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New Distance Regular Graphs Arising from Dimensional Dual
Hyperovals

ANTONIO PASINI AND SATOSHI YOSHIARA

In [4] we have studied the semibiplanEﬁ1 h= Af(S’fn 1) obtained as affine expansions of the
d-dimensional dual hyperovals of Yoshiara [6]. We continue that investigation here, but from a graph
theoretic poinbf view. Denoting byl‘ren.h the incidence graph of (the point-block system Eﬁ].h,
we prove thal“fn’h is distance regular if and only if either+ h = eor (m+ h, €) = 1. In the latter
case,l“fn’h has the same array as the coset grléﬁl‘of the extended binary Kasami codg2¢, 2h)
but, as we prove in this paper, we hf"%,h = K§ if and only if m = h. Finally, by exploiting some
information obtained om“%h, we prove that ie < 13 andm # h with (m+h,e) =1, then):ﬁth is
simply connected.

(© 2001 Academic Press

1. INTRODUCTION

In this Introduction we first recall a few definitions and known results (Sectiohsl.3).
Then westate our main results (Sectidm). Finally, we discuss a conjecture concerning the
simple connectednesd some of the semibiplanes considered in this paper (Setti)n

The restof the paper is organized as follows. In Sect®mve recall some results taken
from [4], to be used in Section3 and4. The main theorems of this paper are proved in
Section3. In Sectiord we collect some evidence for the conjecture discussed in Sekton

1.1. Semibiplaneand d-dual hyperovals.We refer to [3] for the few notions of diagram
geometry useth this paper. We recall here thasamibiplaneof order sis a connected finite
incidence structur& = (P, B), where? and B are the set opointsand the set oblocks
such that:

(S1) any two distinct points (blocks) are incident with either zero or two common blocks
(points) and
(S2) every block (point) is incident to exacty/+ 2 points(blocks).

If A, B are distinct blocks with non-trivial intersection afal b} = AN B (see (S1)), then
the pair({a, b}, {A, B}) is called dine, with the convention tha andb (respectivelyA and
B) are the points (blocks) incident to it. In this way, is viewed as a rank three geometry
with diagram and orders as follows:

c c*

S 1
points lines blocks

(c.c®)

= e

If ({a, b}, {A, B}) is a line then, by (S1), either of the paia, b} or { A, B} uniquely deter-
mines the other one. Accordingly, lines may also be regarded as pairs of points (or blocks)
belonging to the same block (respectively with non-trivial intersection).

The folding ® = FId(X) of a semibiplaneX is the rank three geometry of which the
elements are the points and the blocksbfcalledpointsof @), the point-block flags o&
(calledlinesof ®) and the lines o (calledquads), with the incidence relation inherited from
3. The diagram and the order @f are as follows:
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c
(CZ.C) —————e ————©@
1 s
points lines quads

Clearly, the points and the lines df are the vertices and the edges of the incidence graph of
(the point-block system off and, in view of (S1), every quadrangle of that graph belongs
to a quad. Furthermore, the universal coverdofs the folding of the universal cover &f
(Rinauro [5]). Hence, by [3, Theorem 12.64], we have the following.

ProPOSITION1.1. A semibiplaneX is simplyconnected as a rank three geometry if and
only if, regardingX as a rank two geometry of points and blocks, every closed path of its
incidence graph splits into quadrangles.

Halved hypercubes and projective (elation, homology and Baer) semibiplanes are the best
known examples of semibiplanes, but we are not going to recall their definitions here. The
reader may see [4] for these. We only recall a construction of semibiplanes from dimensional
dual hyperwals.

A d-dimensional dual hyperovalf P G(n, 2) (ad-dual hyperoval, for short) is a famil§
of d-dimensional subspaces BfG(n, 2) such that:

(H1) every point ofP G(n, 2) belongs to either no or just two membershf
(H2) any two members a$ hawe just one point in common and
(H3) the setS := (Uycs X spansP G(n, 2).

Given ad-dual hyperovalS of PG(n, 2) and regardind® G(n, 2) as the geometry at infinity
of AG(n + 1,2), theaffine expansion AfS) of S is the rank three geometry defined as
follows. The points ofAf (S) are the points oAG(n + 1, 2) and the blocks oA f (S) are the
(d 4+ 1)-subspaces oAG(n + 1, 2) having a member of as the space at infinity. The lines
of Af(S) are the lines ofAG(n + 1, 2) with point at infinity belonging tds. The incidence
relation is the natural one, inherited froAG(n + 1, 2).

