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Abstract

The direct search for dark matter is entering a period of increased sensitivity to the hypothetical Weakly Interacting

Massive Particle (WIMP). One such technology that is being examined is a scintillation only noble liquid experiment,

MiniCLEAN. MiniCLEAN utilizes over 500 kg of liquid cryogen to detect nuclear recoils from WIMP dark matter

and serves as a demonstration for a future detector of order 50 to 100 tonnes. The liquid cryogen is interchangeable

between argon and neon to study the A2 dependence of the potential signal and examine backgrounds. MiniCLEAN

utilizes a unique modular design with spherical geometry to maximize the light yield using cold photomultiplier tubes in

a single-phase detector. Pulse shape discrimination techniques are used to separate nuclear recoil signals from electron

recoil backgrounds. MiniCLEAN will be spiked with additional 39Ar to demonstrate the effective reach of the pulse

shape discrimination capability. Assembly of the experiment is underway at SNOLAB and an update on the project is

given.
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1. Introduction

Recently, the search for Weakly Interacting Massive Particle (WIMP) dark matter has seen the entrance

of a number of experiments that utilize liquid noble elements (i.e. Xe, Ar, and Ne). The MiniCLEAN

experiment exploits the scintillation light from interactions in its target volume of liquid argon or neon to

discriminate between electron recoil events and nuclear recoil events [1, 2]. Referred to as a ’single-phase’

noble liquid experiment because it only utilizes the liquid phase of the target, MiniCLEAN relies on pulse

shape discrimination to reject background events that arise from gammas and betas. This discrimination is

essential when using liquid argon as the WIMP target as natural argon contains about one part in 1015 of
39Ar, a β-emitter with a half-life of 269 years. To separate these beta events from a possible signal in natural

argon, pulse shape discrimination capability is needed at the level of 10−9 or better. This discrimination can

be achieved by the unique nature of the scintillation light in liquid noble gases. The scintillation light is

produced from two dimer states: a singlet state with a short lifetime and a triplet state with a longer lifetime.

In argon and neon, the difference between the two lifetimes is long enough (ns vs. μs) that each scintillation

event is composed of prompt light (the first ∼100 ns) and late light (the next 10-15 μs). Furthermore,

electronic recoil events in the liquid produce more triplet state dimers (and thus late light) than nuclear

recoil events. By using the ratio of prompt to total scintillation light one can discriminate between these

types of events. Small prototype experiments [3, 4, 5] have shown that this discrimination technique can

reach the necessary capability. The discrimination requirement in liquid neon is much lower since there are

no natural occurring β-emitters in neon. By building a detector capable of interchanging liquid argon and

neon as targets one can examine any potential signal and external backgrounds by taking advantage of the

expected A2 dependence of WIMP interactions. Furthermore, a large multi-ton single-phase detector filled

with liquid neon would be sensitive to pp solar neutrinos as well as dark matter [2, 6].

Backgrounds in the experiment originate from a variety of sources. Internal gammas and neutrons from

the detector materials are minimized by the choice of low radioactivity materials and by the use of shielding

with additional cryogen and acrylic. In addition, by reconstructing the position of the event in the detector,

a central region of the target volume can be chosen (a fiducial volume) where few background events can

interact. A fiducial volume of approximately 150 kg is expected for MiniCLEAN but will depend upon the

final position reconstruction uncertainties. For surface background events originating from radon daughter

plate out, the sensitive components of MiniCLEAN have been assembled in a strictly controlled environment

and care will be taken to remove possible radon contamination during circulation and purification of the

cryogen. Finally, for backgrounds outside the detector, a water shield tank surrounds the detector with an

active muon veto.

The MiniCLEAN experiment has three primary goals. The MiniCLEAN detector will serve as a tech-

nical proof-of-principle and demonstrate all of the salient features of a 4π single-phase detector using, in-

terchangeably, targets of LAr and LNe. The experiment will also develop a robust analysis program where

all detector parameters and response to signal and backgrounds are over-constrained through simulation and

calibration. Finally, MiniCLEAN will serve as a prototype to a full-scale, multi-ton CLEAN experiment.

