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We study groups of matrices SGL,(ZT') of augmentation one over the integral
group ring ZT" of a nilpotent group I'. We relate the torsion of SGL,(ZT) to the
torsion of I'. We prove that all abelian p-subgroups of SGL,(ZT) can be stably
diagonalized. Also, all finite subgroups of SGL,(ZT') can be embedded into the
diagonal I'" < SGL,(ZT"). We apply matrix results to show that if T is nilpotent-
by-(IT"-finite) then all finite IT-groups of normalized units in ZT" can be embedded
into I © 1996 Academic Press, Inc.

0. INTRODUCTION

The group ZZT' of invertible elements of an integral group ring ZT" is
both an important and interesting algebraic object. On the one hand, it is a
significant invariant of the group ring. On the other hand, it has strong
links with algebraic K-theory and hence finds useful applications outside
algebra.

It is customary and also convenient to restrict attention to those units
u = Yu,g which lie in the kernel of the augmentation homomorphism e:
2T — 7, e(u) = Zu,. They form a subgroup #,ZT" of index two in ZZI'
and in fact 71" = %, 71" X {+1, —1}.
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566 MARCINIAK AND SEHGAL

Obviously, all elements of the group I" sit inside %,ZI". However, if T’
has elements of finite order then, in most cases, there exist other, “non-
trivial” units. The relation between torsion of I' and the structure of Z,ZI"
is far from being understood. For example, the old conjecture stating that
for groups without torsion holds Z,ZT" = T still seems to be out of reach.

Much more can be said about units which are of finite order. For one
thing, they cannot appear in group rings of torsion free groups, as follows
from

0.1. THEOREM [7, Thm.V1.2.1]. If u € %, ZT is of order p" then T also
contains an element of order p".

Hans Zassenhaus suggested the possibility of a very strong correlation
between the torsion of %,ZI" and that of I'. He conjectured that for a
finite group I' any torsion unit u must be of the form ygy~! for some
g € I' and some unit y from the rational group algebra QTI". This conjec-
ture has been verified for several classes of finite groups. For nilpotent
groups, Weiss was able to prove a stronger version of the Zassenhaus
Conjecture:

0.2. THEOREM [11]. If T is a finite nilpotent group then every finite
subgroup U < %,Z7T is of the form yGy™' for some subgroup G < T and
some unit y € QT'.

More generally, we may look for torsion elements in the matrix group
GL (ZT). They arise naturally when studying units in ZT" and |[T': T'| = n,
via the coset representation. Matrices over group rings also play an
important role in studying group automorphisms; see [9, p. 201]. Of course,
the torsion coming from the subgroup GL,(Z) is not “caused” by the
group ring. To sort out the group ring torsion from the integral torsion, one
observes that the map induced on matrices by the augmentation of
coefficients €,: GL (ZT') — GL,(Z) is a split epimorphism. We will study
its kernel SGL,(ZT) = {X|e.(X) = I}.

When T is a finite p-group then there is a matrix version of Theorem
0.2.

0.3. THEOREM [10]. Let T' be a finite p-group. Every finite subgroup
U < SGL,(ZT) is conjugate inside GL,(QT) to a subgroup of the diagonal
X - xT <SGL,(ZT).

In this paper, we study finite subgroups of SGL,(ZT) for nilpotent
groups I'. The main result states that any such subgroup has an isomorphic
copy inside the diagonal group I' X --- X I" < SGL,(ZT"). The basic tool is
a result in K-theory of nilpotent groups (4.1) which implies stable diagonal-
ization of certain periodic matrices. This, together with residual tech-
niques, reduces the problem to finite groups where we apply Weiss’ result
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(0.2). As a consequence we obtain solutions to Problems 40 and 33 (for
p-elements) in [8].

The paper consists of eight sections.

In Section 1, we investigate the torsion of the matrix groups SGL,(RT")
and of its subgroups. In particular, we prove in (1.8) that for an arbitrary
group I' with a finite normal nilpotent subgroup N, the kernel of the
natural homomorphism GL,(ZT') - GL,(Z[T' /N]) can have p-torsion only
for those primes p which divide the order of N.

In Section 2, we study the torsion in SGL,(ZT") for polycyclic-by-finite
groups T'. We prove in (2.2) that if SGL,(ZT") has p-torsion then the group
' has p-torsion as well. We conclude in (2.4) that if T is nilpotent then all
finite subgroups of SGL,(ZT) are also nilpotent.

In Section 3, we consider representations of finite groups over associa-
tive algebras. We introduce the notion of stable conjugation of such
representations and investigate in (3.4) its relation to the Bass rank map.

In Section 4, we prove a result from K-theory of nilpotent groups which
is later applied together with (3.4) to study the torsion in SGL,(ZT") for
such groups. It was posed as Problem 40 in [8].

