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Abstract
This paper considers a real life case study that determines the minimum number of sellers
required to attend a set of customers located in a certain region taking into account the weekly
schedule plan of the visits, as well as the optimal route. The problem is formulated as a
combination of assignment, scheduling and routing problems. In the new formulation, case
studies of small size subset of customers of the above type can be solved optimally. However,
this subset of customers is not representative within the business plan of the company. To
overcome this limitation, the problem is divided into three phases. A greedy algorithm is used
in Phase I in order to identify a set of cost-effective feasible clusters of customers assigned to
a seller. Phase II and III are then used to solve the problem of a weekly program for visiting
the customers as well as to determine the route plan using MILP formulation. Several real
life instances of different sizes have been solved demonstrating the efficiency of the proposed
approach.
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1 Introduction

Network models and integer programs are applicable to an enormous known variety of decision
problems. In a real case, the cost efficient management decision is defined by a combination
of different models. This paper considers a real life case study that determines the minimum
number of sellers required to serve a set of customers located in a certain region together with the
weekly schedule plan for visits and the optimal route. Therefore, the decision should consider
the demand of the customers as well as the daily capacity of the sellers to fulfill the demand.
Additionally, it is important to define per day the seller’s route of visiting the customers.
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The solution method for the problem combines objectives and constraints of three classical
approaches, the assignment of customers, the scheduling of visits, and the routing plan. Con-
sider the location of the customers (such as points in the area or nodes of a network) with
a given distance between every pair of points. We wish to find a cluster of customers using
the nearest neighbor approach. Therefore, each cluster will represent a seller in the solution.
This objective can be interpreted as the tightest cluster of m points. This is similar to the one
facility version of the max-cover problem (for a network or discrete formulation [5], for planar
models [10], for one facility [8], and for several facilities [14]) where we wish to find the location
of several facilities which cover the maximum number of points within a given distance. After
defining the clusters of customers, an important logistic problem to solve is the scheduling and
routing problem.

In this context, the goal of the problem described above is to optimize the distribution
process from depots to customers (routing design) in such a way that customer’s demand of
goods is satisfied without violating any problem-specific constraint. In the literature, these
kind of logistic problems are known as Vehicle Routing Problems (VRP) and the objective
regularly is the minimization of the complete distance traveled by the vehicles while servicing
all the customers. The VRP is an interesting problem in operations research community due
to its practical relevance and the difficulty to be solved exactly. Moreover, it is one of the most
demanding NP-hard problems [7]. In reality, the task of finding the best set of vehicle tours by
solving optimization models has a high computational cost, prohibitive for medium and large
real applications.

Caceres et al. [3] present a survey on VRPs apply to real life problems. The authors call these
VRPs as Rich (realistic) VRPs (RVRPs) and classify their variants according to the company
decision levels and the routing elements involved. A classification that applies for this case
study is Multi-Period/Periodic VRP with Multiple Visits/Split deliveries. In this classification,
the clients are visited several times as vehicles may deliver a fraction of the customer’s demand.
Moreover, optimization is made over a set of days, considering a different frequency of visits to
each client.

On the other hand, Bowerman et al. [2] classify the heuristic approaches to the VRP into five
classes and suggest the development and analysis of approximate heuristic techniques capable of
solving real-sized VRPs. The authors highlight the cluster-first/route-second heuristic, which
first groups the nodes into clusters while assigning each cluster to a different vehicle, and
then, and then find the vehicle tour by solving the corresponding traveling salesman problem
(TSP). Xu et al. [15] provide a comprehensive and systematic description of the influential and
important clustering algorithms rooted in statistics, computer science and machine learning,
with emphasis on new advances. The authors depict the procedure of cluster analysis with four
basic steps: a)feature selection or extraction, b) clustering algorithm for design or selection,
c)cluster validation, and d)results interpretation. They illustrate applications of clustering
methods for the TSP such as the divide and conquer one. This method gives the flexibility
to hierarchically divide large problems into arbitrarily small clusters, depending on the desired
tradeoff between accuracy and speed. Arpita et al. [11] classified the clustering algorithms
into Hierarchically and Partition, they mention that the type of clustering algorithms used
depends upon the application and the data set used in that field, there is no optimal solution
for handling problems with large data sets of mixed and categorical attributes. Some of the
clustering algorithms can be applied but their performance degrades as the size of data increases.