The connectedness &tf (S) follows from (H3). Furthermore, by (H1) and (H2), the pair
(‘3‘, fO) is a complete graph with! vertices. HenceAf (S) is a semibiplane of ordes =
20+t 2,

Two d-dual hyperovalsS and S’ of PG(n, 2) are said to b@ésomorphic(and we write
S=8)if & = ¢(S) forsomeyp € Lny1(2) (= Aut(PG(n, 2))). Theautomorphism group
Aut(S) of S is the stabilizer ofS in Lp+1(2).

RegardingL := Aut(S) as a subgroup of the stabilizer &b = AI'Ln41(q) of a dis-
tinguished point ofAG(n + 1, 2), we can consider the extensidyy := TL of L by the
translation groupl = O2(A) of AG(n + 1, 2). Clearly, As is a subgroup of AutAf(S)).

It is flag transitive onAf(S) if and only if L is two transitive onS. We call Ag the affine
automorphism groupf Af(S).

1.2. The semibiplane A(S%h) and the graph";’h. The semibiplanes considered in this
paper are affine expansions of tthelual hyperovals of Yoshiara [6]. The latter are defined as
follows.

Let g = 2° with e > 2 and regards F(q) as ane-dimensional vector space overF(2).
Accordingly, the seV := GF(q) x GF(q) has the structure of a 2timensional vector space
overGF(2). Given two positive integenms, h < e, relatively prime withe, let

X(t) == (% X"t + 12 %) hecrq ~ (fort e GF(Q))
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andSﬁLh = {X(OhecF(g- Clearly, X(1) is ane-dimensional subspace &f, namely an
(e—1)- dimensional subspace BfG(V) = PG(2e— 1, 2). As proved by Yoshiara [6], the
family Sg, , is an(e — 1)-dimensional dual hyperoval of the sp@f, ) of U, r(q) X(1) in
PG(V). Furthermore we have the following.

PrROPOSITION1.2 (Yoshiara [6]).1f m + h = e, then( r‘;’h) is a hyperplane of P@/),
otherwise(Se n = PG(V).
In any case, the affine expansiéf (S m.n) Of S m.h IS & semibiplane of orderf2- 2. When
m+ h = e, that semibiplane hag2! pomts otherW|se it has?® points. The following has
also been proved by Yoshiar@][

PROPOSITIONL.3. Let m n, h, k be positive integers less than e and relatively prime
with e.

1) fm+h=n+k=e,thenS® “’Se

(2) Suppose m-h # e#n+Kk. UI)‘henS

m+n=h+k=e.

The following are proved ird].

PROPOSITIONL.4. The universal cover of A(fS‘I?n’h) is a halved hypercube if and only if
m = h.

mh = r‘ik if and only if either(m, h) = (n, k) or

PROPOSITIONL.5. If m + h = e,then Af(SZ ) is an elation semibiplane.

Therefore, as elation semibiplanes are simply connected (Baumeister and Pasechnik [1]), we
hawe the following.

COROLLARY 1.6. If m + h = e, then Af(SE m.n) IS simply connected.

In th|s paper, we are mainly interested in the incidence gné]ﬁm of Af(SE m.n)» where
Af(Sg, 1) is regarded as a point-block structure. The main propertréﬁm will be stated
|n Sectronl 4. Here, we only mention that, whem+ h is relatvely prime withe, the graph
h has the same array as the coset griftof the extended binary Kasami codlg2°, 2
(see Brouwer, Cohen and Neumaier [2, 11.2]). We describe this graph in the next subsection.

1.3. ThegraphK}. Given an odd positive integerand a positive integdr < e coprime to
e, letq := 2¢ andF := GF(q). Consider the spad® F(2)F of row vectors with entries in-
dexed byF, and identify a vecton = (vy)xer Of GF(2)F with its support{x € F | vy = 1}.

Then the set
{SS F11S even,Zx=o,Zx2“+1=0}

XeS XeS
is a subspace oB F(2)F, called theextended binary Kasami code(®, 2Mm (notation as
in [2, 11.2]). This subspace is the kernel of tBé& (2)-linear map

f:GFQF > GFQ2) xFxF

(vx)xeF = (Z Ux, Z Ux X, Z UxX2h+l)

xeF xeF xeF
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(whereGF(2) x F x F is regarded as &e+ 1)-dimensional vector space overf(2)).
The vertices ofCy are the cosets dK := K (2%, 2") in GF(2)F, two such cosetX + K
andY + K (X,Y C F) being adjacent precisely when there are veckrse X + K and
Y’ € Y + K such that eitheX’ c Y and|X’| = |Y/|+1orY' c X" and|Y’| = |X'| + 1.