In Section 5, we study cyclic subgroups C,- < SGL,(ZI'). We extend
here our result from [2] stating that such subgroups can be stably diagonal-
ized, provided the torsion classes do not fuse in T'. In (5.1), we prove the
same for all nilpotent groups. As a corollary, we obtain a solution of
Problem 33 (for p-elements) in [8].

In Section 6, we apply the results from Sections 2 and 5 to investigate
finite subgroups of SGL (ZT') for nilpotent groups T'. In (6.4), we prove
that any such subgroup has an isomorphic copy inside the diagonal
subgroup T X -+ X T' < SGL,(ZT").

It is used in Section 7, to extend the results from Section 5 from cyclic
p-groups to arbitrary abelian p-subgroups of SGL,(ZT'). We show in (7.2)
that they also can be stably diagonalized.

In Section 8, we prove two results about integral units. We show in (8.2)
that the integral group ring ZI" of a finitely generated nilpotent group I"
determines both the torsion subgroup T(I') and the quotient group
I'/T(I"). Finally, we employ the matrices to prove in (8.3) another embed-
ding theorem: if T" is an extension of a nilpotent group N by any finite
IT'-group then all finite II-subgroups U < #,ZT" can be embedded into N.

1. TORSION IN MATRIX GROUPS OVER GROUP RINGS
Let R be a cummutative domain of characteristic zero. In this section

we study the relation between the torsion of a group I" and the torsion of
different subgroups in SGL,(RT).



568 MARCINIAK AND SEHGAL

First we introduce a notation: for an ideal I in a ring S, we define

= (I and I =(1)" forr>1.
i=1

Most results of this section will follow from properties of the augmentation
ideal A,(T") and the following simple lemma.

1.1. LeMMA. Suppose that a prime number p is invertible in R. Let S be
an R-algebra with an ideal I such that I°" = (0) for some r > 1. Then

(i) The subgroup of units Z(S) N (1L + I) has no p-torsion elements.

(i) The kernel of the natural map GL,(S) = GL,(S/I), n > 1, has
no p-torsion.

Proof. (i) Suppose that for some x € I we have (1 + x)? = 1. Then
1+ X2 (»)x'=1and so —p-x = L2 ,(»)x". Consequently, if x belongs
to an ideal J then it also belongs to J? and r;ence to J. Applying this
observation consecutively to the ideals I, 1°, I, ..., we obtain at the end
that x € I*" = (0).

(i) Apply part (i) to the algebra of matrices M,(S) and its ideal
M. 1

1.2. PROPOSITION.  Suppose that a group 1" has a normal subgroup G such
that for a prime p and an exponent r > 1 holds A“éEl ,o(G) = (0). Then the
kernel of the natural homomorphism GL,(RT) — GL,(RIT /G]) has no
p-torsion elements.

Proof. In the commutative diagram

GL,(RT) - GL,(RIT/G))
l l
GL,(R[1/p]T) —GL,(R[1/p][T/G])

the vertical arrows are injections and hence we may assume that R =
R[1/pl.

It is easy to check that for any ideal / € RG we have (RT"-J)® = RT" -J®
and hence also (RT' -J)® = RI' -J“. Therefore we can apply Lemma
1.1Gi) with S = RT and I = RT - AR(G). 1

The intersection condition is satisfied for a large class of groups. Let K
be the field of fractions of R.
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1.3. PROPOSITION.  If a group G has a subnormal series (1) = G, <
< G, = G with all factor groups G,/G,_, torsion free abelian then A% (G)
(0)

Proof. We proceed by induction on the length k of the subnormal
series. For k = 0 our statement is obvious. If £ > 0 consider the natural
map .. KG = K[G/G,_,]1 = KA. It maps the ideal A%(G) to A%(A)
which is zero by [3, p. 87]. Therefore, we have A%(G) C ker(ar,.) = KG -
Ax(G,_,) and by induction

A%(G) = (A%(G))”" " € (KG-Ag(G, 1))
= KG-AY (G,_,) = (0). 1

1.4. THEOREM. If a group T has a subnormal series (1) = G, < -+ <
G, = G 4T with the factor groups G,/G,;_,, 1 <i < k, torsion free abelian
then the kernel of the natural homomorphism GL,(RT') = GL,(RIT /G)) is
torsion free for all n > 1.

Proof. For each prime p, we have A“,{El/p](G) c A‘;’f(G) = (0), by
Proposition 1.3. From Proposition 1.2, it then follows that our kernel has
no p-torsion for all primes p. |

In particular, when we put G = I" in Theorem 1.4, we obtain:

1.5. CorOLLARY. If a group T has a subnormal series (1) =Ty < -+ <
I, =" with all factor groups I./T;_, torsion free abelian then all matrix
groups SGL,(RT) are torsion free.

The subgroup G < T considered in Theorem 1.4 was solvable and torsion
free. Now, we consider the kernel of GL,(RT") - GL,(R[T'/G) in the
case when G is a finitely generated nilpotent group, possibly with torsion
elements.

