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Abstract

We give an internal characterization of spacesX such that the spaceCp(X) of continuous
real-valued functions onX, endowed with the pointwise convergence topology, is unifor
homeomorphic to the spaceCp(I

n) of functions on then-dimensional cubeIn = [0,1]n.
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1. Introduction

For a completely regular spaceX, Cp(X) denotes the space of all continuous re
valued functions onX, equipped with the pointwise convergence topology.

SpacesX and Y are calledu-equivalent (l-equivalent) if spacesCp(X) andCp(Y )

are uniformly (linearly) homeomorphic. We writeX ∼
u Y if the spacesX and Y are

u-equivalent andX ∼
l Y when X and Y are l-equivalent. Let us recall that the ma

ϕ :E → L, whereE andL are linear topological spaces, is uniformly continuous if
every neighborhoodU of zero inL there is a neighborhoodV of zero inE such that, for
everyf,g ∈E with f − g ∈ V we haveϕ(f )− ϕ(g) ∈U .

The aim of this paper is to prove the following characterization:

Main Theorem 1. For every positive integern, a spaceX is u-equivalent toIn if and only
if the following conditions are satisfied:

(a) X is n-dimensional, compact and metrizable,
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(b) every nonempty closed subsetA of X contains a nonempty relatively open subsetU
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which can be embedded into then-cubeIn.

The “only if” part of this theorem is already known and it is essentially due to Gu
(see [8]). More precisely, he proved in [8] thatu-equivalence preserves the dimensi
However, from the results in [8] also follows part (b) of the Main Theorem. There
to prove the Main Theorem it is enough to construct a uniform homeomorphism be
Cp(X) andCp(I

n) having in hand conditions (a) and (b). The construction is base
the technique of Gul’ko from the paper [7] where he proved that the relations ofu- andl-
equivalence are different even on the class of countable compacta. Namely he show
all the countable compacta are mutuallyu-equivalent which is not true for the relation
l-equivalence (see [4]).

The problem of characterizing spaces which areu-equivalent to then-cube was
motivated by the question of Arhangel’skiı̆ [3] (Problem 30) who asked about th
similar (internal) characterization forl-equivalence. As the notion ofu-equivalence is
a generalization of the relation ofl-equivalence, it seemed natural to consider suc
problem. However, a satisfactory answer to the original problem of Arhangel’skiı̆ has not
been given yet. Some partial results can be found in [2,9–12] and [14]. In Section
prove another partial result concerning Arhangel’skii’s question. We also formulat
hypothesis how such a characterization can look like.

2. Preliminaries

Let us recall that the compactness is preserved by theu-equivalence (see [13]). Beside
if X is u-equivalent toI n then it must have a countable weight (see [1]). Thus with
loss of generality we can assume that the spaceX from Main Theorem is compact an
metrizable. In the sequelX will always denote such a space.

Denote byOrd andLim the classes of all ordinals and all limit ordinals, respectiv
We start with the following definition which generalizes the idea of Cantor–Bened
derivative:

Definition 2.1. For every spaceX we put: In(X) = ⋃
s∈S Us where{Us : s ∈ S} is the

family all open subsets ofX which can be embedded intoIn.

Definition 2.2. For a givenn ∈ N we define theαth embedding derivativeX[α,n] in the
following way:
X[0,n] =X;
X[α+1,n] =X[α,n] \ In(X[α,n]);
X[α,n] =⋂

β<α X[β,n] for α ∈ Lim.

As in the case of Cantor–Benedixson derivative,(X[α,n])α∈Ord stabilizes on some
countable ordinal if the spaceX has a countable base. So let us define this space at w
our new derivative stabilizes.
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Definition 2.3. edn(X)=⋂
α<ω X[α,n].
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Let us point out that embedding derivative has the following obvious property w
will be useful in the proof of the main theorem:

Fact 2.4. For every subsetA of the spaceX and for everyn ∈ N we haveA[α,n] ⊂
X[α,n] ∩A.