It is well known (Brouwer, Cohen and Neumaier [2, 11.2]) thétis abipartite distance-
regular graph of diameter four with intersection array as follows:

{q g-1 q-2 (@/2)+1 *}
* 1 2 @2-1 qf-

Clearly, the vertices off bijectively correspond to the values of the functibnin particular,
K corresponds t@0, 0, 0) and we can construct a copy &% on the image Imf) of f as
follows:
(x) two distinct element§, x, y), (j, z, t) of Im(f) are adjacent as verticeslﬁﬁ precisely
wheni + j = Land(x + 22"+ = y + t.

The following is now straightforward:
PROPOSITIONL.7. Fori = 1,2,3,4, letK; be the i-neighborhood 0f0,0,0) in Cy.
Then,
K1 = (L x, X2+ er
Ko = {0,% x2+1 £ xy?" + x2'y) |x,y € F, x # 0},
Ks={1x,y) | 1,xy) €Im(f) — K},
Ka={©0.,x,y) [ (0,x,y) € Im(f) — (K2U{(0,0,0)1)}.

1.4. Main results. ClearlyI'§, ,,, being the incidence graph of a rank two geometry, is bi-

partite. Wherm 4+ h = e, it eas’ily follows from Propositi0|f1.5thatl“ren’h is distance regular
of diameter four, with intersection array as follows, where: 2¢:

g g-1 g-2 1 *
* 1 2 g-—1 q|-

The following will be proved in SectioB.

THEOREM1.8. Assume mt h # e. Then['f  has diameter four. Furthermord;s, | is
distance regular if and only if e is coprime to #h. If that is the case, theﬁﬁlh has the

e
same array asC;.

(Note that, asn, h are coprime teg, if e is also coprime ton + h then it is odd, as required
for ICp.) The following will also be proved in Sectid

THEOREM1.9. Lete> 2. Thenlf, ,, = Kf if and only if m= h.

The next corollary immediately follows from Theorelh® and Propositior..4.

COROLLARY 1.10. The graphky is covered by thecollinearity graph of the2®-dimen-
sional hypercube.

Theoremsl.8and1.9also imply the following.

COROLLARY 1.11. Given an odd positive integer e and a positive integet e coprime
to e, suppose there is a positive integer<re, different from h and such that e is coprime to
both m and nt h. Then there exists a distance-regular graph of diamétewith the same
array askCy; but not isomorphic tdCf.
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1.5. On the universal cover of Mﬁ,h)- In view of Corollary 1.6, thec.c*-geometry

Af(S5.e_m) is simply connected for any positive integer < e coprime toe. On the other
hand, by Propositiod.4, the universal cover oAf (S5, ,,) is the Z-dimensional halved hy-
percube. Henc&f (Sg, ) is not simply connected when> 2. (Note thatAf(S 1) is a copy

of the four-dimensional halved hypercube.)

As noticed in [4] (final remark of Section 1), whem+ h % e, m = hande =5 or7, then
Af(S,‘;’h) is simply connected. (Note that, when= 2,3, 4 or 6, no pair(m, h) exists with
(m,e) = (h,e) = 1, m # handm + h # e.) The above result for the caseset 5 and
7 has been obtained by applying coset enumeration to the amalgam of element stabilizers in
the affine automorphism group &ff (Sﬁl’h). Regretfully, computing times with that method
seem too long whea > 7.

We continue that investigation in this paper (Secddrbut with a different method. In view
of Propositionl. 1, in order to prove tha# f (S, n) is simply connected, we only need to show
that every closed path &, . Splits into quadrangles Exploiting the information obtained on
r'e h In Section3, but under the additional assumption ttrat+ h, ) = 1 (whichforcese to
be odd) we shall prove that every closed patrfﬁfh splits into quadrangles and hexagons.
To finish, we should also prove that every hexagoﬁ‘,i,’;?fn splits into quadrangles. Computer
aided calculations show that this is indeed the case vehen14 for all pairs(m, h) with
m # h and(m + h, e) = 1. (Once again, we recall that the condition+ h, €) = 1 forcese
to be odd.) On the basis of the above, we dare to propose the following.

CONJECTURE If m# hand(m+ h,e) =1, then Af(Sﬁmh) is simply connected.

2. MOREINFORMATION ON Af (S, 1)

In this section we recall some definitions and results of [4], to be used in S&ction

Henceforthe is aninteger greater than unity afrdandm are positive integers less than
and relatively prime witre. As Propositiornl.5 completely settles the casemf+ h = e, we
alsoassumen + h # e. Hencee > 2.

We sefq := 2¢andV := GF(q) x GF(q), regarded as a 2dimensional vector space over
GF(2).

The members afy, n are distinguished-dimensional linear subspaces\find, asn+h #
e by assumption, they spavi (Proposition1.2). The points (blocks) oAf (S, ) are the
vectors ofV (the cosets iV of the members of5¢, h) However, another descrlptlon of
Af(SE h) more suited to our purposes in this paper, is given in [4].

