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Abstract

We give an internal characterization of spaceéssuch that the spac€,(X) of continuous
real-valued functions onX, endowed with the pointwise convergence topology, is uniformly
homeomorphic to the spacg, (I") of functions on the:-dimensional cubd” = [0, 1]".
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1. Introduction

For a completely regular space, C,(X) denotes the space of all continuous real-
valued functions oiX, equipped with the pointwise convergence topology.

SpacesX andY are calledu-equivalent {-equivalent) if space€,(X) and C,(Y)
are uniformly (linearly) homeomorphic. We writ€ ~* Y if the spacesX andY are
u-equivalent andX ~ Y when X and Y arel-equivalent. Let us recall that the map
¢:E — L, whereE and L are linear topological spaces, is uniformly continuous if for
every neighborhood of zero inL there is a neighborhood of zero in E such that, for
everyf, g € E with f — g eV we havep(f) —p(g) €U.

The aim of this paper is to prove the following characterization:

Main Theorem 1. For every positive integef, a spaceX is u-equivalenttd” if and only
if the following conditions are satisfied

(a) X isn-dimensional, compact and metrizable,
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(b) every nonempty closed subsgebf X contains a nonempty relatively open subBet
which can be embedded into thecubel”.

The “only if” part of this theorem is already known and it is essentially due to Gul'ko
(see [8]). More precisely, he proved in [8] thatequivalence preserves the dimension.
However, from the results in [8] also follows part (b) of the Main Theorem. Therefore,
to prove the Main Theorem it is enough to construct a uniform homeomorphism between
C,(X) andC,(I") having in hand conditions (a) and (b). The construction is based on
the technique of Gul'’ko from the paper [7] where he proved that the relatiomsaid!-
equivalence are different even on the class of countable compacta. Namely he showed that
all the countable compacta are mutualkequivalent which is not true for the relation of
[-equivalence (see [4]).

The problem of characterizing spaces which arequivalent to then-cube was
motivated by the question of Arhangelsii3] (Problem 30) who asked about the
similar (internal) characterization fdrequivalence. As the notion af-equivalence is
a generalization of the relation éfequivalence, it seemed natural to consider such a
problem. However, a satisfactory answer to the original problem of Arhangdtakinot
been given yet. Some partial results can be found in [2,9-12] and [14]. In Section 4, we
prove another partial result concerning Arhangel’skii's question. We also formulate the
hypothesis how such a characterization can look like.

2. Preliminaries

Let us recall that the compactness is preserved by thguivalence (see [13]). Besides,
if X is u-equivalent toI” then it must have a countable weight (see [1]). Thus without
loss of generality we can assume that the spadeom Main Theorem is compact and
metrizable. In the sequéd will always denote such a space.

Denote byOrd andLim the classes of all ordinals and all limit ordinals, respectively.
We start with the following definition which generalizes the idea of Cantor-Benedixson
derivative:

Definition 2.1. For every spac& we put: [,(X) = (J,.s Us Where{Us: s € S} is the
family all open subsets of which can be embedded infd.

Definition 2.2. For a givenn € N we define thexth embedding derivative(!*"! in the
following way:

X[O,n] =X;

X[a+l,n] — X[a,n] \]n(X[a’n]);

xlen =M, _, XP" fora e Lim.

As in the case of Cantor—Benedixson derivativ®!®™),.o;q stabilizes on some
countable ordinal if the spacé has a countable base. So let us define this space at which
our new derivative stabilizes.
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Definition 2.3. €d,(X) = (1), _,,, X'*").
Let us point out that embedding derivative has the following obvious property which
will be useful in the proof of the main theorem:

Fact 2.4. For every subsetd of the spaceX and for everyn € N we haveAl®" ¢
xlenln A,

Let us introduce the following relation:

Definition 2.5 (Gul'ko [7]). Let E and F' be linear topological spaces aifid |1, || - |2

be norms, onE and F, respectively, not necessarily related to the topologies. We write
(E,|l - lln) = (F,| - ||2) if, for every ¢ > 0, there exists a uniform homeomorphism
ue . E — F satisfying the following condition:

@) QA+ fli<lus(Hll2<IfllL foreveryf eE.
If it is clear which norms are considered énandF we write E = F.

This relation appeared for the first time in [7] and plays the key role in the proof of the
main theorem.

