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Abstract
Strain FF12T was isolated from the mouth of a West African

lungfish (Protopterus annectens) in Senegal. MALDI-TOF-MS did

not provide any identification. This strain exhibited a 97.97% 16S

rRNA sequence identity with Kaistella flava. Using a polyphasic

study including phenotypic and genomic analyses, strain FF12T is

Gram-negative, aero-anaerobic, oxidase-positive, non-motile,

non-spore-forming, and exhibited a genome of 4,397,629 bp with

a G+C content of 35.1% that coded 4,001 protein-coding and 55

RNA genes. On the basis of these data, we propose the creation

of Chryseobacterium senegalense strain FF12T.
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Introduction
The family Flavobacteriaceae, which formerly belonged to the

Cytophaga–Flexibacter–Bacteroides group, represents the most
important bacterial lineage in the phylum Bacteroidetes [1].

Likewise, Chryseobacterium, Bergeyella, Ornithobacterium, Empe-
dobacter, Weeksella, Wautersiella, Elizabethkingia, Sejongia and

Kaistella are the genera currently included in this family [1–3].
However, Kaistella flava and Kaistella korensis are reclassified in
the genus Chryseobacterium [4,5]. The genus Chryseobacterium

was proposed for the first time in 1994 [2]. Currently 90
species with validly published names are included in this genus

[6]. Members of this genus have been isolated from a variety of
environments, including soil [7,8], plant rhizosphere [9],

wastewater [10], freshwater [11], compost [12], diseased fish
[13] and clinical samples [14,15]. Chryseobacterium FF12T strain

(CSUR = P1490, DSM 100279) is the type strain of Chrys-
eobacterium senegalense sp. nov. It was isolated from the mouth
of a West African lungfish (Protopterus annectens). Cells are

Gram negative, aeroanaerobic, nonmotile, non–spore forming
and rods. The availability of genomic data for many bacterial

species [16] inspired us to propose a new concept for the
description of new bacterial species, integrating proteomic in-

formation obtained by matrix-assisted laser desorption/ioniza-
tion time-of-flight mass spectrometry (MALDI-TOF) [17] and

genomic sequencing [18]. This concept changes the current
methods of defining a new bacterial species, which are based on

genetic, phenotypic and chemotaxonomic criteria that are
poorly reproducible and cannot be applied to the entire bac-
terial genus [19–21].

Here we present a summary classification and a set of fea-
tures for the type strain Chryseobacterium senegalense sp. nov.,

strain FF12T (CSUR = P1490, DSM 100279), together with the
description of the complete genomic sequence and its anno-

tation. These characteristics support the circumscription of the
species Chryseobacterium senegalense.

Organism Information
Classification and features
The strain FF12T was isolated from the mouth of a West

African lungfish (Protopterus annectens) in Senegal in June 2014
(Table 1). A sterile swab was introduced in the mouth of this

fish. The sample was inoculated on a 5% sheep’s blood–
enriched Columbia agar (bioMérieux, Marcy L’Etoile, France)

and incubated at 37°C during 48 hours. First identification of
this strain by MALDI-TOF in Dakar was attempted [30]. Then
in Marseille MALDI-TOF protein analysis was performed using
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TABLE 1. Classification and general features of

Chryseobacterium senegalense strain FF12T [22]

MIGS ID Property Term
Evidence
codea

Classification Domain: Bacteria TAS [23]
Phylum: Bacteroidetes TAS [24,25]
Class: Flavobacteriia TAS [25,26]
Order: Flavobacteriales TAS [27,28]
Family: Flavobacteriaceae TAS [1]
Genus: Chryseobacterieum TAS [2]
Species: Chryseobacterieum
senegalense

IDA

(Type) strain: FF12T IDA
Gram stain Negative IDA
Cell shape Rod IDA
Motility Nonmotile IDA
Sporulation Non–spore forming NAS
Temperature range Mesophile IDA
Optimum temperature 37°C IDA
pH range; optimum 6.0–6.4; 6.2
Carbon source Unknown