Let Zm n := (Hi, Ho, %) be theincidence structure witli; as the set pointdip as the set
of blocks andx as the incidence relation, where

Ho := {(0; X, V)| (X, y) € V}, Hi:={;x,y) | (X,y) € V} and
Lx,y)*©0:t,2) iff y+z=x2"t+xt2.

ThenEe h is a semibiplane, and the function sending every elerent, y) € Hy to (X, y)
and(O,t, Z) € Hop to the block(0,z) + X(t) of Af(S n is an isomorphism fronk& m.h O
Af(SE m.n)» the latter being now regarded as a point- block structure [4, Proposmon 3. 4].
The afine automorphism grou@ of Af(S¢ m.h) is described in [4, Subsection 3.3]. It is a
subgroup othe automorphism group S L(2e 2) of the geometryAG(V) of affine varieties
of V and contains the translation grolipof AG(V). The stabilizer inG of a point of AG(V)
is a copy of Aut(kﬁ1 ). Whene > 3 ore = 3 butm # h, then Aut(éﬁ1 ) = TgMS =
AT'L1(q), whereT is elementary abelian, of ordgr= 28, andM andS are cyclic, of order



552 A. Pasini and Satoshi Yoshiara

g — 1 ande, respectively. The elements @f are translations, (for a € GF(Q)) acting as
follows onV and on the members 6 ,:

{(x V) (X, x2"a+ a2 x +y),
X(t) = X(t +a).

In order to describe the action M, we need to state some notation. Note first thamasd
h are coprime te, the functions

yixs x5 ixes x2TL (x € GF(@)™)
are automomorphisms of the multiplicative groGg-(q)>* of GF(q). We denote by the
composition ofy with the inverse 1/&f §, and 1/¢is the inverse of:

h
x@-D/@"-1)

£ X > 1/e: x> X2 D/@-D (x c GF(@)X).

Furthermore, we define a mapping GF(q)* — GF(q)* as follows:

n:XH— X(2m+h_1)/(2h_1).
We can now describe the action &f. The elements oM are dilatationsuy (for b <
GF(q)*), acting as follows:

G y) = (xb, yb?),
Ho =1 % (1) > X(bYet).

Finally, the elements df are field automorphisms € Aut(G F(q)), acting as follows:

o {(X, y) = (X7, y7),
X - X@).

Whene = 3 andm = h, then Aut(§;, ;,) = ASLe(2), but Aut(&;, ,) still contains a subgroup
ToM Sas above.

The action ofG on € m.h IS €asy to describe. The grodpacts as follows: for every =
(a,b) € V, the translatlon € T associated withh sends(1; x, y) and(0; t, z) to (1;x +
a, y+b)and(0;t + a, z+ b) respectively. Turning to Aut(ﬁh) the elements ofg, M and
Sact as follows:

(L:x,y) > (1%, x2"a+a2'x + y),
0;t,20 ~ (0;t+a, 2

) @xy) = (15 xb, ybr),

M1 0:t, 2 > (0; bY%t, b72)

(L;ix,y) = (1;x7,¥9),

o:(0;t,2 — (0;t°,2°).

Ta -

o

Whene = 3 andm = h, we should also say how the elements of Alﬁ‘;qﬁ not belonging to

ToMSact onZg |, but we do not need this information for the following.

3. PROOFS OFTHEOREMS1.8AND 1.9

Henceforth we assumma + h # e, as in Sectior?. Hencee > 3 and Af (¢ m.h) is not an
elation semibiplane.
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As the sem|b|plan€: n = (H1, Ho, %) defined inSection2 is isomorphic to the point-
block systenof Af(S¢ h) we may regard'?, h as the incidence graph afy, Accordlngly,
H1 U Hg is the set of vertices dfé m.h and two distinct verticesl; x, Y) and(O t,z) of I}
form an edge of ¢, if and only ify + z = x?"t + xt?"

The graphr'y, h is bipartite with partsH; andHg and each oH; and Hg is a regular orbit
of the groupT (Sectlonz) As in Sectior2, in the followingTp andM are thesubgroups of
Aut(S ’h) consisting of the translations and the dilatations, respectively.

3.1. Lemmas.Two points(1;x,y) and (1;x’,y") of 2 n have distance two ime m.h if
and only if there |s a blockO;t, z) incident W|th both of them This occurs exactly when
y+z=x2"t +xt?" andy’ + z = (x)2"t + x't2" for somet, z € G F(q). The last condition
is equivalent to saying that = x’ and the following equation has a solution@+(q):

) P x+x)@ D 2T YHY g

X+ X/

We recall that, denoting by Tr( the trace ove6 F(2) of an elemenk € GF(q), an equatlon
t2" yat+b = Owitha, b € GF(q)* has a solution i F(q) if and only if Tr(b/a2"/"-1) =
0 (see [6, Proof of Lemma 2]). By this criterion applied#9, we obtain the following.