Let us introduce the following relation:

Definition 2.5 (Gul’ko [7]). Let E andF be linear topological spaces and‖ · ‖1, ‖ · ‖2
be norms, onE andF , respectively, not necessarily related to the topologies. We w
(E,‖ · ‖1) � (F,‖ · ‖2) if, for every ε > 0, there exists a uniform homeomorphis
uε :E → F satisfying the following condition:

(aε) (1+ ε)−1‖f ‖1 � ‖uε(f )‖2 � ‖f ‖1 for everyf ∈E.

If it is clear which norms are considered onE andF we writeE � F .

This relation appeared for the first time in [7] and plays the key role in the proof o
main theorem.

Let us fix that for every two linear topological spacesE andF equipped with norms
‖ · ‖0 and ‖ · ‖1, respectively, on the spaceE × F we consider the norm‖(e, f )‖ =
max(‖e‖0,‖f ‖1).
Let us recall the definition ofc0-product:

Definition 2.6. For everyi ∈ N, let Ei be a linear topological space and‖ · ‖i be a
norm onEi , not necessarily related to the topology. Let us define:

∏∗
i∈N

Ei = {(fi)i∈N ∈∏
i∈N

Ei : limi→∞ ‖fi‖i = 0}.
The topology on

∏∗
i∈N

Ei is the standard product topology. Usually on
∏∗

i∈N
Ei we

consider the norm‖(fi)i∈N‖ =maxi∈N ‖fi‖i .

Definition 2.7. For every linear topological spacesX andY equipped with some norm
(see Definition 2.5) we writeX � Y if there exists a linear topological spaceF (see
Definition 2.5) such thatY � X× F .

Let us point out some obvious, but important, properties of the relations� and�.

Fact 2.8. If X � X1, Y � Y1 (respectivelyX � X1, Y � Y1) then X × Y � X1 × Y1
(respectivelyX× Y � X1 × Y1).

Fact 2.9. If, for every i ∈ N, Xi � Yi (respectivelyXi � Yi ) then
∏∗

i∈N
Xi �

∏∗
i∈N

Yi

(respectively
∏∗

i∈N
Xi �

∏∗
i∈N

Yi ).

Theorem 2.10 (Dugundji [5]).Let Y be a metrizable space and A a closed subset ofY . Then
there is a continuous linear functionΦ :Cp(A)→ Cp(Y ) such that for eachf ∈ Cp(A),
Φ(f )|A= f andΦ(f )(Y )⊂ conv(f (A)).



20 R. Górak / Topology and its Applications 132 (2003) 17–27

Lemma 2.11 (Gul’ko [7, Lemma 1]).Let R
2 be the real plane equipped with the norm
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-
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lly
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‖(x1, x2)‖ = max(|x1|, |x2|) and let ε > 0. Then there exist functionsϕε :R2 → R and
ψε :R2 →R such that the following conditions are satisfied:

(a) The mapping(x1, x2) �→ (x1, ϕε(x1, x2)) is a uniform homeomorphism of the pla
with the inverse of the form(x1, x2) �→ (x1,ψε(x1, x2))

(b) ϕε(x1, x2)= 0 if x1 = x2
(c) ψε(y1,0)= y1
(d) (1+ ε)−1‖(x1, x2)‖� ‖(x1, ϕε(x1, x2))‖� ‖(x1, x2)‖ for (x1, x2) ∈R

2.

It is easy to see that condition (c) follows from conditions (a) and (b). Let us rema
that in this paperX denotes always compact metrizable space.

Definition 2.12. For a closed subsetA of a spaceX, let Cp(X,A)= {f ∈ Cp(X): f |A≡
0} with the topology of the pointwise convergence. We also equipCp(X,A) with the
standard sup norm. We denoteCp(X, {x}) by Cp(X,x) for x ∈X.