MIGS-6 Habitat Fish IDA
MIGS-6.3 Salinity Unknown
MIGS-22 Oxygen requirement Aeroanaerobic TAS
MIGS-15 Biotic relationship Free-living TAS
MIGS-14 Pathogenicity Unknown
MIGS-4 Geographic location Senegal TAS
MIGS-5 Sample collection 5 June 2014 TAS
MIGS-4.1 Latitude 14.6937000 TAS
MIGS-4.1 Longitude −17.4440600 TAS
MIGS-4.4 Altitude 12 m above sea level TAS

MIGS, minimum information about a genome sequence.
aEvidence codes are as follows: IDA, inferred from direct assay; TAS, traceable
author statement (i.e. a direct report exists in the literature); NAS, nontraceable
author statement (i.e. not directly observed for the living, isolated sample, but based
on a generally accepted property for the species or anecdotal evidence). These
evidence codes are from the Gene Ontology project (http://www.geneontology.
org/GO.evidence.shtml) [29]. If the evidence code is IDA, then the property should
have been directly observed, for the purpose of this specific publication, for a live
isolate by one of the authors, or by an expert or reputable institution mentioned in
the acknowledgements.
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a Microflex LT (Bruker Daltonics, Leipzig, Germany) as pre-
viously reported [31]. An isolated colony was deposited in
duplicate on a MALDI-TOF target for analysis. Scores ranging

from 1.23 to 1.47 were obtained for FF12T, suggesting that
this strain was not a member of any known species in the

MALDI-TOF database. The reference mass spectrum from
strain FF12T was incremented in our database (Fig. 1). Col-

onies that remained unidentified with MALDI-TOF after three
tests are used for amplifying and sequencing the 16S rRNA

sequence, as previously described elsewhere [32,33]. Chrys-
eobacterium senegalense sp. nov. exhibited a 97.97% 16S rRNA
sequence similarity with Kaistella flava [34], the phylogeneti-

cally closest bacterial species with standing in the nomencla-
ture (Fig. 2). These values were lower than the 98.7% 16S

rRNA gene sequence threshold recommended by Meier-
Kolthoff et al. [37] in 2013 to delineate a new species within

the phylum Bacteroidetes without carrying out DNA-DNA
hybridization.

Different growth temperatures (25, 28, 37, 45 and 56°C)
were tested. Growth was obtained between 25 and 37°C, with

optimal growth at 28 and 37°C. Growth of the strain was also
tested under anaerobic and microaerophilic conditions using
GENbag anaer and GENbag microaer systems respectively
New Microbes and New Infections © 2016 The Authors. Published by Elsevier Ltd on behalf of
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(bioMérieux), and under aerobic conditions with or without 5%

CO2. Optimal growth was observed under aerobic and micro-
aerophilic conditions. Weak growth was observed under

anaerobic conditions at 25°C only. The colonies were opaque
and light yellow in color, with a smooth surface on 5% sheep’s

blood–enriched Columbia agar and approximately 1 mm in
diameter. A motility test was negative. Cells were Gram-
negative, non-spore-forming rods (Fig. 3) with a mean diameter

of 0.75 μm (range 0.5–1 μm) and a mean length of 2.25 μm
(range 1.5–3 μm) (Fig. 4). Strain FF12T was oxidase and catalase

positive. Using an API ZYM strip (bioMérieux), positive reactions
were observed for alkaline phosphatase, phosphatase acid,

esterase, lipase, leucine arylamidase, α-glucosidase, β-glucosidase,
naphthol-AS-BI-phosphohydrolase, α-fucosidase, β-galactosidase

and α-galactosidase. Negative reactions were noted for
β-glucuronidase, α-mannosidase, N-acetyl-β-glucosaminidase,
α-chymotrypsin and cystine arylamidase. Using an API 50CH

strip (bioMérieux), positive reactions were observed for D-
glucose, D-maltose and starch. Negative reactions were observed

for D-melibiose, D-trehalose, D-saccharose, D-raffinose, inositol,
D-fructose, potassium 5-ketogluconate, D-mannitol, D-sorbitol, L-

xylose, D-adonitol, methyl β-D-xylopyranoside, glycerol, ribose,
D-xylose, D-mannose, D-melezitose and inulin. Four species with

validly published names in the Flavobacteriaceae family were
selected to make a phenotypic comparison with C. senegalense