LEMMA 3.1. Two points(1; x, y) and(1; X', y") of £% |, have distancéwo inT'S, h if and
only if x # x” and .
TH(Y + Y0/ x4+ x) ™ *”/(2"*1)) =0

Similarly, two blockg0; t, 2) and (0; ', ') of X7, |, have distance two iy, |, if and only if
t £t and
Tr(z+2)/(t + )@ "-D/@-1y _ g,

Given a vertex of Fm n fori = 1,2,3,4 we denote by (v) its i-neighborhood if"g,
Whenv = (1, 0, 0), we briefly writel'; for T'j (1; 0, 0).

LEMMA 3.2. The graphl“m’h has diametefour andrI'1, 'z, I's and I’y satisfy the follow-

ing.

(1) The elements of'1 arethe q blockg0;t, 0). They form a single orbit undepT

(2) The eIements of 'y are the q(q — 1)/2 points (1;x,y) where x # 0 and
Tr(y/x@™"=D/@-1) — 0. They form an orbit of gM.

(3) The elements ofi"3 are the (g — 1) blocks(0;t, z) with z # 0. These blocks form
2@m+h) _ 1 distinct orbits under §M with representative$0;0,¢)) (j = 0, ...,
2@m+h) _ 2 and¢ a generator of G Kq) ™).

(4) The elements of"y are the g(q — 1)/2 points (1;X,y) where x # 0 and
Tr(y/x@™"-D/@-1) — 1, as well as the g 1 points (1;0,y) with y # 0. The
former points form a single orbit ofgM, while the latter split intd®®©™+" _ 1 orbits
under HM with representativeél; 0, z1) (j =0, ...,2E&M+N _ 2 and¢ as above).

PROOF A block (0;t, 2) of ©¢ m.n IS incidentto (1; 0, 0) if and only if z = 0. Suppose that
no point(1;x, y) incident to a bIock(O t, z) with z £ 0 has distance two fromil; 0, 0).
Then, for anyx,y € GF(q) with y + z = x2"t + xt?", eitherx = 0 orx # 0 and
Tr(y/x(2m+h b/@- Dy = 1. The element

x2"t + xt2") x @ -D/@ -
h
— t/x@"D/@-D) 4 (1 )x@"-D/@ D)2
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has trace 0. Hence Ta(x@""~1/@ -1y — 1 for everyx # 0. However, the elements of the
form x@™"=1/@-D with x £ 0 form a subgroup of F(q)* of index(2™" —1,2¢ — 1) =
2em+h) _ 1 | ety be a generator of that (cyclic) subgroup. é\g m + h, we haver; # 1.
Then Z'j‘;é ¢{ = 0and hencezlj‘_;é Tr(z¢}) = 0, wherek = (22 — 1)/(2&M™M _ 1) s

the order of¢;. However, as Trz(;l') = 1 foreveryj = 0,1,...,k — 1 andk is odd, we
obtain Z‘j‘;%) Tr(zglj) = 1, which is a contradiction. Hence we have proved that every block
has distance at most three from the pgiht0, 0). Since every point is incident to a block, the
diameter oﬂ“ﬁ‘mh is at most four.

The above argument also shows thatonsists of the blocks(0; t, 0) and thaf"3 consists
of theq?—q remaining blockg0; t, z) with z # 0. The groupTg acts regularly of'; and each
To-orbit on "'z contains a unique block of the shafk 0, z). Now applying dilatations, it is
easy to see that the latter block is sent to exactly on®:d, 1) for j = 0, ..., 2E&m+h _2
and¢ a generator o6 F(q)*.

The previous remark shows th&@lb consists of the pointgl; x, y) with x # 0 and
Tr(y/x@™"=D/@-1) — 0. Since there are exactly2 elements o6 F(q) with trace 0, for a
givenx e GF(q)* there are exactly/2 elementsy € G F(q) with Tr(y/x@""-1/@-1) —

0 and hencé’, consists ofg(q — 1)/2 points. By applying a suitable dilatation, every point
of I'; is sent to a point of the forr(D; 1, y). As this point has distance two fro(; 0, 0), we
have Trgy) = 0, and soy = a2 + afor somea e G F(g). Then, by applying the translation
Ta, the point(0; 1, y) is sent to(0; 1, 0). ThusI'z is an orbit of ToM.