1.6. LEMMA. Let P be a finite p-group. If N7_,p*R = (0) then for any
prime q # p we have A%, , (P) =0

Proof. Let us write S = R[1/q]. We still have N7_,p'S = (0). We
know from [4, Lemma 8.1.17] that the image of A (P) in (S/pS)[P] is a
nilpotent ideal. Therefore, for some exponent k > 1 holds A%(P) < pS[P].
Then A%(P) c (N7, p'SHIP1=(0. 1

Let IT be a set of prime numbers. As usual, we write II' for the
complementary set of primes. We say that I' is a II-group if it has no
elements of order p € II'.
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1.7. THEOREM.  Let a group 1" have a normal finitely generated nilpotent
M-subgroup N. If N%.,p'R = (0) holds for all p € 11, then the kernel of the
natural homomorphism .. GL,(RT") - GL, (R[T'/N]) is a TI-group.

Proof. Suppose that for some X € ker(7,) and a prime g & II holds
X? =1 Let T(N) denote the torsion part of N. We can factor the map
Ty as

GL,(RT) 3 GL(R[T/T(N)]) 5 GL,(R[T/NT).

As ker(8) = N/T(N) is a (poly-Z)-group, it follows from Theorem 1.4
that ker( 8,) is torsion free and hence «.(X) = I. Therefore, we can
assume that N = T(N).

Now we proceed by induction on the number r of Sylow p-subgroups in
N. For r = 0, our claim is obviously true. Assume that r > 0 and write N
as a product of its Sylow p-subgroups: N = P, X --- X P. Then «a, can be
factored as

GL,(RT) 5 GL,(R[T/P,]) % GL,(R[T/N1).

The kernel of 6: I'/P, - I'/N has r — 1 Sylow p-subgroups so, by
induction, the kernel of §, has no g-torsion and hence y,(X) = I. From
Lemma 1.6 and Proposition 1.2, it then follows that X =1. |

Because the ring Z of rational integers satisfies N7_, p'Z = (0) for all
primes p, we obtain:

1.8. COROLLARY. Suppose that a group T has a finite nilpotent normal
subgroup N. The kernel of the natural homomorphism GL,(ZT) —
GL,(ZIT /N1) has p-torsion only for the primes p dividing the order of N.

2. MATRICES OVER POLYCYCLIC-BY-FINITE GROUP RINGS

Now we turn to polycyclic-by-finite groups and investigate the relation
between the torsion of SGL,(ZT") and that of I". We will use the Bass rank
map (see [1]). It is a function defined for any associative R-algebra S by
the formula

ro U M,(S) - S/[S,S], r(X) = Trace(X)mod[S, S].

neN

Here S/[S, S] denotes the R-module S divided by the submodule [S, S]
spanned by all elements of the form ab — ba, a,b € S. We are going to
use repeatedly the following, easy to check, observation: if the algebra S is
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not commutative then the traces of conjugate matrices do not need to be
equal. However, their Bass ranks are equal.

In this section, we take R =7 and S = ZTI'. Then S/[S, S] is a free
Z-module Z[CI(T')] spanned by the set CI(T") of conjugate classes of T'.

2.1. LEMMA. Suppose that a matrix X € GL,(ZT') satisfies X* = 1. If
r(X") =n-{1} holds for 0 <i < k then X = I.

Proof. Consider the idempotent matrix

Then r(E) = n-{1} which, by [1, Cor. 8.10], implies E = I. But then
X=XE=E=1 1

2.2. THEOREM. If a polycyclic-by-finite group T" has no p-torsion then also
the matrix groups SGL,(ZT') have no p-torsion.

Proof.  Suppose that we have a matrix X € SGL,(ZT') of order p. Let
r(X) = Xt(X) - & be its Bass rank. From [8, Lemma 48.6], we know that
if £,(X) # 0 then & is either a conjugacy class of a p-torsion element or
& = {1}.

If T' has no p-torsion elements then we must have r(X) = #,Tr(X) - {1}.
But then

o, Tr(X) = Zg:thr(X) =¢e(Tr(X)) =Tr(e (X)) =Tr(I) =n.

Obviously the same holds for all powers of X. Now Lemma 2.1 concludes
the proof. 1

2.3. COROLLARY. If a polycyclic-by-finite group T" has p-torsion only, then
every finite subgroup of SGL,(ZT) is a p-group.

2.4 THeorReM. If T is a nilpotent group then all finite subgroups of
SGL,(ZT) are also nilpotent.

Proof. Let U be a finite subgroup of SGL,(ZT"). By restricting to the
subgroup generated by the supports of all elements of ZI" appearing in U,
we may assume that I' is a finitely generated nilpotent group, and hence
polycyclic.