Let us fix that for every two linear topological spacEsand F equipped with norms
Il - llo and| - ||1, respectively, on the spacE x F we consider the norni(e, f)| =

max(|lello, I fll1)-
Let us recall the definition afp-product:

Definition 2.6. For everyi € N, let E; be a linear topological space arjd ||; be a
norm onk;, not necessarily related to the topology. Let us def[{&:y E; = {(fi)ien €
HieN Ei: Iimi—)oo ”fl ”l = 0}-

The topology on[ ]’y E; is the standard product topology. Usually Pl Ei we
consider the norm(f)ienll = maxen Il filli-

Definition 2.7. For every linear topological spacésandY equipped with some norms
(see Definition 2.5) we writeX < Y if there exists a linear topological spac¢e (see
Definition 2.5) such that = X x F.

Let us point out some obvious, but important, properties of the relatioasd <.

Fact 28. If X = X, Y = Y1 (respectivelyX > X3, Y > Y1) thenX x Y = X1 x Y1
(respectivelyX x Y > X1 x Y1).

Fact 2.9. If, for everyi € N, X; = ¥; (respectivelyX; > Y;) then [’y Xi = [T}y Vi
(respectively[ Tioy Xi = [Ty Yi)-

Theorem 2.10 (Dugundji [5]).Let Y be a metrizable space and A a closed subsét©hen
there is a continuous linear functiof : C,(A) — C,(Y) such that for eacly € C,(A),

D()IA= fand@(f)(Y) Cconf(A)).
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Lemma 2.11 (Gul’ko [7, Lemma 1]).Let R? be the real plane equipped with the norm
l(x1, x2)|| = max(x1], |x2|) and lete > 0. Then there exist functiong, : R? — R and
¥ : R2 — R such that the following conditions are satisfied

(a) The mappingx1, x2) — (x1, @ (x1, x2)) is a uniform homeomorphism of the plane
with the inverse of the forrfx1, x2) — (x1, ¥ (x1, x2))

(0) @e(x1,x2) =0if x1=x2

©) ¥e(y1,0)=mn

(d) L+ &), x2) I < 1(x1, e (x1, x2) | < [l (x, x2) || for (x1, x2) € R2,

It is easy to see that condition (c) follows from conditions (a) and (b). Let us remained
that in this papeX denotes always compact metrizable space.

Definition 2.12. For a closed subset of a spaceX, letC,(X, A) ={f € C,(X): flA=
0} with the topology of the pointwise convergence. We also edijpX, A) with the
standard sup norm. We denafg (X, {x}) by C, (X, x) forx € X.

Before formulating the next result let us set the following notation. Every continuous
function ¢ :R" — R induces the magp:C,(X)" — C,(X) defined by the formula

O(f1y ..oy fr)@) =@(f1(x),..., fu(x)). It is easy to check that ifp is uniformly
continuous the is also.

Proposition 2.13. Let A, B be closed subsets of a space X such that A. Then
Cp(X,B)=C,(A,B) x Cp(X, A).

Proof. Fix ¢ > 0. Defineu,:C,(X, B) = C,(A, B) x C,(X, A) andw,:Cp(A, B) x
Cp(X, A) > Cp(X, B) by the formulas:. (f) = (p(f), @ (@(p(f)), f)) andwe(f, g) =
Ve (@(f), g) where p:C,(X,B) — C,(A, B) is defined byp(f) = flA, ¢ is as
in Lemma2.11 and®:C,(A,B) — C,(X,B) is as in Theorem 2.10 (it is pos-
sible because®(C,(A, B)) C C,(X, B)). By condition (b) from Lemma 2.11 we
have @.(@(p(f)), f) € C,(X, A), henceu, is well defined. The condition (c) from
Lemma 2.11 implies thab, is well defined. Let us verify thab, o u, =idc,x,5) and
ug o we =idc,(a,B)xC,(x.4)- By condition (a) from Lemma 2.11 we have (x1, ¢ (x1,
x2)) = x2. Therefore, forf € C, (X, B), we have

we oue(f) =Ye (P (0(1)), 2:(@(p( ). f)) = f-
Take (f, g) € Cp(A, B) x Cp(X, A). Sincep(g) = 0, condition (c) from Lemma 2.11
implies thatp (¥ (@ (f), g)) = p(@(f)) = f. By condition (a) from Lemma 2.11 we
obtain that
ue owe (f,8) = (p(Ve(@ (), 2)), P (P (0 (Ve (D(£), 8))), Ve (P (S, 2))
= (£, @e(2(N), Ve (D(f). 8))) = (. 8-