The setl"4 of the remaining points consists of thég — 1)/2 points of the form(1; x, y)
with x # 0 and Try/x@""-D/@-1) — 1 and theq — 1 points of the form(1; 0, y) with
y # 0. Each of the latter points is fixed by and sent byM to exactly one of(1; 0, 1)

(j =0,...,2&mN _2) On the other hand, the argument in the previous paragraph shows
that the points of the former shape are senfpW to a point(1; 1, {), wherelg is a given
element ofG F(q) of trace unity. O

LEMMA 3.3. Let A:= {x € GF(q)|Tr(x) = 0} and, for uv € GF(q), define uA:=
{ua}aea andv + UA := {v + uajaca. Then for any two distinct elementswe GF(q) —
GF(2) and everyw € GF(q), we have

UAN A] = [UANVA| = [UAN (w + vA)| = q/4.

PROOF First note thau A containsan element of trace unity, for otherwised = A and
souA = A whereA’ := {x € GF(q)|Tr(x) = 1}. This implies that the elementacts
fixed-point freely onA’, as A’ does not contain zero. However,has odd order-1 while
|A’| = g/2, which is a contradiction. HeneeAN A’ # .

Given an elemenia € u Awith Tr(ua) = 1, the mapa — ua+ua = u(a+a’) induces
a bijection fromu AN AtouAn A'. AsuAis the disjoint union ol AN AanduAn A, we
haveluANn Al = [uUAN A'| = |uA|/2 = q/4.

ThenjuANvA| = |Anu~1wA| = q/4, asu~1v # 0, 1. Furthermore, as 1w+ A coincides
with A or A’ according to whether Tr(#tw) = 0 or 1, we haveuv AN (wv=1 + A)| =
luv~rAN Al or jluvtAN A'|. In either casegu AN (w + vA)| = [uv AN (wv=1 4+ A)| =
q/4. O

3.2.  Proof of Theorem 1.8The graph'f , has diameter four, by the first claim of Lemma
3.2. It remains to prove thzﬁﬁm is distanceegular if and only if(m + h, €) = 1 and that, if
(m+h,e) =1, thenl'g , has the same array &%
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Letd := (m+ h, e) and assumérst thatd = 1. Then Lemma&B.2 implies that, for each
i = 1,2,3, thei-neighborhood™; of (1;0,0) is an orbit of oM. Thus, fori = 1,2, 3, the
number of vertices imj_1 (resp.T"j+1) adjacent to a vertex € I'j does not depend on the
particular choice ofk. As the diameter of ¢ m.n is four, there are exactly vertices ofI's
adjacent to every vertex @fs. Hencel'§, his d|stance regular. It is not difficult to check that
its array is the same as that/Gf.

Conversely, letl > 1. ThenGF(29) is a subfield ofG F(q) properly containings F(2).
Thus, ifw is a generator of F(29)*, we havew # 1 andw?™" -1 = 1. Therefore, the dilata-
tion w,, fixes the point1; 0, y) for everyy # 0 and acts on the set of poirlts N I'2((1; 0, y))
at distance two from botfi; 0, 0) and(1; 0, y). As a point ofl"» has the form(1; a, b) with
a # 0, every non-trivial element ofi,,) moves every point of', N I'2((1; 0, y)). In partic-
ular, for (1;0,y) € I'y, the cardinal numbei’, N I'2((1; 0, y))| is a multiple of the order of
w. On the other hand, it follows from Lemn$al that, for another pointl; 1, {o) € ', the
setl'> N T'2((1; 1, &o)) consists of pointgl; x, y) with x # 0,1 and

y . Y+ %o _
Tr(x<2m+h—1>/<2h—1>> N Tr<(x + 1)<2m+h—1>/<2h—1>> N

With A asin Lemmag3.3, the above condition is equivalent to the following:

y € (Lo + (x + 1)@M-D/@-D p) A x@"-D/@-D g
(forall x e GF(q) — GF(2)). Now it follows from Lemma3.3that
G0+ (x + D@ D/@ =D gy (@D D p) = g4,

Hence|l'2 N T'2((1; 1, &)l = (q — 2)q/4. However, the order ofv, being a divisor of
IGF(@)*| =q—1,isprime to(q — 2)q/4. Thus|I'2NT2((1; 1, ()| # [I'2NT2((1; 0, y))|.
This implies that the number of points at distance two frdnD, 0) and from a poinb € I's
does depend on the choicewfand hencd', |, is not distance regular. O

3.3. Proof of Theorem 1.9With K; as in Propositiorl.7, letp be the map fronmiCy to
Fh p that,fori = 1,...,4 and(k,a,b) e Kj, sendsk, a, b) to the vertex(k + 1;a,b +

a2+l of Toh Clearly,,o sends(0, 0,0) to (1;0,0) and induces a bijection front; to
the one- ne|ghborhooﬁ‘1 of (1;0,0) in I'S m.h It also mapsk, into I',. Indeed, according

to Proposition1.7, if (0.a.b) € Kz thena # 0 andb = a?'+1 + ac®" + a?'c for some
¢ € GF(q). Thereforeo(0,a, b) = (1;a, ac’ +a?'c) and

ac +a?'c

h
S = (c/a)? +c/a

has traceero. Comparing sizes, we conclude tbanduces a bijection fronC, to I'».