For each prime p dividing the order of U let J, be the kernel of the
natural ring homomorphism . M,(ZT) - Mn(Z[F/Tp(I‘)]), where Tp(l“)
< I' is the subgroup consisting of all elements of p-power order. We prove
that U, = U N (1 + J,) coincides with the set of all elements of U which
are of p-power order.
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On the one hand, the group SGL,(Z[T'/T ()] has no p-torsion, by
Theorem 2.2. Therefore all p-elements of U must be mapped by =, to the
identity matrix; i.e., they belong to U,. On the other hand, U, is contained
in the kernel of =, GL,(Z1') - GL,(Z[T/T(I)]D and hence all its
elements must be of p-power order, by Corollary 1.8.

It is easy to see that for any ideal J ¢ M, (ZT') the intersection U N (1
+ J) is a normal subgroup of U. Therefore each U, is a normal Sylow
p-subgroup of U. It follows that U is nilpotent. i

3. REPRESENTATIONS OF GROUPS OVER ALGEBRAS

Let S be an associative K-algebra with a unit element over a field K of
characteristic zero. By a representation of a group G over §, we mean a
group homomorphism G — GL,(S). For example, we always have the
regular representation p: G —» GL (K) c GL,(S), where d = |G|.

In the classical representation theory, we take S = K. Two representa-
tions are considered equivalent if they are conjugate. For more general
algebras we usually have K, (S) = 0. Taking this into account, we intro-
duce the notion of stable conjugation of group representations over an
algebra. Let ¢, : G = GL,(S) be two representations of a finite group G
over §.

3.1. DerFINITION. Representations ¢ and i are stably conjugate if there
exists a natural number k and a matrix Y € GL,,,,(S) such that (¢ &
pNg) =Y (@ pk)g)- Yt forall g € G. We write then ¢ ~, .

3.2. Remark. Notice that when the group G is cyclic and the field K
contains a primitive dth root of unity then the regular representation p
can be diagonalized and we obtain the definition of the stable conjugation
of matrices which was considered in [2].

Consider the algebra SG = S ® KG. Each representation G — GL,(S)
determines on $” an SG-module structure in the usual way. It is obvious
from the definition that two representations are stably conjugate iff the
corresponding SG-modules are stably isomorphic. To study those modules
we use again the rank function r. For any ring with unit R and a finitely
generated projective R-module P we have P = ER" for some idempotent
matrix £ € M,(R). The formula [P] — r(E) defines the well-known natu-
ral transformation r;: K,(R) = HH,(R) = R/[R, R], where HH(—) is
the Oth Hochschild homology functor.

3.3. LEMMA. Suppose that G is a finite group and K is its splitting field of
characteristic zero. If rg: Ko(S) — S/[S, S1is injective then rys: K(SG) —
SG /[SG, SG] is injective.



FINITE MATRIX GROUPS 573

Proof By the Wedderburn Theorem, we have SG =S ® KG = § ®
EB M, (K) = 69 M, (S). We obtain a commutative diagram of K-vec-
tor’ spaces

4

h o
Ki(SG) > @ K(M() > @ K($)
 rs L ey, () L ®rg

HH,(SG) > ea HHy(M,(8)) > ea HH,(S).

The left-hand square commutes because of the naturality of the rank map.
The right-hand square is a direct sum of diagrams arising from

M (M, (S)) > M., (S)

l TrM,,i(,S') ! Trg
Trg

Mni(S) - S

which clearly commute. In the first diagram, the horizontal arrows, as well
as the right vertical arrow, are injective. Therefore the left vertical arrow is
injective as well. i

The rank map is strongly related to stable conjugation. Namely, we have:

3.4. PROPOSITION.  Suppose that the rank map r: K\(S) — S/[S,S] is
injective. If G is a finite group and K is its splitting field then for any
representations ¢, . G — GL,(S) the following conditions are equivalent:

D r-¢=r-y;
i) b~y
Proof. (i) = (ii) Let P and Q be the SG-modules corresponding to ¢

and . Because P and Q are S-projective and G is finite of order
invertible in S, the standard Maschke argument shows that they are
projective as SG-modules. Hence [P],[Q] € K,(SG). From (i) it follows
that r¢o[P] = r¢g[Q] Lemma 3.3 implies that P and Q are stably isomor-
phic.

(ii) = (i) Take any element ¢ € G and consider its class sum c, =
Y{hlh conjugate to g}. It is a central element of KG. Let ¢ denote the
number of elements in the conjugacy class of g. Because the rank function
attains the same value on conjugate matrices, we have

1 1
(r-6)(8) = 7 (r-d)(cg) = (r-4)(c;) = (r-4)(g). I
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4. K, OF NILPOTENT GROUP ALGEBRAS

We want to apply Proposition 3.4 when § is the group algebra KT of
another group. To do so, we must know whether the rank map r: K, (KT')
— S/, 8] = K[CI(T")] is injective. In [2], we proved that it is true when K
is a field of characteristic zero and T' is a finitely generated nilpotent
group such that the inclusion of its torsion part T < I'" does not fuse the
conjugacy classes. Here we extend this result to all finitely generated
nilpotent groups, thus solving Problem 40 from [8].