This article presents a brief overview of the MiniCLEAN detector, its current status, and recently developed

analysis techniques.

2. The MiniCLEAN Detector

The MiniCLEAN detector is a conceptually simple detector. A target volume of ∼500 kg of LAr or LNe

is contained within a sphere coated with wavelength shifter to convert the ultraviolet scintillation light (128

nm for argon and 80 nm for neon) to the visible. Light guides bring the visible light to photomultiplier tubes

where the signal is recorded. By using the scintillation light distribution and pulse shape discrimination, the

position, energy, and type of event are reconstructed.
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The MiniCLEAN detector is undergoing finally assembly and commissioning at the SNOLAB facility

in Sudbury, Canada. The MiniCLEAN detector is shown in Figure 1. The central detector is composed of

a stainless steel Inner Vessel that contains the liquid cryogen and 92 optical cassette modules. Each optical

module contains an 8” Hamamatsu R5912-02Mod photomultiplier tube capable of operating in cryogen [7]

in a stainless steel light guide with an acrylic plug at the end. The inside of the light guides are lined with

VikuitiTMESR foil by 3M 1 to improve their reflectivity and the foil continues past the front of the light

guide to fill in the gaps between modules. The acrylic plugs are shaped like hexagons and pentagons and

their front surfaces form a 92-sided sphere that contains the cryogenic volume. The acrylic was made by

Spartech [9]. The front surface of the acrylic plugs are coated with a thin layer of tetraphenyl butadiene [8],

a wavelength shifter. Figure 2 shows the front of some of the acrylic plugs inside the Inner Vessel before

the final assembly was completed. Each optical module was assembled in a reduced radon environment

underground. They were installed into the 92 ports on the Inner Vessel while under a flow of nitrogen gas

from liquid nitrogen boil off. This assembly sequence greatly reduced the expected surface backgrounds on

the modules from radon daughter plate out.
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Fig. 1. Model of the MiniCLEAN detector showing the optical modules.

The Inner Vessel is a stainless steel pressure vessel approximately 64” in diameter. Figure 3 shows the

fully assembled Inner Vessel inside a softwall cleanroom underground. The Inner Vessel was fabricated

as a ASME Div. 1 Sec. VIII pressure vessel by Winchester Precision Technology in Winchester, NH.

The Inner Vessel is contained within a vacuum cryostat called the Outer Vessel, a stainless steel vessel

approximately 104” in diameter and 106” high (see Figure 4). This Outer Vessel provides thermal insulation

and containment for the Inner Vessel. The Outer Vessel is positioned on a detector stand that allows for

seismic isolation of the detector. This entire assembly is located inside a water shield tank that is 18’ in

diameter and 25’ tall. A deck structure above the tank allows for access to the top of the tank for assembly

of the experiment and ancillary systems such as the cryogenic and process systems, calibration system,

electronics and data acquisition, and magnetic compensation coils. The water shield tank contains a muon

veto system composed of 48 additional photomultiplier tubes. Figure 5 shows a model of the MiniCLEAN

central detector and its shield tank layout.

1Certain commercial equipment, instruments, or materials are identified in this paper to foster understanding. Such identification

does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the

materials or equipment identified are necessarily the best available for the purpose.
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Fig. 2. View into the Inner Vessel before the final optical module was installed showing the acrylic plug front surfaces.

Fig. 3. Fully assembled MiniCLEAN Inner Vessel in a softwall cleanroom underground at SNOLAB.
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Fig. 4. The MiniCLEAN Outer Vessel on top of the detector stand inside the water shield tank in the SNOLAB Cube Hall.
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Fig. 5. Model of the MiniCLEAN detector installed in the water shield tank in the SNOLAB Cube Hall.
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The MiniCLEAN detector utilizes a number of subsystems. The target is purified as a gas using a SAES

getter to remove contaminants that affect the scintillation light. A charcoal trap is then used to remove any

radon from the gas before it enters the Inner Vessel. To liquify the cryogen, two copper cold heads are

attached to 3” ports on the Inner Vessel and are cooled by a Cryomech Gifford McMahon cryorefrigerator

capable of providing 325 W at 87K and 100 W at 25K. These cold heads cool the gas in the Inner Vessel

until it liquifies and fills the detector volume. The 92 photomultiplier tubes signals are digitized using CAEN

V1720 250 MHz digitizers and custom data acquisition software. The water shield tank around the detector

is instrumented with 48 Hamamatsu R1408 photomultiplier tubes to serve as a muon veto system [10].