(Table 2). By comparison with other closer related Chrys-
eobacterium species, C. senegalense differed in β-galactosidase
production and 5-keto-gluconate utilization. The strain FF12T is

susceptible to amoxicillin, amoxicillin/clavulanic acid, ceftriaxone,
trimethoprim/sulfamethoxazole, erythromycin, ciprofloxacin,

nitrofurantoin, doxycycline, rifampicin and imipenem but resis-
tant to gentamicin and metronidazole.
Genome Sequencing Information
Genome sequencing and assembly
Genomic DNA (gDNA) of Chryseobacterium senegalense was
sequenced on the MiSeq Technology (Illumina, San Diego, CA,

USA) with the mate pair strategy. The gDNA was barcoded in
order to be mixed with 11 other projects with the Nextera

mate pair sample prep kit (Illumina). The biomass of one petri
dish was scraped and resuspended in 500 μL phosphate-

buffered saline. A total of 100 μL of this bacterial suspension
was spun, and the pellet was resuspended in 160 μL of G2
buffer from the EZ1 DNA Tissue kit (Qiagen, Venlo,

Netherlands). A first mechanical lysis was performed by glass
powder on the FastPrep-24 device (MP Biomedicals, Santa Ana,

CA, USA) during 2 × 20 seconds. DNA was then incubated
with 40 μL of lysozyme at 40 mg/mL for 30 minutes at 37°C and
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FIG. 1. Reference mass spectrum from Chryseobacterium senegalense strain FF12T spectra.
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extracted through the BioRobot EZ1 Advanced XL (Qiagen) in

an elution volume of 50 μL.
DNA was quantified by a Qubit assay with the high sensi-

tivity kit (Life Technologies, Carlsbad, CA, USA) to 28.5 ng/μL.
The mate pair library was prepared with 1 μg of genomic DNA
using the Nextera mate pair Illumina guide. The genomic DNA

sample was simultaneously fragmented and tagged with a mate
pair junction adapter. The pattern of the fragmentation was

validated on an Agilent 2100 Bioanalyzer (Agilent Technologies,
Santa Clara, CA, USA) with a DNA 7500 LabChip. The DNA

fragments ranged in size from 1 to 10 kb, with an optimal size at
3.5 kb. No size selection was performed, and only 479 ng of

tagmented fragments were circularized. The circularized DNA
was mechanically sheared to small fragments with 641 bp on a

Covaris S2 device in microtubes (Covaris, Woburn, MA, USA).
The library profile was visualized on a High Sensitivity Bio-
analyzer LabChip (Agilent), and the final concentration library

was measured at 57.9 nmol/L.
The libraries were normalized at 2 nM and pooled. After a

denaturation step and dilution at 15 pM, the pool of libraries
was loaded onto the reagent cartridge and then onto the in-

strument along with the flow cell. Automated cluster genera-
tion and sequencing runs were performed in a single 27-hour
New Microbes and New Infections © 2016 The Authors. Published by Elsevier Ltd on behalf
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run at 2 × 251 bp. A total of 8.6 Gb of information was ob-

tained from a 950K/mm2 cluster density, with a cluster passing
quality control filters of 93.2% (18 182 000 clusters). Within

this run, the index representation for Chryseobacterium sene-
galense was determined to be 8.35%. The 1 414 815 paired
reads were filtered according to the read qualities. These reads

were trimmed and then assembled using the CLC genomics
WB4 software.

Genome annotation and comparison
Open reading frames (ORFs) were predicted using Prodigal

[42] with default parameters, but the predicted ORFs were
excluded if they spanned a sequencing gap region. The pre-
dicted bacterial protein sequences were searched against the

GenBank database [43] and the Clusters of Orthologous
Groups (COGs) databases using BLASTP. The tRNAscan-SE

tool [44] was used to find tRNA genes, whereas ribosomal
RNAs were found using RNAmmer [45] and BLASTn against

the GenBank database. Lipoprotein signal peptides and the
number of transmembrane helices were predicted using SignalP