Before formulating the next result let us set the following notation. Every contin
function ϕ :Rn → R induces the mapϕ :Cp(X)n →Cp(X) defined by the formula
ϕ(f1, . . . , fn)(x)= ϕ(f1(x), . . . , fn(x)). It is easy to check that ifϕ is uniformly
continuous thenϕ is also.

Proposition 2.13. Let A, B be closed subsets of a space X such thatB ⊂ A. Then
Cp(X,B) � Cp(A,B)×Cp(X,A).

Proof. Fix ε > 0. Defineuε :Cp(X,B) → Cp(A,B) × Cp(X,A) andwε :Cp(A,B) ×
Cp(X,A)→Cp(X,B) by the formulasuε(f )= (ρ(f ),ϕε(Φ(ρ(f )), f )) andwε(f,g)=
ψ̄ε(Φ(f ), g) where ρ :Cp(X,B) → Cp(A,B) is defined byρ(f ) = f |A, ϕε is as
in Lemma 2.11 andΦ :Cp(A,B) → Cp(X,B) is as in Theorem 2.10 (it is pos
sible becauseΦ(Cp(A,B)) ⊂ Cp(X,B)). By condition (b) from Lemma 2.11 w
have ϕε(Φ(ρ(f )), f ) ∈ Cp(X,A), henceuε is well defined. The condition (c) from
Lemma 2.11 implies thatwε is well defined. Let us verify thatwε ◦ uε ≡ idCp(X,B) and
uε ◦wε ≡ idCp(A,B)×Cp(X,A). By condition (a) from Lemma 2.11 we haveψε(x1, ϕε(x1,

x2))= x2. Therefore, forf ∈ Cp(X,B), we have

wε ◦ uε(f )= ψ̄ε

(
Φ

(
ρ(f )

)
, ϕε

(
Φ

(
ρ(f )

)
, f

))= f.

Take (f, g) ∈ Cp(A,B) × Cp(X,A). Sinceρ(g) ≡ 0, condition (c) from Lemma 2.1
implies thatρ(ψ̄ε(Φ(f ), g)) = ρ(Φ(f )) = f . By condition (a) from Lemma 2.11 w
obtain that

uε ◦wε(f,g) =
(
ρ
(
ψ̄ε

(
Φ(f ), g

))
, ϕε

(
Φ

(
ρ
(
ψ̄ε

(
Φ(f ), g

)))
, ψ̄ε

(
Φ(f ), g

))
= (

f, ϕε

(
Φ(f ), ψ̄ε

(
Φ(f ), g

)))= (f, g).

The fact thatwε, uε are uniformly continuous follows from Lemma 2.11(a). Fina
we will show thatuε satisfies condition(aε) from Definition 2.5. Let us check tha
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‖uε(f )‖� ‖f ‖. Observe that‖Φ(ρ(f ))‖ � ‖f ‖ (see 2.10). By Lemma 2.11 (c) we have
1

efine
‖uε(f )‖ = max(‖ρ(f )‖,‖ϕε(Φ(ρ(f )), f )‖) � ‖f ‖. On the other side by Lemma 2.1
(d) and Theorem 2.10 we get

∥∥uε(f )
∥∥ = max

(∥∥ρ(f )
∥∥,∥∥ϕε

(
Φ

(
ρ(f )

)
, f

)∥∥)
= max

(∥∥Φ(
ρ(f )

)∥∥,∥∥ϕε

(
Φ

(
ρ(f )

)
, f

)∥∥)
� sup

x∈X
max

(∣∣Φ(
ρ(f )

)
(x)

∣∣, ∣∣ϕε

(
Φ

(
ρ(f )

)
(x), f (x)

)∣∣)

� (1+ ε)−1 sup
x∈X

max
(∣∣Φ(

ρ(f )
)
(x)

∣∣, ∣∣f (x)
∣∣) � (1+ ε)−1‖f ‖. ✷

TakingB = ∅ in Proposition 2.13 we get the following:

Corollary 2.14. For every closed subsetA of a spaceX we haveCp(X) � Cp(X,A)×
Cp(A).