The fact thatw,, u, are uniformly continuous follows from Lemma 2.11(a). Finally
we will show thatu, satisfies condition(a.) from Definition 2.5. Let us check that
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lus (O < NI fIl. Observe thal®@ (o () < || fl (see 2.10). By Lemma 2.11 (c) we have

llue (NN =max(llo (O, 1@:(@(p(f)), /HID < IIf]l. On the other side by Lemma 2.11
(d) and Theorem 2.10 we get

|ue (D] = max(|o(N)], |2 (@ (o), £)])
max([|@ (o(N)]. [@:(@ (o). 1))
>fg£ma><(|¢(p(f))(X) 0e(®(p(f)) @), F(0)])

> (1+5)_1su}E)max(|<D(p(f))(x)|, f@)=a+a7 s o

’

’

Taking B = ¢ in Proposition 2.13 we get the following:

Corollary 2.14. For every closed subset of a spaceX we haveC,(X) = C,(X, A) x
Cp(A).

Corollary 2.15. C,, (X, x0) = C,(X) for everyxg € X, whereX is nondiscrete.

Proof. Let L C X be a topological copy of the spaSe= {%; n € N}U {0} c R. Then

Cp(X,x0) = Cp(X, LU {xo}) x Cp(L U {xo}, x0)
= CI,(X, LU {xo})Cp(L U {xo},xo) x R
Cp(X,x0) xR=C,(X). O

o

Fact 2.16. For every positive integer we haveC,(I") = [,y Cp(I").

Proof. The proof of the above fact is similar to the well-known linear case. Let us define
1"t =1""1x (i} c I", wherei € {0, 1}.
Using Proposition 2.13 we have:

* - * -1 -1 -1 -1
[T cot) =TT (15 ur™) x Cp (15~ u ™)
ieN ieN
~ ( [T ¢t 157 1’11—1)) x ( [T cr(ratu 1'11—1)>. 1)
ieN ieN
Consider the cone ovdf*~! (here we identifyl”~1 with {(x1,...,x,) e R": 0<x; <1
for i <n — 1andx, = 0}) i.e., the following set: " H ={rx + 1 —t)p e R": x €
I"1CR"teR}; p=(0,...,0,1) e R". We define, fork € N\ {0}, [y = {x + (1 —
Dpixel" 'cRYandlf={tx+(1—np: x e I"TCR", A <r < 3
Let i :I" — I,- be a homeomorphism such thﬁ}([?‘l) = Ix+i, Wherei €
{0,1}. Let us define the linear homeomorphisih:: Cp(c(I”‘l),U,@llk U {ph —
(Tren Cpr, 18_1 U I’i‘l)) by the formula:

D(f) = (f o hi)ken\{0}
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It is easy to check that® (f)|lo = || f |l1 where each norm comes from the sup norm in a
way mentioned before. Applying this to (1) we get:

[T ¢, =c, (C(I”‘l), U & u{p}) <[ cpltytur™

ieN k>1 ieN

C, (c(l”_l), U IkU{p}> % ]_[*cp(lk). 2)

k>1 keN

o

In the above we used the obvious fact th§it. C,,(I’é‘l U I’i‘l) can be identified with
[Tiy Cp(I"~1) and thatl, is homeomorphic td" 1. Moreover] |5y C, (Ix) can be seen
ast(U@lIk U{p}, {p}. Thus, according to (2), we have:

[T can=c, (c(l"—l), UJnu {p}) x C,,( U & uip). {p})

ieN k=1 k=1
= Cy(e(r" ™). 1p).

By Corollary 2.15 we know thaf', (c(I" 1), {p}) = C,(c(I"~1)). However ¢1"~1) and
I are homeomorphic which finishes the proofa

o

Corollary 2.17. C,(I") = C,(I")2.

Lemma 2.18 (Decomposition schemel.et us consider spaces and F as in Defini-
tion 2.5. If there exist spaceg andV (as in Definition2.5) such that

() EXFandF <E,
(i) E=[T/.nE,

thenE = F.

For the proof of Decomposition scheme it is enough to repeat the reasoning for the
isomorphisms (see [15]) and replace the isomorphism symbol.by

Corollary 2.19.If C,(I") < C,(X) < C,(I") thenC,(X) = C,(I").

Lemma 2.20. Let X be a space andU;);<x an open cover ok such that for each < k
there is an embedding &f; into I". ThenC,(I") > C,(X).

Proof. Let us take an open coverimg’l./)igm of X with the following properties (observe
that by our assumptions dim < n):

(a) for each < m there existg < k such that cVi/ cUj;
(b) foreachi <m dimbdV, <n — 1.
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Define(V;);<m as follows:
Vo=V,
’ _l ’
V=V \Uihl v,
It is obvious that:

(i) the sets(V;); < are pairwise disjoint;
(i) (clV;)igm is a covering of the spack,
(iii) foreachi <m,dimbdV; <n —1;
(iv) for everyi < m, there is an embedding of g} into 1".