[46] and TMHMM [47] respectively. ORFans were identified if
their BLASTP E value was lower than 1e-03 for an alignment

length greater than 80 amino acids. If the alignment lengths
of European Society of Clinical Microbiology and Infectious Diseases, NMNI, 10, 93–100
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FIG. 2. Phylogenetic tree highlighting position of Chryseobacterium

senegalense strain FF12T (LN810503) relative to other type strains

within Flavobacteriaceae family. GenBank accession numbers are indi-

cated in parentheses. Sequences were aligned using MUSCLE [35], and

phylogenetic tree was inferred by Maximum Likelihood method with

Kimura two-parameter model from MEGA6 software [36]. Numbers at

nodes are percentages of bootstrap values obtained by repeating anal-

ysis 1000 times to generate majority consensus tree. Riemerella colum-

bina was used as outgroup. Scale bar = 0.1% nucleotide sequence

divergence.

FIG. 4. Transmission electron microscopy of Chryseobacterium sene-

galense strain FF12T. Cells are observed on Tecnai G2 transmission

electron microscope operated at 200 keV. Scale bar = 500 nm.
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were smaller than 80 amino acids, we used an E value of 1e-05.

Such parameter thresholds have already been used in previous
works to define ORFans. Artemis [48] was used for data

management and DNA Plotter [49] to visualize genomic fea-
tures. The Mauve alignment tool (version 2.3.1) was used for
multiple genomic sequence alignment [50]. To estimate the

mean level of nucleotide sequence similarity at the genome
FIG. 3. Gram staining of Chryseobacterium senegalense strain FF12T.

New Microbes and New Infections © 2016 The Authors. Published by Elsevier Ltd on behalf of
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level, we used the MAGI homemade software to calculate the

average genomic identity of gene sequences (AGIOS) among
compared genomes [18]. Briefly, this software combines the
Proteinortho software [51] for detecting orthologous proteins

in pairwise genomic comparisons, then retrieves the corre-
sponding genes and determines the mean percentage of

nucleotide sequence identity among orthologous ORFs using
the Needleman-Wunsch global alignment algorithm. Genomes

from the genus Chryseobacterium and closely related genera
were used to calculate AGIOS values.

The genome of Chryseobacterium senegalense strain
FF12T (GenBank accession no. CYUH01000001–CYUH0100
0015CYUH01000001CYUH01000002CYUH01000003-

CYUH01000004CYUH01000005CYUH01000006CYUH010
00007CYUH01000008CYUH01000009CYUH01000010CYUH

01000011CYUH01000012CYUH01000013CYUH01000014-
CYUH01000015) was compared to Chryseobacterium haifense

strain DSM 19056T (GenBank accession no. JASZ00000000),
Chryseobacterium indologenes strain NBRC 14944T (GenBank

accession no. BAVL01000000), Chryseobacterium formosense
strain LMG 24722 (GenBank accession no. JPRP00000000) and

Elizabethkingia miricola strain ATCC 33958 (GenBank accession
no. JRFN00000000).

Genome properties
The GenBank BioProject number is PRJEB10923. The draft
genome of C. senegalense FF12T consists of 68 contigs and

generated a 4 397 629 bp long genome with a 35.1% G+C
content (Fig. 5). Of the 4056 predicted genes, 4001 were

protein-coding genes, three were RNAs (one 5S rRNA gene,
European Society of Clinical Microbiology and Infectious Diseases, NMNI, 10, 93–100
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TABLE 2. Differential characteristics of Chryseobacterium senegalense strain FF12T (data from this study), Chryseobacterium haifense

[38], Chryseobacterium hispalense [39], Chryseobacterium formosense [40] and Elizabethkingia meningoseptica [41]

Character C. senegalense C. haifense C. hispalense C. formosense E. meningoseptica

Cell diameter (μm) 0.5–1 0.6–0.9 0.2–0.6 0.5–1 0.5–1.0
Oxygen requirement Aeroanaerobic Aerobic Aerobic Aerobic Aerobic
Gram stain − − − − −

Motility − − − − −

Endospore forming − − − − −

Catalase + + + NA +
Oxidase + + + + +
Alkaline phosphatase + + + + +
Nitrate reductase − − + − −

Acid production from:
Trehalose + NA − + +
D-Glucose + + + + +
Mannose + + + + NA
Rhamnose + NA + + NA
Mannitol − − − + +
Naphthol-AS-BI-phosphohydrolase + NA + + +
β-Galactosidase + NA − − +
N-acetyl-β-glucosaminidase − NA − − NA

Utilization of:
5-keto-gluconate − NA + + NA
D-Xylose − − NA + +
D-Fructose + + + − +
L-Fucose − NA + − NA
D-Arabitol − NA NA + NA

Habitat Fish Raw milk Clinical samples Rhizosphere Human

NA, not available.