4.1. THEOREM. If T is a finitely generated nilpotent group and K is a
characteristic zero splitting field for T then the rank map r: K,(KT) —
K[CI(T')] is injective.

Proof. In [2, Lemma 3], we proved that the inclusion i: T c I" induces
an epimorphism i, : K (KT) — K, (KT).

The group I" acts on T by conjugation. By composing these automor-
phisms with representations of 7" over K, we obtain an action of T" on the
set of finitely generated projective KT-modules. It is obvious that irre-
ducible modules form a T-invariant subset. Let Irr(KT) be a finite,
I'-invariant set of irreducible KT-modules which contains exactly one
module from each isomorphism class. Then Irr(KT) forms a basis for the
free abelian group K,(KT). Hence the Z-linear extension of the above
I-action converts K,(KT) into a permutation ZT-module.

If two K7-modules lie in the same TI-orbit then the KT-modules
induced from them are clearly isomorphic. Hence i, factors to an epimor-
phism

iy Ko(KT) ®,.Z — Ko(KT).

Similarly, T acts on the set CI(T) of conjugacy classes in T. This action
gives us another permutation ZI'-module K[CI(T)] together with an obvi-
ous homomorphism

i K[CI(T)] ®,rZ — K[CI(T)].

Moreover, the map i is injective because K[CIT)] ®,.Z = K[CI(T)/T]
and i is just a linear extension of an embedding of bases: CI(T) /T — CI(T").

Let r;: K,(KT) — K[CI(T)] be the Bass rank map for the group 7.
From the definition of r, it is easy to see that it is a I'-map. Hence we
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obtain a commutative diagram

Ko(KT) ®5:7 5 Ko(KT)
lrrel Lrr

K[CI(T)] ®,:Z 5> K[CI(T)]

with the bottom horizontal arrow injective and the top horizontal arrow
surjective. We need to prove that the right vertical arrow is injective. From
the diagram, it follows that it is enough to prove the injectivity of the left
vertical arrow.

To this end let us consider the functor & from the category of ZI"-mod-
ules to the category of K-vector spaces, defined by S(A4) = 4 @, K. We
shall consider it as a composition of other functors in two different ways.

On the one hand we can write S(A) = (A4 ®,K) ®,K. From the
representation theory of finite groups we know that the map r; : K(KT)
— K[CI(T)] embeds K,(KT) as a full lattice in the vector space of class
functions K[CI(T)]. Hence the inside functor — ®,K applied to r; gives
an isomorphism. Therefore the map

F(r;) Ko(KT) ®,.K > K[C(T)] ®,.K

is an isomorphism as well.
On the other hand, the functor % can be viewed as the composition:

F(A) = (A ®,:7Z) ®,K.
The outside functor is exact, as K it is a flat Z-module. Therefore
ker(ry ®,rid: Ko(KT) ®,Z - K[CI(T)] ®,:Z) ®,K
= ker(Ky(KT) ®,.K = K[CI(T)] ®,.K) = 0.
It follows that the finitely generated abelian group
ker(r; ®,rid: Ko(KT) ®,1Z = K[CI(T)]| ®,,2)

is finite. To finish the proof it is enough to notice that K,(KT) ® ,-7Z
is a free abelian group. In fact: K,(KT) ®,1Z = Z[Irr(KT)] @ ;17 =
ZNre(KT)/T1 |

5. STABLE DIAGONALIZATION OF CYCLIC p-GROUPS

Let I' be a nilpotent group and let p be a prime number. We have
proved in [2, Prop. 17] that for every representation ¢: C,. > SGL,(ZT")
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there exists another representation ¢: C,. > SGL,(ZT') such that

D px) = (gx),..., g,(x) with g(x) €T for each x € C,;
() r-dp=r-4.

From Theorem 4.1 and Proposition 3.4, we obtain the following exten-
sion of [2, Prop. 20].

5.1. THEOREM. If T is a nilpotent group then every matrix X € SGL (ZT')
of prime power order can be stably diagonalized; i.e., there exist complex roots
of unity & such that the matrices X © diag(&,, ..., &) and
diag(gy, ..., &y &1, -+ -y &) are conjugate in GL,,, . (CT).

We will further extend this result in Theorem 7.1. Now, let us say more
about the group elements g, appearing as “eigenvalues” in the diagonal
form.

5.2. PROPOSITION.  Suppose that X € SGL,(ZT') is a matrix of order p*
and that we have X & diag(¢,,..., &) ~ diag(g,,..., &8, &,.--, &) in
GL, ., (CT). Then g/" = 1 holds for all 1 <i < n. Moreover, if all g, = 1
then it must be that X = I.