Effective scheduling systems aim at matching demand with capacity so that resources are
better utilized and waiting times are minimized. Tuga and Emre [4] provide a comprehensive
survey on appointment scheduling in outpatient services. The underlying problem applies
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to a wide variety of environments of outpatient scheduling, and is modeled using queuing
system representing the unique set of conditions for the design of the patient appointment.
The authors present a complete survey of problem definitions and formulations considering the
nature of Decision-Making and Modeling of Clinic Environments. In addition, they mention a
variety of performance criteria used in the literature to evaluate appointment systems, which
are grouped as: a)cost-Based Measures, b)Time-Based Measures, c)Congestion Measures, d)
Fairness Measures.

In recent years, an important and interesting variant of the VRP has been studied. This
variant considers a stochastic version of the VRP where one or more parameters of the deter-
ministic problem are considered as random variables, such as the number of customers to be
served, the demands of the customers [12, 6], or the traveling times. Realistic routing problems
include a scheduling part by incorporating traveling times between every pair of nodes, customer
service times and maximum tour duration as additional problem data. A strategy to solve this
VRP is to use time windows. Each customer has an associated time window defined by the
earliest and the latest times where the service to the customer can start. The depot may also
have a time window. Time windows can be hard or soft. In the hard time window, a vehicle is
not allowed to arrive at the client/depot after the latest service start time; whereas, in the soft
case, the time window can be violated (i.e., arriving later than the latest service time). Errico
et al. [9] present a VRP with hard time windows and stochastic service times (VRPTW-ST).
This VRP is modeled as a two-stage stochastic program, and two recourse policies are defined
to recover operation feasibility when the first stage plan turns out to be infeasible. Finally,
Pellegrini et al. [13] use a metaheuristic approach known as Ant Colony Optimization to tackle
a VRP with multiple time windows/visits, considering a heterogeneous fleet and a maximum
duration of the vehicle tours. The authors develop two variants of the method, The Ant Colony
System and The Max-Min Ant Systems

In this work, a real business strategy for sales in different territories is modeled using the
formulation of three classical problem: cluster, scheduling and VRP. Particularities of the
modeling approach include scheduling constraints of visits spread over the week, service and
traveling times; as well as time capacity to ensure the fulfillment of the clients demand.

The paper is organized as follows. A general mixed integer linear programming (MILP)
formulation for the problem is presented in section 2. Section 3 describes a cluster greedy
algorithm and two optimization models to cut the problem size and to reduce the solution time.
In section 4, the models are tested for different scenarios. Finally, conclusions are presented in
section 5.

2 Mathematical Formulation of the optimization model

Consider a set of customers C = {1, 2, ..., i, ..., j, ...N} dispersed in a given region where their
locations are given by coordinates (gxj , gyj). It is desired to design a business plan that in-
cludes the minimum number of sellers S = {1, 2, ..., s, ...S} to attend the customers, in days
D = {1, 2, 3, 4, 5, 6} denoted by index t in the scheduling plan per week, and the optimal daily
routing. Notation used in the mathematical formulation is described as follows:

PARAMETERS:

• gxi, gyi Location coordinates for customer i
• Demi Demand of customer i
• Cap Daily capacity of seller
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• Ti Service time of customer i
• T s Available time of seller s
• Freqi Number of times that a customer i is visited during the week. Freqi =

⌈
Demi

6∗Cap

⌉

• M Big number
• dij Distance between two customers given by the following equation:

dij = −0.1677log

√
(gxi − gxj)