Corollary 2.15. Cp(X,x0) � Cp(X) for everyx0 ∈X, whereX is nondiscrete.

Proof. Let L⊂X be a topological copy of the spaceS = { 1
n
; n ∈ N} ∪ {0} ⊂R. Then

Cp(X,x0) � Cp

(
X,L∪ {x0}

)×Cp

(
L∪ {x0}, x0

)
� Cp

(
X,L∪ {x0}

)
Cp

(
L ∪ {x0}, x0

)×R

� Cp(X,x0)×R � Cp(X). ✷
Fact 2.16. For every positive integern we haveCp(I

n) �
∏∗

i∈N
Cp(I

n).

Proof. The proof of the above fact is similar to the well-known linear case. Let us d
In−1
i = In−1 × {i} ⊂ In, wherei ∈ {0,1}.

Using Proposition 2.13 we have:
∏
i∈N

∗
Cp

(
In

)
�

∏
i∈N

∗(
Cp

(
In, I n−1

0 ∪ In−1
1

)×Cp

(
In−1

0 ∪ In−1
1

))

�
( ∏

i∈N

∗
Cp

(
In, In−1

0 ∪ In−1
1

))×
( ∏

i∈N

∗
Cp

(
In−1

0 ∪ I n−1
1

))
. (1)

Consider the cone overIn−1 (here we identifyIn−1 with {(x1, . . . , xn) ∈ R
n: 0 � xi � 1

for i � n − 1 andxn = 0}) i.e., the following set: c(In−1) = {tx + (1− t)p ∈ R
n: x ∈

In−1 ⊂ R
n, t ∈ R}; p = (0, . . . ,0,1) ∈ R

n. We define, fork ∈ N \ {0}, Ik = {1
k
x + (1−

1
k
)p: x ∈ In−1 ⊂R

n} andI<k = {tx + (1− t)p: x ∈ I n−1 ⊂R
n, 1

k+1 � t � 1
k
}.

Let hk : In → I<k be a homeomorphism such thathk(I
n−1
i ) = Ik+i , where i ∈

{0,1}. Let us define the linear homeomorphism:Φ :Cp(c(In−1),
⋃

k�1 Ik ∪ {p}) →
(
∏∗

i∈N
Cp(I

n, In−1
0 ∪ I n−1

1 )) by the formula:

Φ(f )= (f ◦ hk)k∈N\{0}
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It is easy to check that‖Φ(f )‖0 = ‖f ‖1 where each norm comes from the sup norm in a

or the

e

way mentioned before. Applying this to (1) we get:

∏
i∈N

∗
Cp

(
In

)
� Cp

(
c
(
In−1), ⋃

k�1

Ik ∪ {p}
)
×

∏
i∈N

∗
Cp

(
In−1

0 ∪ I n−1
1

)

� Cp

(
c
(
In−1), ⋃

k�1

Ik ∪ {p}
)
×

∏
k∈N

∗
Cp(Ik). (2)

In the above we used the obvious fact that
∏∗

i∈N
Cp(I

n−1
0 ∪ In−1

1 ) can be identified with∏∗
i∈N

Cp(I
n−1) and thatIk is homeomorphic toI n−1. Moreover

∏∗
k∈N

Cp(Ik) can be seen
asCp(

⋃
k�1 Ik ∪ {p}, {p}). Thus, according to (2), we have:

∏
i∈N

∗
Cp(I

n) � Cp

(
c
(
In−1), ⋃

k�1

Ik ∪ {p}
)
×Cp

( ⋃
k�1

Ik ∪ {p}, {p}
)

� Cp

(
c
(
In−1), {p}).

By Corollary 2.15 we know thatCp(c(In−1), {p}) � Cp(c(In−1)). However c(I n−1) and
In are homeomorphic which finishes the proof.✷
Corollary 2.17. Cp(I

n) � Cp(I
n)2.