Proof. Of course X" @ diag(¢f", ..., &") ~ diag(gt”, ... .g"",
EP°... €P7) and hence the two matrices have equal Bass ranks. As
XP" =1, we get n + L& =Lgl" + L&P ' modCI, CT']. It follows that
Yg?" —n €[CT,CT]l N ZT = [ZT, ZT'] which is possible only if g/ =
foralll <i<n.

Suppose now that all g, = 1. By looking at the ranks again, we get
r(X) = n-{1}. Of course the same holds for all powers of X. Now Lemma
2.1 completes the argument. ||

In Problem 33 of [8], one considers a finite order matrix X € SGL,(ZT")
and asks whether its matrix trace is ‘‘non-negative” in the sense that
Tr(X) = Xn,g with n, > 0 for all g € I'. From Proposition 5.1 we can
easily conclude

5.3. CoroLLARY. If T is an arbitrary nilpotent group then any matrix
X € SGL,(ZT') of p-power order has non-negative trace.

6. DIAGONAL EMBEDDINGS OF FINITE MATRIX GROUPS

We now apply the results from Sections 2 and 5 to study finite subgroups
of SGL,(ZT'). To do so, we need to recall the residual properties of
nilpotent group rings.
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6.1. LEMMA. Let T be a finitely generated nilpotent group.

(i) For any finite subset Z C T there exists a finite index normal
subgroup N <1 such that the natural homomorphism w: I' > T'/N is
injective on Z.

(i) If F is a finite subset in ZT then there exists a finite index normal
subgroup N T such that the induced ring homomorphism .. 7T —
ZIT' /N] is injective on F.

Proof. (i) Consider the finite set Z' = {xy !|x,y € Z, x # y} c I'\{1}.
From [6, Thm. 1.4], we know that T is residually finite. For each element
z € Z' it is then possible to find a finite index normal subgroup N, <T
such that z € N,. We set N = N, N, and consider : I' - I' /N. For
any pair x, y € Z of different elements, we have xy~* & N. Consequently
m(xy~1) # 1 and hence 7(x) # w(y).

(ii) Consider the set F' = {x — y|x,y € F, x # y}. Part (i), applied
to the finite set Z = U{supp(s)ls € F'}, provides us with a subgroup
N «T. For any z € F' the map =.,.: ZI' - Z[T'/N] is injective on the
support of z and hence 7, (z) # 0. It follows that for any pair of different
elements x,y € F we have 7,.(x —y) # 0and so 7,.(x) # 7,(y). 1

Let TP(F) be the p-torsion part of a nilpotent group I'. We denote by
D,(T') the diagonal subgroup {diag(g;,...,g,)lg; € T,(I} < SGL,(ZT).
Obviously, D,(T") is isomorphic to 7,(I') X --- X T,(I") (n times).

6.2. LEMMA. Let T be a finitely generated nilpotent group. For every finite
p-subgroup U < SGL,(ZT") there exists a finite p-group P and a map ¢:
I' - P such that

(i) @ does not fuse the conjugacy classes of p-elements in T';

(ii) the induced map ¢.: SGL,(ZT') — SGL,(ZP) is injective on
vubD,mM. 1

Proof. Consider the finite subset {u, ,Ju € U, 1 < k,l <n} c ZT con-
sisting of the entries of all matrices from U. Lemma 6.1 gives us a finite
index subgroup N; < T such that the natural map ZT — Z[T'/N,] is
injective on this set. The same lemma gives us a finite index subgroup
N, < T such that the projection I' — I' /N, is injective on TP(I‘).

From [6, Prop. 4.1], we know that T" is conjugacy separable. Therefore, if
%1, ..., %, Is the full list of conjugacy classes of p-elements in I' then
there exists a finite index normal subgroup N, <TI' such that the natural
map I' — I' /N, does not fuse them.

Let us take N =N, NN, N N;. Then the map =: I' - I'/N clearly
satisfies conditions (i) and (ii). The finite nilpotent group T'/N can be
written as a product P X P’, where P is a p-group and P’ has no
p-torsion.
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We take ¢ = am, where «: I'/N — P is the natural projection. It is
easy to see that the homomorphism « does not fuse the p-conjugacy
classes 7(%.) and hence ¢ satisfies condition (i).

Clearly the map ¢.: SGL,(ZI') - SGL,(ZP) is injective on D,(I').
Because the kernel of a contains no p-elements, it follows from Corollary
1.8 that a,: Z[T'/N] — ZP is injective on a,U. Consequently, ¢, is
injective on U and hence it satisfies (ii). |

6.3. THEOREM. Let I' be a nilpotent group. For each finite p-subgroup
U < SGL,(ZT) there exists an embedding ¢: U — D,(I") into the diagonal of
SGL,(ZT) such that for each X € U the Bass ranks of X and ¢(X) coincide.