2
+ (gyi − gyj)

2
+1.86846∗log

√
(gxi − gxj)

2
+ (gyi − gyj)

2

∀i, j ∈ N, i �= j

VARIABLES:

• Y s
i Binary variable denoting whether customer i is assigned to seller s

• V s
it Binary variable denoting whether seller s visits a customer i at day t

• Xs,t
ij Binary variable denoting whether customer i is visited before customer j by seller s

at day t
• esti Continuous variable denoting the order in which customer i is visited in the route plan
of seller s during day t

The mathematical formulation of the model is defined in the following equations:

min
∑
s∈S

∑
i∈N

2s−1Y s
i +

∑
i

∑
j

∑
s

∑
t

di,j ·Xs,t
i,j (1)

subject to: ∑
s∈S

Y s
i = 1, ∀i (2)

V s
i,t ≤ Y s

i , ∀i, t, s (3)

Xs,t
i,j ≤ V s

i,t, ∀i, j, t, s, i �= j ∈ N (4)

Xs,t
i,j ≤ V s

j,t, ∀i, j, t, s, i �= j ∈ N (5)

∑
i

Xs,t
i,j =

∑
j

Xs,t
i,j , ∀i, j, t, s, i �= j ∈ N (6)

∑
i

Xs,t
i,j +

∑
j

Xs,t
i,j = 2V s

i,t, ∀i, j, t, s, i �= j ∈ N (7)

∑
i

Ti · V s
i,t ≤ T s, ∀t, s (8)

∑
t

∑
s

V s
i,t = Freqi, ∀i (9)

V s
i,t + V s

i,t+1 ≤ 1, ∀i, s, t ≤ 5 , F reqi ≤ 3 (10)

es,ti − es,tj +MXs,t
i,j ≤ M − 1, ∀i, j, t, s, i �= j ∈ N (11)
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es,ti ≤
∑
j

V s
j,t, ∀i, j, t, s, i �= j ∈ N (12)

The objective function (1) represents the sum of two goals, the minimization of the number
of sellers required to service the customers and the minimization of the traveling distance to
visit each customer for each routing plan.

As for constraints, (2) ensures that a customer is attended by only one seller. Next equation
(3) guaranties that a customer is assigned to the seller that actually visits that customer.
Equations (4) and (5) link the scheduling variables to the routing ones. Equations (6) and (7)
are used for connectivity purposes. Equation (6) establishes that the number of incoming links
to a client node must be equal to the number of outgoing links, whereas equation (7) sets for
each client one arrival and one departure at the time (degree of the node is 2). Next equation (8)
ensures that the available time of the seller is not compromised during the scheduling of visits
to the customers assigned per day. The total visits per week is given by the frequency. The
frequency is computed by dividing demand and capacity. In this way, equation (9) establishes
the number of visits to carried out per customer according to the given frequency. Equation
(10) avoids consecutive visits to those customers whose frequency is less than 4 visits per week.
Finally, equations (11) and (12) allow to assign the proper order of visits to customers during
the routing plan to avoid sub-tours. Equation (11) ensures that difference between the order
of visits to two consecutive customers is one, whereas equation (12) limits the maximum order
of visit to the customer.

3 Solution methods

The model combines assignment, scheduling and routing problem formulations. The above
three models individually have been shown to be NP-complete [1]. Therefore, the time required
to achieve an optimal solution of the whole model (problem) increases exponentially with the
growth of the problem size. To overcome this difficulty, two approaches are proposed. In the
first approach, the problem is divided into three sub-problems (or phases). The objective is to
work with smaller problems at each phase. The first phase is treated as a cluster optimization
problem where each cluster represents a seller and the clients are elements of the cluster. The
second phase of the problem solves the scheduling problem for each seller. Finally, the third
phase solves the routing problem for each active working day defined during the second phase.
Another approach is to split the problem into two phases only. The first phase is the same as
the one described in the previous approach (i.e. it performs the clustering), whereas the second
phase combines the scheduling and routing of clients for each seller.