Let (1.a.b) € K3. Thenp(l.a.b) = (0:a.b + a2 +1) belongs to eithef’z or I'1. In
the latter case we hate+ a?'+1 = 0, henceb = a?'+1 and (1, a, b) € K;: contradiction.
Therefore,p mapsks into I's. Comparing sizes, we see thainduces a bijection froniC3
toI's.

Finally, let(0, a, b) € K4. Hencep(0,a, b) = (1; a, b+a2h+1) belongs to eitheF4 or I',.
Suppose it belongs 1i0;. Then ap mduces a bijection frorffg to Fz, thereare, d € GF(Q)
such thae = c andb+a2"+1 = cd?' +¢c?'d. Henceb = a2 +1 +ad?" +a?"d and, according
to Propositionl.7, this forceq0, a, b) € Kz: contradictionHencep(0,a,b) € T'y. As K4
andrI'4 have the same sizg,induces a bijection fronC4 to 4.
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According to Sectiori.3, (*) two vertices(i, a, b) and(j, c, d) of K}, areadjacent if and
onlyifi + j =1 and@+ ¢)?*+1 = b+ d, namely

i+1£j+1 and b+a? ) +d+d ) =a?ct+ad.

The latter says thai(i, a, b) andp(j, c, d) are incident mEh n- Hencep is an isomorphism
from KCf to T'g ..

Conversely, letn # h. An isomorphisnp betweerl"§, |, andI'§ ,, if any, naturally extends
to an isomorphism between thes*- geometrlesﬁf (SS h) andAf (Sh n)- By Proposmonl 4,
the semibiplane#\f (Sh h) andAf (St m.h) have dlfferent unlversal covers. Henbd (S m.h) %
AT (SE 1) Consequentlyl,“h hZ Cmn and, ascg =Thy Kp ZThn

4, ON THE FINAL CONJECTURE OFSECTION 1

Supposem # h. As remarked in Sectiof.5, in order to prove thaff(S¢ m.n) IS simply
connected, we must show that every closed path‘m] splits into quadrangles ABY
is bipartite of diameter four (Theorem8), every closed path afs |, splits mtooctagons
hexagons or quadrangles. Hence, we only need to prove that aII octagons and hexagons of
Tq py Splitinto quadrangles.

Needless to say, the above might be very hard to prove (possibly fal'§e)1ifs not distance
regular. Thus, in view of Theorem8, henceforth we assume the following.

(x) (e, m+h) =1 (hencezis odd andm # h, as already assumed above).

Accordingly, T'¢ m.n IS distance regular, with the same array/g& In the following, as in
Section3, the vert|ces ofe n are rgarded as elements ¢f; U Hp and, given a vertex
of 'Y, we denote byl (v) the set of vertices of [ |, at distancd < 4 from v. We set
vo := (1;0,0).

LEMMA 4.1. Every octagon ol“ﬁLh is asum of hexagons and quadrangles.

PrRoOF If all points of Af (Sﬁlh) belonging to an octagon containing have distance two
from vg, then every such octagon splits into hexagons and there is nothing to prove. Thus, we
assume that there are points at distance four fsgthat belong to some octagons containing
vo. Letv be any of these points.

Define a graptB(vg, v) onT'3(vg) N I'1(v) by declaring that two blockB, B’ € I'3(vg) N
I'1(v) are adjacent whefi1(vg) contains a block at distance two from bdghandB'. If B
andB’ are adjacent iB(vg, v), every octagon containingy, B, v andB’ splits into hexagons
and, possibly, quadrangles. Therefore, if the grBty, v) is connected, then every octagon
containingvg andv is a sum of hexagons and, possibly, quadrangles.

Thus, we only need to show thBt(vo, v) is connected. We will show that every block of
I'3(vp) N T'1(v) is adjacent inB(vg, v) to at leastq/2 blocks. AsT'3(vg) N I'1(v) consists
of q blocks, the above implies that every two non-adjacent blocks have an adjacent block in
common, whenc®(vg, v) is connected.

Lemma3.2 implies that the stabilizer ofg in Aut(I"y, " is transitive onlj (vg) fori =
1,2, 3. Hence we may assume thais incident with the block0;0,1) € I'3(Pp). Accord-
ingly, v = (1; x, 1) for somex € GF(q).