Proof. Fix a finite p-subgroup U < SGL,(ZT'). Let i: Ty c ' be the
subgroup generated by the union of the supports of all entries appearing in
the matrices of U. Clearly I’y is a finitely generated group and we have
U < SGL,(ZT). If there exists an embedding ¢,: U — D,(I;) such that
r(X) = r(e(X)) € Z[CI(T)] for all X € U, then from the diagram

SGL,(ZT,) 5 Z[CI(Ty)]
Li, L
SGL,(ZT) 5 z[ci(T)]

it is clear that ¢ =i, - ¢, is an embedding with the required properties.
Therefore, we may assume that I' is finitely generated.

Let ¢: I' — P be the map given by Lemma 6.2. We write U = ¢, (U) C
SGL,(ZP). By Theorem 0.3, we can conjugate U with a unit y € GL,(CP)
onto a subgroup H = yUy~! of the diagonal D,(P) < SGL,(ZP). We
now prove that H < ¢, D,(I') < D,(P).

Take any h = diag(hy,...,h,) € H<D,(P). One can find a matrix
X € U such that y¢,(X)y ! = h. By Theorem 5.1, the matrix X can be
stably diagonalized; i.e., X ® diag(¢,, ..., &) ~ diag(g, ..., g, &1, 0 &)
in GL,, ,(CT"). Hence the matrices diag(¢(g,), ..., ¢(g,) & diag(é,, ...,
&) and diag(hy, ..., h,) ® diag(&,, ..., &) are conjugate in GL, ., (CP).
By comparing their ranks, we get

Zn: #(8:) — Xn:hi € [zP,zZP].
i=1

i=1

It can happen only when each #; is conjugate in P to some ¢(g;) €
¢(T,(I")). But the subgroup ¢(7,(I')) is normal in P. Hence h; € (T,(I))
forl<i<nandsoh € ¢, D).
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We define ¢ as the foIIowing composition of injections:

UL g m i, g, p (1) 25 D ().

To verify the statement about the Bass ranks, take any matrix X € U.

Then we have ¢(X) = diag(g,, ..., g,) for some elements g; € T,(T") such

that the matrices ¢, (X) and diag(¢(g,), ..., #(g,)) are conjugate.
Consider the diagram

SGL,(ZT) 5 z[cl(T)]
e ) Lo
SGL,(ZP) 5 Z[CI(P)].

We have ¢, (X) ~ ¢,diag(g,,..., g,) and hence
F(ds(X)) =7(¢.diag(gs, - 8,))-

Using the other way in the diagram, we conclude that

¢ (r(X)) = ¢’(r(diag(g1,.--,gn)))-

Obviously r(diag(gy, ..., g,)) is a linear combination of p-conjugacy classes
in T'. From [8, Lemma 48.6], we know that the same is true about r(X). By
construction, the map ¢’ is injective on the span of those classes. Hence
we obtain the desired equality

r(X) =r(diag(g;.. ... &) =r(e(X)). 1

For a nilpotent group T, let us write D(T") = {diag(g,,...,g,)lg; €
T(T)} < SGL,(ZT). Clearly D(T') = @pr(F) =T(T) X - xTT) (n
times). As a consequence of Theorem 6.3, we obtain:

6.4. THEOREM. Let I be a nilpotent group. Every finite subgroup U <
SGL,(ZT) has an embedding ¢: U — D(I"). Moreover, if X € U is of prime
power order then the Bass ranks of X and ¢(X) coincide.

Proof. We know from Theorem 2.4 that U is nilpotent and hence it is a
product of its Sylow p-subgroups: U = EB,,U,,- Theorem 6.3 states that for

each prime p we have an embedding ¢,: U, — Dp(l“). Consequently, there
is also an embedding

goUEBU @D(F)~D(F)

Moreover, if X € U is of p-power order, then ¢(X) = ¢,(X) and hence
r(X) = r(e(X)) by Theorem 6.3. |
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7. STABLE DIAGONALIZATION OF ABELIAN p-GROUPS

Here we prove the promised extension of Theorem 5.1.

7.1. PRoPOSITION. Let T be a nilpotent group and let P be a finite
p-group. For each representation ¢: P — SGL,(ZT') there exists a diagonal
representation §: P — D,(I') < SGL,(ZT') such that ¢ and W are stably
conjugate over CI.

Proof.  Consider the subgroup U = ¢(P) < SGL,(ZT). It is enough to
take ¢ = ¢ where ¢: U — D,(I') is the embedding provided by Theorem
6.3. We have then r- ¢ = r- ¢ and hence Proposition 3.4 concludes the
proof. 1

7.2. THEOREM. If T is a nilpotent group then any finite abelian p-group
U < SGL,(ZT') can be stably diagonalized over CT. It means that there exist:

—an embedding ¢: U — D,(T),
—a family of linear characters ¢: U —» C*, 1 <i <k,
—a matrix Y € GL,,, ,(CT),

such that for all X € U, it holds that

Y- (X @ diag(&,(X),..., &(X)))-Y!
= o(X) @ diag(£,(X), ..., &(X)).