The first phase embraces the largest part of the problem size, thus, a greedy algorithm is
proposed to determine the number of required sellers. The procedure is showed in Fig 1, starting
with the activation of a seller. Then, the first customer is assigned to a seller. The assignment
of customers must fulfill three conditions. The first condition is that the customer must be
located within the covered area (this condition applies from the second assigned customer).
The second condition is that the seller must have enough capacity to attend the demand of the
customer to be assigned. Finally, the third condition ensures that the seller have enough time
to attend the customer to be assigned and back to the depot. If after checking all customers,
there is no candidate that fulfill all conditions, a new seller is activated. The procedure repeats
until all customers have been assigned.
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Figure 1: Greedy algorithm for the assignment phase.

As for the three-phase approach, the sequence of visits for each seller (cluster) is determined
by solving a scheduling problem. Its objective function is given as follows (see (12) ) :

min
∑
i

∑
t

ri · V t
i (13)

The objective function (13) minimizes the radius of coverage (ri) subject to constraints
(8)–(10). This objective function helps to schedule per day the nearest customers. Finally, the
routing is solved per day and seller in phase 3. The model of the third phase is based on the
routing problem formulation. The objective function is given in (14).

min
∑
i

∑
j

di,j ·Xi,j (14)

The objective function (14) minimizes the total distance of the routes subject to constraints
given by equations 4–7, and (11)–(12). When dealing with the two-phase approach (i.e. solv-
ing the scheduling and routing simultaneously), the optimization problem employs objective
function (14) subject to constraints (3)–(12).

4 Results and discussion

To test the performance of the proposed models, several instances were tested. The data for
each instance correspond to a real life case consisting of a soft-drinks manufacturer. Table 1
shows the nomenclature used to identify instances, where rows are used to describe the territory
and columns denote the kind of seller required for the type of products. For each couple of
territory and seller, the table provides the total number of customers to be assigned.

As shown in the table 1, the variety of size is good enough to prove whether the proposal
is efficient for a business plan. The solving time is an important issue for the company due to
the deadline to generate the business plan each week. Therefore, the results are given in terms
of both objective functions as well as solving times. The greedy algorithm, which determines
the total number of sellers needed to satisfy the customers demand, was implemented in C++
9.0.21. The scheduling and routing models were implemented using AMPL to call the optimizer
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Territory/Type of Seller A B C D E F G
T1 48 37 163 15 970 145 10812
T2 33 12 463 4 1645 186 -
T3 26 18 405 9 1219 112 -
T4 59 40 448 17 1981 243 22475

Table 1: Customers to assign per territory and type of seller

CPLEX v.12.6.0. A time limit of 3600 sec is used as a stopping criteria when scheduling and
routing are jointly solved. The cover area criteria for the greedy algorithm was set to 10 km.

The results are given in table 2 and figure 2. For each combination of territory and seller,
the table provides the total number of customers per territory (# Custm), the total number
of required sellers (# Sellers), the optimal solution provided by the scheduling solution from
the three-phase approach (OF(Scheduling)) and the computational times of both approaches
(TCPU (2-p/3-p)) in seconds.