Lemma 2.18 (Decomposition scheme).Let us consider spacesE and F as in Defini-
tion 2.5. If there exist spacesZ andV (as in Definition2.5)such that:

(i) E � F andF � E,
(ii) E �

∏∗
i∈N

E,

thenE � F .

For the proof of Decomposition scheme it is enough to repeat the reasoning f
isomorphisms (see [15]) and replace the isomorphism symbol by�.

Corollary 2.19. If Cp(I
n) � Cp(X) � Cp(I

n) thenCp(X) � Cp(I
n).

Lemma 2.20. LetX be a space and(Ui)i�k an open cover ofX such that for eachi � k

there is an embedding ofUi into In. ThenCp(I
n) � Cp(X).

Proof. Let us take an open covering(V
′
i )i�m of X with the following properties (observ

that by our assumptions dimX � n):

(a) for eachi � m there existsj � k such that clV
′
i ⊂Uj ;

(b) for eachi � m dimbdV
′
i � n− 1.
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Define(Vi)i�m as follows:

over

d

r

y

V0 = V
′
0,

Vi = V
′
i \

⋃i−1
j=0 clV

′
j .

It is obvious that:

(i) the sets(Vi)i�m are pairwise disjoint;
(ii) (clVi)i�m is a covering of the spaceX;
(iii) for eachi � m, dimbdVi � n− 1;
(iv) for everyi � m, there is an embedding of clVi into In.

TakeAn−1 = ⋃m
i=0 bdVi . Of course dimAn−1 � n − 1. By (i) and (ii) it is obvious

that Cp(X,An−1) �
∏m

i=0Cp(clVi,bdVi). Using Corollary 2.14 we getCp(X) �
Cp(X,An−1) × Cp(An−1) �

∏m
i=0Cp(clVi,bdVi) × Cp(An−1) × ∏m

i=0Cp(bdVi) �∏m
i=0Cp(clVi) × Cp(An−1). According to (iv) and Corollary 2.14 for eachi � m

Cp(clVi) � Cp(I
n) and by Corollary 2.17 we haveCp(X) � Cp(I

n)×Cp(An−1). An−1
as a closed subset ofX satisfies the assumptions of our lemma (we take the c
(Ui ∩An−1)i�k ). Therefore we can prove in the similar way thatCp(An−1) � Cp(I

n)×
Cp(An−2) where dimAn−2 � n − 2 and we get thatCp(X) � Cp(I

n) × Cp(An−2).
By repeating this reasoning we getCp(X) � Cp(I

n)×Cp(A0) where dimA0 � 0 but
because there is an embedding ofA0 into In thenCp(A0) � Cp(I

n) and finallyCp(X) �
Cp(I

n). ✷
Let us mention that the above lemma holds also when in the definition of� we replace

the relation� by the≈l (the relation of being linearly homeomorphic).

Theorem 2.21 (Gul’ko [8]). Let M, N be metrizable spaces with countable basis. IfM

is u-equivalent toN , then the spaceM (respectively,N ) is a countable union of close
subsets which homeomorphically embed into the spaceN (respectively,M). Therefore,
dimM = dimN .

Corollary 2.22. If two compact, metrizable spacesX and Y are u-equivalent, then fo
each non-empty closed setA in X, there exists a nonempty open setV in A which can be
embedded inY .

Proof. By Theorem 2.21 we know that there exists closed covering(Fn)n∈N of X such
that each element of this covering embeds into the spaceY . Let A be a closed nonempt
subset ofX. By the Baire theorem there existsk ∈ N such that intA(Fk ∩A) is nonempty.
TakingV = intA(Fk ∩A) we proved our corollary. ✷

3. The main theorem

Lemma 3.1. For every positive integern we haveCp(I
n) � Cp(X,X[1,n]).

Proof. Let (Ui)i∈N be a family of open sets inX such that:
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(i) Ui ⊃ cl Ui+1;

e

e
he

.

n for

ce
(ii)
⋂∞

i=0Ui =X[1,n];
(iii) U0 =X.