FIG. 5. Graphical circular map of genome. From outside to center, contigs (red/grey), COGs category of genes on forward S strand (three circles),

genes on forward strand (blue circle), genes on reverse strand (red circle), COGs category on reverse strand (three circles), GC content.
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TABLE 3. Nucleotide content and gene count levels of

genome

Attribute Value % of totala

Size (bp) 4 397 629 bp 100
G+C content (bp) 1 543 567 bp 35.1
Coding region (bp) 3 945 189 bp 89.71
Total genes 4056 100
RNA genes 55 1.35
Protein-coding genes 4001 98.64
Genes with function prediction 2385 58.80
Genes assigned to COGs 2118 52.21
Genes with peptide signals 478 11.78
Genes with transmembrane helices 819 20.19

COGs, Clusters of Orthologous Groups database.
aTotal is based on either size of genome (bp) or total number of protein-coding
genes in annotated genome.

TABLE 4. Number of genes associated with 25 general COGs

functional categoriesa

Code Value % value Description

J 142 3.54 Translation
A 0 0 RNA processing and modification
K 147 3.67 Transcription
L 133 3.32 Replication, recombination and repair
B 0 0 Chromatin structure and dynamics
D 23 0.57 Cell cycle control, mitosis and meiosis
Y 0 0 Nuclear structure
V 59 1.47 Defense mechanisms
T 79 1.97 Signal transduction mechanisms
M 186 4.64 Cell wall/membrane biogenesis
N 2 0.04 Cell motility
Z 0 0 Cytoskeleton
W 0 0 Extracellular structures
U 24 0.59 Intracellular trafficking and secretion
O 93 2.32 Posttranslational modification, protein

turnover, chaperones
C 116 2.89 Energy production and conversion
G 90 2.24 Carbohydrate transport and metabolism
E 157 3.92 Amino acid transport and metabolism
F 55 1.37 Nucleotide transport and metabolism
H 91 2.27 Coenzyme transport and metabolism
I 72 1.79 Lipid transport and metabolism
P 187 4.67 Inorganic ion transport and metabolism
Q 84 2.09 Secondary metabolites biosynthesis,

transport and catabolism
R 254 6.34 General function prediction only
S 333 8.32 Function unknown
— 267 6.67 Not in COGs

COGs, Clusters of Orthologous Groups database.
aTotal is based on total number of protein-coding genes in annotated genome.

TABLE 5. Numbers of orthologous proteins shared between

genomes (upper right) and AGIOS values obtained (lower

left)a

CS CF CH CI EM

CS 4001 2259 1517 2356 1964
CF 77.41 3695 1477 2274 1881
CH 64.29 64.78 2085 1538 1381
CI 76.28 74.70 63.91 4192 1980
EM 66.59 66.41 61.15 66.95 4052

AGIOS, average genomic identity of orthologous gene sequences; CF,
Chryseobacterium formosense; CH, Chryseobacterium haifense; CI, Chryseobacterium
indologenes; CS, Chryseobacterium senegalense; EM, Elizabethkingia miricola.
aShown is average percentage similarity of nucleotides corresponding to ortholo-
gous protein shared between genomes (lower left) and numbers of proteins per
genome (bold).

