , µ
N
j


. (3.12)

Since the convolution with δr is just a translation and the logarithmic kernel log 1
|x−y|

is
translation invariant, the two terms on the left-hand side of (3.12) are the same. We thus obtain
from (3.12)

J0(µ
N ) ≥


1≤i, j≤d

ci j I

µN

i ∗ δr , µ
N
j


. (3.13)

Next, we compute by using orthogonality between elements of Rn and en+1 that

I

µN

i ∗ δr , µ
N
j


=


log

1
|x − y|

d

µN

i ∗ δr

(x)dµN

j (y)

=


log

1
|x − y + ren+1|

dµN
i (x)dµN

j (y)

=


log

1
|x − y|2 + r2

dµN
i (x)dµN

j (y).

Since for fixed r > 0 the map (x, y) → log(1/


|x − y|2 + r2) is continuous on K × K and
(µN )N converges towards µ, we obtain

lim
N→∞

I

µN

i ∗ δr , µ
N
j


=


log

1
|x − y|2 + r2

dµi (x)dµ j (y),

for every i, j = 1, . . . , d, so that by (3.13),

lim inf
N→∞

J0(µ
N ) ≥


1≤i, j≤d

ci j


log

1
|x − y|2 + r2

dµi (x)dµ j (y). (3.14)

The inequality (3.14) holds for every r > 0. For every x, y ∈ K and 0 < r ≤ 1, we have the
inequalities

1
2

log
1

(diamK )2 + 1
≤ log

1
|x − y|2 + r2

≤ log
1

|x − y|
.

Thus, since the µi ’s have finite logarithmic energy by assumption, we obtain by dominated
convergence

lim
r→ 0


log

1
|x − y|2 + r2

dµi (x)dµ j (y) = I (µi , µ j ). (3.15)

Letting r → 0 in (3.14) and using (3.15) we obtain (3.11). �

Proposition 3.8. J0 is lower semi-continuous on M1(K )d .
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Proof. Suppose (µN )N is a sequence in M1(K )d that converges to µ. In order to prove that

lim inf
N→∞

J0(µ
N ) ≥ J0(µ) (3.16)

we may assume that J0(µ
N ) < +∞ for every N . If J0(µ) < +∞, then (3.16) follows from

Proposition 3.7. If J0(µ) = +∞ then by the definition (3.1) we must have I (µk) = +∞ for at
least one k ∈ {1, . . . , d}. By lower semi-continuity of µ → I (µ) on M1(K ) it then follows that

lim
N→∞

I (µN
k ) = +∞,

and (3.16) follows from Proposition 3.6. �

The proof of Theorem 3.2 is therefore complete.

3.3. Proof of Theorem 2.6

Equipped with Theorem 3.4, it is now easy to provide a proof for Theorem 2.6 as announced
in Section 2.3.

Proof of Theorem 2.6. Given C,∆, V and m satisfying Assumption 2.1, introduce the vector
of external fields V = (V1, . . . , Vd)t where Vi : S → R∪{+∞} is defined in the following way.
On T (∆i ) define Vi from Vi as in (2.15) and, if ∆i is unbounded, extend the definition of Vi to
(0, 0, 1) using (2.16). Then set Vi = +∞ elsewhere. Each Vi is then lower semi-continuous and
finite on a set of positive capacity.

(a) By construction the relation

JV(µ1, . . . , µd) = JV (T∗µ1, . . . , T∗µd) (3.17)

holds for all (µ1, . . . , µd) ∈ Mm1(∆1) × · · · × Mmd (∆d), see Definition 2.5 and (3.1)–(3.2).
As a consequence, we have for all α ∈ R the relation between the sub-level sets of JV and JV

T∗ × · · · × T∗


µ ∈ Mm1(∆1) × · · · × Mmd (∆d) | JV(µ) ≤ α



=


µ ∈ Mm1(S) × · · · × Mmd (S) | JV (µ) ≤ α


. (3.18)

Now we use Theorem 3.4 with C, V, m, which satisfy Assumption 3.3, and K = S ⊂ R3.
The theorem gives that JV has compact sub-level sets since JV is lower semi-continuous on the
compact Mm1(S)×· · ·× Mmd (S). Since T is an homeomorphism from C to S \{(0, 0, 1)}, it is
not hard to check that T∗ is an homeomorphism from M1(C) to {µ ∈ M1(S) | µ({(0, 0, 1)}) =

0}, so that part (a) follows from (3.18) because a measure having a Dirac mass at (0, 0, 1) has
necessarily infinite logarithmic energy.

(b) Theorem 3.4 moreover yields that JV is strictly convex where it is finite. This clearly
implies part (b) from (3.17) since T∗ is a linear injection. �

Remark 3.9. A priori, the minimizer (µ1, . . . , µd) of JV provided by Corollary 2.7 could be
such that

log(1 + |x |) dµi (x) = +∞ for some i ∈ {1, . . . , d}. (3.19)
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In fact (3.19) can only happen if the logarithmic potential U T∗µi is infinite at the north pole of S .
Indeed, letting y → ∞ in (2.11), we obtain for any x ∈ C

|T (x) − (0, 0, 1)| =
1

1 + |x |2

and thus we obtain from (2.12) the following equivalence for any measure µ on C
log(1 + |x |)dµ(x) = +∞ ⇐⇒ U T∗µ(0, 0, 1) = +∞.

Acknowledgments

We would like to thank Bernhard Beckermann and Ana Matos for stimulating discussions on
their paper [4] which had a big influence on this work.

The authors are supported by FWO-Flanders projects G.0427.09 and the Belgian Interuniver-
sity Attraction Pole P06/02.

The second author is also supported by FWO-Flanders project G.0641.11, K.U. Leuven
research grant OT/08/33, and research grant MTM2011-28952-C02-01 from the Ministry of
Science and Innovation of Spain and the European Regional Development Fund (ERDF).

References
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