Now, let us consider the closed setA = ⋃∞
i=0 bd Ui ∪X[1,n]. From Proposition 2.13 w

know that

Cp

(
X,X[1,n]) � Cp(X,A)×Cp

(
A,X[1,n]).

It is obvious thatΦ :Cp(X,A) → ∏∗
i∈N

Cp(clUi \ Ui+1,bdUi+1 ∪ bdUi) defined as
Φ(f )i = f |clUi \Ui+1 is the linear homeomorphism such that‖Φ(f )‖ = ‖f ‖. Because
bdUi ∩ bdUj = ∅, for i �= j , we haveCp(A,X[1,n]) �

∏∗
i∈N

Cp(bdUi). Thus we get

Cp

(
X,X[1,n]) �

∏
i∈N

∗
Cp(clUi \Ui+1,bdUi+1 ∪ bdUi)×

∏
i∈N

∗
Cp(bdUi).

It is obvious thatCp(X,X[1,n]) � Cp(X,X[1,n]) × ∏∗
i∈N

Cp(bdUi). Since bdU0 = ∅
(
∏∗

i∈N
Cp(bdUi))

2 �
∏∗

i∈N
Cp(bdUi ∪ bdUi+1) and we get

Cp

(
X,X[1,n]) �

∏
i∈N

∗
Cp(clUi \Ui+1,bdUi+1 ∪ bdUi)

×
∏
i∈N

∗
Cp(bdUi ∪ bdUi+1).

ReassumingCp(X,X[1,n]) �
∏∗

i∈N
Cp(clUi \ Ui+1). According to Lemma 2.20 we hav

that, for eachi ∈ N, Cp(clUi \Ui+1) � Cp(I
n). Now using Facts 2.9 and 2.16 we get t

final result, that isCp(X,X[1,n]) � Cp(I
n). ✷

Proposition 3.2. For every ordinalα and positive integern

Cp

(
In

)
� Cp

(
X,X[α,n]).

Proof. We will prove this proposition by the induction onα. For α = 1 it follows from
the previous lemma. Let as assume thatα = β + 1 and that forβ proposition is true
Then we haveCp(X,X[α,n]) � Cp(X,X[β,n]) × Cp(X

[β,n],X[α,n]). Using the inductive
assumption, Fact 2.8, Corollary 2.17 and Lemma 3.1 we proved our propositio
α = β + 1. Now, let us assume that, for everyβ < α, Cp(X,X[β,n]) � Cp(I

n), where
α ∈ Lim. It is obvious that ifX[α,n] = ∅ then there existsβ < α such thatX[β,n] = ∅
so without loss of generality we can assume thatX[α,n] �= ∅. Denote by(βi)i∈N strictly
increasing sequence of ordinals converging toα. It is clear that there exists sequen
(Ui)i∈N of the open subsets ofX satisfying the following conditions:

(i) Ui ⊃X[βi ,n];
(ii) Ui ⊃ clUi+1;
(iii)

⋂∞
i=0Ui =X[α,n];

(iv) U0 =X.
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Now let us consider the closed setA=⋃∞
i=0 bdUi ∪X[α,n]. Repeating the reasoning from

t

y
a

t

that

of

:

stion
Lemma 3.1 we getCp(X,X[α,n]) �
∏∗

i∈N
Cp(clUi \ Ui+1). From Fact 2.4 we have tha

(clUi \ Ui+1)
[βi+1,n] = ∅ so by the inductive assumptionCp(clUi \ Ui+1) � Cp(I

n) for
everyi ∈ N. Therefore by Facts 2.16 and 2.9 we getCp(X,X[α,n]) � Cp(I

n). ✷
Let us observe that: edn(X)= ∅ ⇐⇒ ∀A⊆X where clX(A)=A �= ∅∃U ⊆ A where

intA(U)=U �= ∅ such thatU is embeddable into then-cubeIn.
Thus we can formulate the main theorem using the concept of edn:

Main Theorem 2. For every positive integern the following equivalence holds:

X ∼
u In ⇐⇒ edn(X)= ∅ and dimX = n.