TABLE 6. Pairwise comparisons of Chryseobacterium species

using GGDC, formula 2 (DDH estimates based on identities/

HSP length)a

CS CF CH CI EM

CS 100.00% 22.9% ± 2.91 21.4% ± 2.58 22.7% ± 2.83 22.0% ± 2.59
CF 100.00 19.8% ± 2.58 21.8% ± 2.73 19.7% ± 2.57
CH 100.00% 27.2% ± 2.59 24.9% ± 2.58
CI 100.00% 22.3% ± 2.60
EM 100.00%

CF, C. formosense; CH, C. haifense; CI, C. indologenes; CS, C. senegalense; DDH,
DNA-DNA hybridization; EM, Elizabethkingia miricola; GGDC, Genome-to-
Genome Distance Calculator; HSP, high-scoring segment pair.
aConfidence intervals indicate inherent uncertainty in estimating DDH values from
intergenomic distances based on models derived from empirical test data sets
(which are always limited in size) [52]. Formula 2 is recommended, particularly for
draft genomes [53].
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one 16S rRNA gene, one 23S rRNA gene) and 52 were tRNA
genes assigned a putative function. A total of 56 genes were

identified as ORFans (1.38%). The remaining genes were an-
notated as hypothetical proteins. The genome properties and
statistics are summarized in Table 3. The distribution of genes

into COGs functional categories is presented in Table 4.

Genome comparison
The draft genome of C. senegalense is larger than that of
C. haifense and C. formosense (4.39, 2.85 and 4.36 Mb respec-

tively) but smaller than that of C. indologenes and E. miricola
(4.75 and 4.58 Mb respectively). The G+C content of

C. senegalense is higher than that of C. formosense (35.1 and
New Microbes and New Infections © 2016 The Authors. Published by Elsevier Ltd on behalf of
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34.8% respectively) but lower than that of C. haifense, C. indo-
logenes and E. miricola (36.7, 37.2, and 35.9% respectively). The

gene content of C. senegalense is higher than that of C. haifense
and C. formosense (4001, 2085 and 3695 respectively) but lower

than that of C. indologenes and E. miricola (4258 and 4159
respectively). However, the distribution of genes into COGs
categories was similar in all compared genomes. In addition,

C. senegalense shared 4056, 2905, 4258, 3789 and 4159
orthologous genes with C. haifense, C. indologenes, C. formosense

and E. miricola (Table 5). Among the species with standing in
nomenclature, AGIOS values ranged from 61.15% between

C. haifense and E. miricola to 74.70% between C. formosense and
C. indologenes. The genomic similarity level between strain

FF12T and closely related Chryseobacterium species was also
estimated using the genome-to-genome distance calculator
(GGDC) (Table 6).

Conclusion
On the basis of phenotypic, phylogenetic and genomic analyses,
we formally propose the creation of C. senegalense sp. nov., which
European Society of Clinical Microbiology and Infectious Diseases, NMNI, 10, 93–100
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contains strain FF12T. The strain was isolated from the mouth of a

West African lungfish (Protopterus annectens) in Senegal.

Description of Chryseobacterium senegalense

strain FF12T sp. nov.
Chryseobacterium senegalense (se.ne.gal.e0n.sis, L. gen. masc. n.

senegalense, pertaining to Senegal, the country where the type
strain was isolated). Isolated from the mouth of a West African

lungfish (Protopterus annectens), C. senegalense is Gram negative,
aeroanaerobic, non–spore forming, a rod and catalase and
oxidase positive. The strain grows easily on 5% sheep’s

blood–enriched Columbia agar with colonies 1 mm in diameter
and comprise aerobic and nonmotile cells with a mean diameter

of 0.75 μm (range 0.5–1 μm) and a mean length of 2.25 μm
(range 1.5–3 μm). Positive reactions were observed for alkaline

phosphatase, phosphatase acid, esterase, lipase, leucine aryla-
midase, α-glucosidase, β-glucosidase, naphthol-AS-BI-

phosphohydrolase, α-fucosidase, β-galactosidase, α-galactosi-
dase, D-glucose, D-maltose and starch. Chryseobacterium sene-
galense strain FF12T is susceptible to amoxicillin, amoxicillin/

clavulanic acid, ceftriaxone, trimethoprim/sulfamethoxazole,
erythromycin, ciprofloxacin, nitrofurantoin, doxycycline,

rifampicin and imipenem but resistant to gentamicin and
metronidazole.

The G+C content of the genome is 35.1%. The 16S rRNA
and genome sequences of C. senegalense strain FF12T

(CSUR = P1490, DSM 100279) are deposited in GenBank under
accession numbers LN810503 and CYUH01000001–

CYUH01000015 respectively.
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