Around the shield tank are six magnetic compensation coils to cancel the earth’s vertical magnetic field in

order to improve the performance of the detector’s photomultiplier tubes [11].

3. Current Status

As of early 2014, the MiniCLEAN detector is nearing completion. All 92 optical modules have been

installed in the Inner Vessel and the PMTs are undergoing testing with the full electronics and DAQ system.

Prior to moving the Inner Vessel into the Outer Vessel, data are being acquired from a fill of argon gas using

the gas purification system. Once the Inner Vessel is placed in the Outer Vessel all final connections will

be made and the muon veto system will be deployed into the water shield tank before filling the tank with

water. Cooling of the detector with cold gas and liquification of the argon is scheduled to start by Summer

2014. After a brief run to determine initial backgrounds the detector will begin a long run to attain data to

test the pulse shape discrimination capability of liquid argon.

4. Utility of 39Ar Spike

The internal background in MiniCLEAN, dominated by 39Ar beta decay, is mitigated using pulse shape

discrimination (PSD) made possible by the scintillation timing difference described above. A nucleus scat-

tered by a WIMP produces far fewer triplet states than the electron from 39Ar beta decay, and hence has

more “prompt” than “late” light. In order to demonstrate the effectiveness of the pulse-shape discrimination

capability of liquid argon, MiniCLEAN will deploy a “spike” of 39Ar with an activity level approximately

ten times higher than natural argon. Such a spike will improve existing measurements of PSD rejection by

over two orders of magnitude. Should we have a set of WIMP candidates in a future argon detector, a spike

of 39Ar can also be deployed in that detector to directly determine if 39Ar leakage is the cause. The intrin-

sically fast timing of the scintillation light in a single-phase detector makes the use of such spikes possible,

because pile-up of events is a small effect. In October 2013, approximately 1.7 μCi of 39Ar was extracted

from a potassium salt (KCl) target that had been irradiated at TRIUMF.

5. Utility of Liquid Neon Run for Dark Matter

Exploiting liquid neon (LNe) as a target has the advantage that there are no internal backgrounds like
39Ar, and thus the requirements for pulse shape discrimination are far lower. Building a detector that can use

either LNe or LAr targets would allow one to use the difference in WIMP cross section as an additional way

of verifying any putative signal. With LNe in place of LAr, the number of detected WIMP events should

drop by nearly a factor of 10, much like a “beam off” measurement, while the number of neutrons that

can cause background recoils will remain the same, apart from predictable differences in detector response

between the two targets. Together with a 39Ar spike, a LNe deployment provides us with the flow diagram

of signal verification shown in Figure 6. The ability to swap targets and to test directly a possible signal is a

powerful and unique capability of the single-phase approach.
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Fig. 7. The difference in photoelectron number in an event between the reconstructed number from both charge division and Bayesian

counting and the actual number from simulated events (left). A simulated waveform with predicted photoelectrons and timing from

the Bayesian photoelectron method (right).

Fig. 8. Average reconstructed position resolution (in the x coordinate) vs. the true radius in the detector for simulated 20 keV events.
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Fig. 9. The Fprompt distribution for simulated WIMPs and 39Ar recoil events as a function of energy in photoelectrons (left). The

Lrecoil distribution for simulated WIMPs and 39Ar recoil events as a function of energy in photoelectrons (right) shows signifiant

improvement in discrimination capability at lower energy. For reference, MiniCLEAN expects approximately 6 photoelectrons per

keVee for its light yield.
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