Proof. “⇒” By Theorem 2.21 we get dimX = n. If edn(X) �= ∅ then every nonempt
open subsetU of edn(X) cannot be embedded intoIn. This, by Corollary 2.22, gives us
contradiction.

“⇐” From Proposition 3.2 we getCp(X) � Cp(I
n). Let α < ω1 be such tha

X[α,n] = ∅. Obviously X = ⋃
β<α X[β,n] \ X[β+1,n]. Since, for everyβ < α, the set

X[β,n] \X[β+1,n] is σ -compact there existsγ < α such thatX[γ,n] \X[γ+1,n] is n-
dimensional (see [6]). From the definition of the embedding derivative it follows
X[γ,n] \ X[γ+1,n] is a countable union of open subset (thusσ -compact)Uk which can
be embedded intoIn. Hence one of the setsUk must ben dimensional and as a subset
In contains a copy ofIn (see [6]). Therefore, by Corollary 2.14 we getCp(X) � Cp(I

n).
Using Corollary 2.19 we obtainCp(X) � Cp(I

n). ✷

4. Linear case

This section is devoted to the problem of Arkhangel’skiı̆ (see [3, Problem 30]):

Problem 4.1. Give an inner classification of compacta which arel-equivalent to then-cube.

By simple modification of the above reasoning we are able to prove the following

Theorem 4.2. For the spaceX such thatX[i,n] =X[i+1,n] (for somen > 0 and i ∈ N) the
following conditions are equivalent:

(i) X ∼
l I n;

(ii) X[ω,n] = ∅ (or, by compactness argument,X[i,n] = ∅) anddimX = n.

Now it is natural to formulate the hypothesis which could be an answer to the que
of Arkhangel’skĭı:

Hypothesis 4.3. X ∼
l I n ⇐⇒ X[ω,n] = ∅, dimX = n.
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Arkhangel’skĭı in [2] introduced the notion of Euclidean-resolvable spaces. We set
, or

ce

imen-

ough
the

case

o see

tions.

pekhi

gy of

p. 1–

I Tract,
2.
p(X)= 0 if X either is zero-dimensional, locally compact, separable, and metrizableX

is homeomorphic to an open subspace of Euclidean spaceEn for somen ∈ N. Inductively
we definep(X)= n if for no i ∈ {0, . . . , n− 1} p(X)= i and there exists an open subspa
Y ⊂X such thatp(Y )= 0 andp(X\Y )= n−1. A spaceX with p(X)= n for somen ∈ N

is said to be Euclidean-resolvable. The following theorem holds:

Theorem 4.4 (A.V. Arkhangel’skĭı [2]). If a compactumX of dimensionn � 1 is
Euclidean-resolvable, thenX is l-equivalent to the Euclidean cubeIn.

It is not too difficult to prove the following:

Fact 4.5. If a compactum is Euclidean-resolvable, thenX[ω,n] = ∅ for n= dimX � 1.

Proof. It is easy to observe that every Euclidean-resolvable compactum is finite-d
sional, thereforen given by the equalityn= dimX is well defined. By induction onk we
can easily prove that ifp(X)= k thenX[k,n] = ∅ which finishes the proof. ✷

However it is not difficult to show that these conditions are not equivalent. It is en
to consider the discrete union of the squareI2 and the Cantor fan (i.e., the cone over
Cantor set). Thus Theorem 4.2 is more general than Theorem 4.4.

At the end of this paper let us formulate the following problem which is the special
of Problem 4.1:

Problem 4.6. Are the spacesI andI × [1,ωω] l-equivalent?

[1,ωω] is the closed interval of ordinals with the standard order topology. It is easy t
that(I × [1,ωω])[ω,1] �= ∅.
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