Take A,—1 = U7~ obdV;. Of course dim,_1 <n — 1. By (i) and (ii) it is obvious
that C(X, A,—1) = [[/LyCp(clV;, bdV;). Using Corollary 2.14 we geC,(X) =
Cp(X, An1) X Cp(An-1) < []iLoCp(ClVi,bdV;) x Cp(An-1) x [TiLoCp(bdV;) =
[TiLoCp(clVi) x Cp(A,—1). According to (iv) and Corollary 2.14 for each< m
C,(clV;) < Cp(I") and by Corollary 2.17 we haw€, (X) < C,(I") x Cp(A,-1). Aya
as a closed subset of satisfies the assumptions of our lemma (we take the cover
(Ui N Ap—1)igk)- Therefore we can prove in the similar way thigt(A,—1) < Cp,(I") x
Cp(A,—2) where dimA,_> < n — 2 and we get thaC,(X) < C,(I") x Cp(A,—2).
By repeating this reasoning we g€t,(X) < C,(I") x C,(Ag) where dimAg < 0 but
because there is an embeddingdefinto I" thenC,(Ag) < C,(I") and finallyC,(X) <
c,I. O

Let us mention that the above lemma holds also when in the definitighved replace
the relation= by the~/ (the relation of being linearly homeomorphic).

Theorem 2.21 (Gul'ko [8]). Let M, N be metrizable spaces with countable basisvIf
is u-equivalent tav, then the spacé/ (respectivelyN) is a countable union of closed
subsets which homeomorphically embed into the spédeespectively,M). Therefore,
dimM =dimN.

Corollary 2.22. If two compact, metrizable spacésand Y are u-equivalent, then for
each non-empty closed s&tin X, there exists a nonempty open $ein A which can be
embedded iry.

Proof. By Theorem 2.21 we know that there exists closed coveting,cn of X such
that each element of this covering embeds into the spadet A be a closed nonempty
subset ofX. By the Baire theorem there existE N such that inf (Fx N A) is nonempty.
TakingV = int4 (F;y N A) we proved our corollary. O

3. Themain theorem

Lemma 3.1. For every positive integer we haveC,(I") > C,(X, X111,

Proof. Let (U;);en be a family of open sets iK such that:
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(i) Ui>clUiq;
(i) N2Ui = X1,
(i) Up=X.

Now, let us consider the closed sét= | J°,bd U; U X171, From Proposition 2.13 we
know that

Cp(X, XM) = €, (X, A) x Cp(A, X112,

It is obvious that®:C,(X,A) — ]'[;*eN C,(clU; \ Ujt1,bdU; 1 U bdU;) defined as
@(f)i = flclU; \ U;+1 is the linear homeomorphism such thi@ (/)| = || f||. Because
bdU; NbdU; =@, fori # j, we haveC, (A, X1 =TT C,(bdU;). Thus we get

Cp(X. X2 =TT Cp(elUs \ Uis1. bdUis1 U bdU:) x [ €, (bdUy).
ieN ieN

It is obvious thatC, (X, X2") < C,(X, X111y x [Ty Cp(bdU;). Since bdjg =
[Ty Cp(bdUN)? = [Ti o Cp(bdU; U bdU;+1) and we get

Cp(X. Xy < TT (el U; \ Ui, bdUi1 U bdU;)
ieN
x [T ¢,0dU; U bdUi1).
ieN

Reassuming, (X, X1y < [Ty Cp(clU; \ Uis1). According to Lemma 2.20 we have
that, for eachi e N, Cp,(clU; \ U;11) < Cp(I"). Now using Facts 2.9 and 2.16 we get the
final result, that isC, (X, X" < Cc,(I"). O

Proposition 3.2. For every ordinalkx and positive integes

Cp(I") = Cp(X, X1,

Proof. We will prove this proposition by the induction @n For« = 1 it follows from

the previous lemma. Let as assume that g + 1 and that forg proposition is true.
Then we haveC, (X, X!*) = C, (X, X1#-1l) x C,(x1#:n1, xlenly Using the inductive
assumption, Fact 2.8, Corollary 2.17 and Lemma 3.1 we proved our proposition for
o = B + 1. Now, let us assume that, for evesy< «, C,(X, X!#"l)y < C,(I"), where

o € Lim. It is obvious that ifX[*" = ¢ then there exist$ < « such thatx#"l = ¢

so without loss of generality we can assume tkit"! = (. Denote by(B;);en Strictly
increasing sequence of ordinals convergingxtolt is clear that there exists sequence
(Uy)ien of the open subsets &f satisfying the following conditions:

(i) U; > xtin;

(i) Ui >clUita;

(ii)) ZoUi =Xt
(iv) Up=X.