Territory Type of Seller # Custm # Sellers OF(Scheduling) TCPU (2-p/3-p)
T2 D 4 2 942 0.05/0.03
T3 D 9 3 1130 0.05/0.04
T2 B 12 1 4522 0.19/0.22
T1 D 15 5 1207 0.03/0.06
T4 D 17 6 1446 0.04/0.06
T3 B 18 1 6777 0.16/0.44
T3 AS 26 2 8472 0.19/0.4
T2 AS 33 5 5426 0.1/0.51
T1 B 37 1 13957 0.28/2.46
T4 B 40 1 15467 0.23/7
T1 A 48 4 7450 0.16/1.52
T4 A 59 7 6467 0.11/0.22
T3 F 112 3 28118 0.49/14.25
T1 F 145 4 25182 0.43/10.61
T1 C 163 5 26784 0.47/11.59
T2 F 186 5 27656 0.55/39.28
T4 F 243 6 28985 0.36/16.75
T3 C 405 11 38512 0.57/14.5
T4 C 448 12 29360 0.33/20.98
T2 C 463 11 38844 0.56/17.94
T1 E 970 4 91470 9.07/702.9
T3 E 1219 3 153303 29.85/1275.4
T2 E 1645 6 103299 4.26/611.46
T4 E 1981 12 62269 0.69/284.92

Table 2: The results of the greedy algorithm and the two approaches

It is observed that the total number of required sellers is not related to the size of the instance
but to a combination of distance and demand of the customers. On the other hand, the objective
function of the scheduling increases with the customers per territory. These results are expected
since the objective function minimizes the distance of the radius of coverage, which is entirely
related to the total number of customers to be visited. Regarding to computational time, the
three-phase approach is faster than the two-phase one. Moreover, the three-phase approach
achieves the same quality of the solution or even better. The computational performance
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improves with tight time windows and high node geographical density. Due to the use of the
greedy algorithm, the critical size of the cluster-based MILP formulation significantly decreases
and the hybrid approach becomes much more efficient.

Figure 2 shows a comparison of the objective functions for the routing solutions provided by
the two approaches. The X-axis represents the relative gap between the values of the objective
functions, whereas the Y-axis denotes the values of the objective functions. It is observed that
the first approach gets better or equal solutions for the vast majority of instances, and that
there is no pattern with respect to the size of the instances. However, the computation time is
significantly different as mentioned above.

Figure 2: Routing results comparison

Next, figure 3 illustrates a clustering result for territory T3 and seller type C. On the figure,
circles represent the locations of the customers in the territory according to the x-coordinates
(Gx) and the y-coordinates (Gy). A different color is used to distinguish the sellers assigned to
each customer as shown in the figure legend.

Finally, figure 4 shows a route example in a scheduling day with three sellers.

5 Conclusions

Assignment, scheduling and routing problems have attracted the attention of both researchers
and practitioners for several decades due to the practical value of such models in decision-making
contexts, the ever-present need and desire to incorporate increasingly realistic constraints and
objectives into the models, the challenges associated with solving the models, and the ability
of the basic formulations to represent important decision-making issues in business contexts.
These four factors continue to this day and are likely to be present for years to come.

This work presents a two and three-phase approaches to solve a real life problem with
different problem sizes. The first phase is used for both approaches and consists of a cluster-
based algorithm that verifies time service and traveling time constraints in order to generate
feasible clusters. The two-phase approach employs the cluster data to solve a smaller MILP
model that determines the vehicle routes and their scheduling plan simultaneously, whereas the
three-phase approach solves these two problems sequentially. First, the routing is performed,
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Figure 3: Example of customers assigned to a seller

Figure 4: Route example result for three sellers one day visit

and then, the scheduling is set. The three-phase approach is capable of solving problems
over 100 nodes at reasonable solving times. The results also indicate that the cluster-based
optimization method proves to be quite successful on a variety of instances taken from real
life cases. The computational time is a key factor when the solution approach is intended to
be used as a making-decision. Therefore, a good but perhaps non-optimal solution is usually
sufficient to obtain an efficient business plan.

The described approach allows tackling the uncertainties stemming from practical problems
such as different sizes of territory and particular features of the demand such as the distance
and the service time. Future research lines include the development of a metaheuristic for
further improving the solution provided by the three-phase approach, as well as the addition
of stochastic data to represent a raise/fall in the clients demand and the appearance/loss of
clients. The latter clearly affects the service time, so alternative routes to the clients in a
cluster should be sought. Moreover, this approach is better suited for parallel implementation
for larger problems.
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