Proof. It follows from Proposition 7.1 and the observation that over the
field C of complex numbers the regular representation of a finite abelian
group can be diagonalized. 1

8. APPLICATIONS TO UNITS IN ZT’

When we set n = 1 in Theorem 6.4, we obtain:

8.1. CoroLLARY. If T is a nilpotent group then every finite subgroup
U c %, 2T is isomorphic to a subgroup of T(T).

Now we can partially reconstruct the structure of T" from the group ring
data.

8.2. THEOREM. Let I' be a finitely generated nilpotent group. From
ZT = ZH, it follows that H is also a finitely generated nilpotent group and

() T() = T(H);
(i) T/T() = H/T(H).
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Proof. The statement that H must be a nilpotent group has been
proved in [5]. If T is generated by {g;|1 <i < k} then H is generated by
the union of supports of the images of all g,’s, which is a finite set.

(i) We can assume that the ring isomorphism ¢: ZI" - ZH pre-
serves the augmentation. Then it maps T(I') to a finite subgroup U c
%,(Z H) which is, by Corollary 8.1, isomorphic to a subgroup of T(H).
Hence T(T') is isomorphic to a subgroup of T(H) and, by symmetry, T(H)
is isomorphic to a subgroup of T(I'). Because both groups are finite it
follows that they are isomorphic.

(i)  We know that the group T'/T(T") is torsion free nilpotent and
hence orderable [4, Lemma 13.1.6]. Therefore its group ring Z[T' /T(I')] is
a domain. Let A(T", T(T')) be the kernel of the natural homomorphism 7 :
ZIT] - Z[T /T(T)] and let o(A(T,T(I") =1c Z[H/T(H)]. Then the
quotient ring ZH /I is a domain.

Take any h € T(H). If h" =1 then (h — Dh = 0, where h=1+h
+ -+ +h"" ' Moreover, h & I as I < A,(H) while 4 has augmentation n.
Hence & — 1 must belong to the ideal I. The elements of the form 4 — 1,
h € T(H) generate the ideal A(H,T(H)). Hence we have proved that
A(H, T(H)) € o(A(T", T(T")). By symmetry, we also have A(T',T(I")) c
¢ Y(A(H, T(H)). Putting those two inclusions together, we obtain that ¢
restricts to an isomorphism A(H, T(H)) = A(T, T(I")).

It induces then an isomorphism o: Z[T'/T(I')] - Z[H/T(H)]. Because
both group rings possess trivial units only, @ establishes an isomorphism
between T'/T(T") and H/T(H). 1

As an application of our investigations about matrices over ZTI', we
obtain an extension of Corollary 8.1 to a larger class of groups.

8.3. THEOREM. Consider an extension T — T — G where T is a nilpotent
group and G is any finite 11I'-group. Then every finite 11-subgroup U < %, ZT°
can be embedded into T(T").

Pr0~f Let us fix a system of right coset representatives {g,,..., g,} of
I in I In this way, we have a fixed basis for ZI" as a left free ZI'-module.
Right multiplication by an element of zT gives us an ZTI'-endomorphism
and hence a matrix. In this way we obtain a regular coset representation p:
7T - M (ZT'), n = |G|. Moreover, we have a commuting diagram

zT 5 M (z1)
\L"T \L €x

’

765 M (2)
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where 7: ZT — ZG is the natural map, e: ZI' — Z is the augmentation
homomorphism and p’ is the regular representation of G. Because G has
no II-torsion, Theorem 0.1 implies that #(U) = {1). From the diagram, it
then follows that p embeds U into SGL,(ZT).

Let us consider a single unit x € U. We can write x = xp +x’ with
xp € ZT and supp(x’) N T' = . It is easy to see that

Tr( p(x)) = Y xfi € ZT.
i=1
In particular, #,,Tr( p(x)) = n - t,(xy); i.e., it is an integer divisible by n.
Assume now that the unit x € U is of p-power order and let X = p(x).
Recall that Theorem 6.4 gives an embedding ¢: p(U) - D(T) <
SGL,(ZT) with the property that the Bass ranks of X and ¢(X) coincide.
Let o(X) = (hy,...,h,) € D(I'). Then

) Tr(X) = ty,Tr(diag(hy,..., h,)) = tm( ‘Zlh,.) =k

for some integer 0 < k < n. But we have seen before that k& must be
divisible by n and hence either k = 0 or k = n.

Consider now the composition of ¢ - p with the projection 7; on the
first coordinate:

US p(U) S D) = T(T) x -+ x T(T) 3 T().

We complete the proof by showing that the composite map is injective.
Suppose that it is not. Then we can find in its kernel a unit x of prime
order p. Obviously we must have ¢p(x) = (1,h,,...,h,) € D(I'). But
then ¢, Tr(p(x)) is positive, and hence it must be equal to n. It can
happen only when all 4, = 1. But we have proved in Proposition 5.2 that
then p(x) = 1. It implies that x = 1, a contradiction. |
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