R. Goérak / Topology and its Applications 132 (2003) 17-27 25

Now let us consider the closed set= | ;2 ,bdU; U xlenl Repeating the reasoning from
Lemma 3.1 we geC, (X, X!®m) < [Ty Cp(clU; \ Ui+1). From Fact 2.4 we have that
(€lU; \ Ui11)!Pi+11 = ¢ so by the inductive assumptiaf, (clU; \ U;4+1) < C,(I") for
everyi € N. Therefore by Facts 2.16 and 2.9 we ggt(X, X!*") < C,(I"). O

Let us observe that: gdX) =0 <= V A C X where ck(A) = A # ¢3U C A where
int4(U) = U # @ such thatU is embeddable into the-cuberl™.
Thus we can formulate the main theorem using the concept,of ed

Main Theorem 2. For every positive integer the following equivalence holds

X~AMTI" — ed(X)=0 and dimX =n.

Proof. “=" By Theorem 2.21 we get ditK = n. If ed,(X) # @ then every nonempty
open subsel/ of ed, (X) cannot be embedded infd. This, by Corollary 2.22, gives us a
contradiction.

“«<" From Proposition 3.2 we geC,(X) < C,(I"). Let « < w1 be such that
xlenl =@, Obviously X = (Jg_, X1#\ xIP+1nl Since, for everyg < o, the set
x[Bn\ x1B+Lnl is o-compact there existy < o such thatX[-71\ xlr+1nal js p-
dimensional (see [6]). From the definition of the embedding derivative it follows that
xlrnl\ xlr+Lnl is a countable union of open subset (thusompact)U; which can
be embedded intd”. Hence one of the set$, must ben dimensional and as a subset of
I" contains a copy ol (see [6]). Therefore, by Corollary 2.14 we gef(X) > C,(I").
Using Corollary 2.19 we obtai@',(X) = C,(I"). O

4. Linear case
This section is devoted to the problem of Arkhangel'¢kee [3, Problem 30]):
Problem 4.1. Give an inner classification of compacta which &egjuivalent to the-cube.

By simple modification of the above reasoning we are able to prove the following:

Theorem 4.2. For the spaceX such thatx[®"! = xli+171 (for somen > 0 andi € N) the
following conditions are equivalent

(i) x~I1m;
(i) Xx'@n =g (or, by compactness argumentl”! = ¢) anddim X = n.

Now it is natural to formulate the hypothesis which could be an answer to the question
of Arkhangel'ski:

Hypothesis4.3. X ~ I" «— Xl@" =g, dimX =n.
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Arkhangel'ski in [2] introduced the notion of Euclidean-resolvable spaces. We set
p(X) =0if X eitheris zero-dimensional, locally compact, separable, and metrizal¥e, or
is homeomorphic to an open subspace of Euclidean spader somen € N. Inductively
we definep(X) =niffornoi € {0, ...,n — 1} p(X) =i and there exists an open subspace
Y ¢ X suchthap(Y) =0andp(X\Y) =n—1. AspaceX with p(X) =n forsomen € N
is said to be Euclidean-resolvable. The following theorem holds:

Theorem 4.4 (A.V. Arkhangel'ski [2]). If a compactumX of dimensionn > 1 is
Euclidean-resolvable, theX is I-equivalent to the Euclidean culdé.

Itis not too difficult to prove the following:
Fact 4.5. If a compactum is Euclidean-resolvable, thgl¥-") = ¢ for n =dimXx > 1.

Proof. It is easy to observe that every Euclidean-resolvable compactum is finite-dimen-
sional, therefore given by the equalityy = dim X is well defined. By induction ok we
can easily prove that if(X) = k then X"l = g which finishes the proof. O

However it is not difficult to show that these conditions are not equivalent. It is enough
to consider the discrete union of the squ#feand the Cantor fan (i.e., the cone over the
Cantor set). Thus Theorem 4.2 is more general than Theorem 4.4.

At the end of this paper let us formulate the following problem which is the special case
of Problem 4.1:

Problem 4.6. Are the spaceg andI x [1, »®] [-equivalent?

[1, w®] is the closed interval of ordinals with the standard order topology. It is easy to see
that(I x [1, w®])le-1 £ .
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