Take a blockB = (0; c, d) of I'3(vg) N I'1(v). As B is incident tov = (1;x, 1), we
haved = 1 + x2"c + xc@". Moreover,d # 0, asB is not incident tovg. A block (0: t, 0)
of I'1(vo) has distance two fronB if and only if t # ¢ and Tr(d/(c + t)¥) = 0, where
k= @mh _1)/@2M—1).
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Let B’ = (0;c/, d") be ablock of I'3(vg) N T'1(v) dlstmct from B and not adjacent t@.
Thenc # ¢, for otherwised = d’ = 1 + x?"c + x&" andB = B'. The definition of the
adjacency irB(vp, v) implies the following:

(a) for every block(0;t, 0) € I"'1(vo) with ¢ # t and Tr(d/(c + t)%) = 0, eithert = ¢’ or
t #c and Tr(d/(c +t)K) = 1.

Let f be the function sendingy/(c+t)¥ tod’/(c’ +t)X. Note that the equatiosi= d/(c+t)K
for c  t is equivalent td = (d/s)Y/K + cfor s # 0, since(e, m+ h) = 1. Thusf works as
follows:

d’ _ d’'s
((d/s)Y* +c+cHk  (dVk + (c+ c)st/kk

f(s) =

wheres € GF(q) — {0, d/(c+ )X}, in order to avoid null denominators in the above expres-
sions. Asf(s) = d’/(c + ¢)K impliesd/s = 0, butd = 0, the image off does not contain
d’'/(c+c)K. Thenf is a bijection fromG F(q) — {0, d/(c+c)¥} to GF(q) — {0, d’/(c+c)K}

and (a) can be rephrased as follows:

(b) if Tr(s) = 0 ands ¢ {0,d/(c + ¢)¥}, then Tr(f (s)) = 1 (Whencef (s) # s).

The equationf (s) = s has a unique solution

INLCEARSCORANS
N c+c '

which isdifferent from either 0 od’/(c + cHk. By (b), Tr(g) = 1.

We shall show that Td/(c + ¢)¥) = 0. Suppose Tr(gc + ¢)¥) = 1. Then there are
q/2 — 1 elements of trace 0 in the doma®F (q) — {0,d/(c + ¢)¥} of f. Their images by
f have trace unity. Asg is not the image of any element of trace zero, there are atdgast
elements of trace unity in the image 6f As there are exactlg/2 elements ofGF(q) of
trace unity, all of them belong to the image bfIn particular, Tr(d/(c + ¢)¥) = 0. Then

Tr(d +d')/(c + ) = Trd/(c +c) ) + Tr(d'/(c+ <)) =1+ 0=1,

which contradicts the assumption tHait= (0; ¢, d) andB’ = (0; ¢/, d’) are at distance two.
We conclude that iB’ = (0; ¢/, d’) is a block ofl"3(vg) N I'1(v) distinct fromB = (0; ¢, d)
and not adjacent t8, thenc # ¢’ and Tr(d/(c + ¢)¥) = 0. As (e, m + h) = 1, the function
sendingc’ € GF(q) — {c} tod/(c + ¢)* € GF(q) — {0} is a bijection.

Thus, for a giverB = (0;c,d) € Fs(vo)ﬁr‘l(v) there are exactlgj/2— 1 elementg’ # ¢
with Tr(d/(c+¢)%) = 0. Asd’ = 1+ x2"c+xc is uniquely determined by, there are at
most(g/2)— 1 blocksB’ € I'z(vg) NI'1(v) distinct fromB and not adjacent t8 in B(vg, v).
Hence there are at least2 blocks ofl"3(vg) N I'1(v) distinct fromB and adjacent t@. The
connectivity ofB(vg, v) follows. a

So far, we are reduced to seeing whether every hexagmi Qfis a sum of quadrangles. In
view of this, given a point-block paitvg, Bp) at distance three |ﬁm n» We consider another
graph, which we denot&, | (vo, Bo) (also Em n, for short, when no confusion arises). Its
vertices are the incident block point paiiB, v) with B € I'1(vo) NT'2(Bg) andv € I'a(vg) N
I'1(Bg). Two distinct verticeg B, v) and (B’, v’) of ES m.h are declared to be adjacent when
eitherB = B’ orv = v'. It is easy to see that, Ee m.n IS connected, then every hexagon
containingvg and Bg is a sum of quadrangles.
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Still with v := (1;0,0), let Bg := (0; 0, a) (€ I's(vg)) for somea € GF(q)*. Then the
following hold:

T'1(vo) N T2(Bo) = {(0:1,0) | t € GF(Q)*, Tr(a/t") = 0},
T'2(0) N T1(Bo) = {(1: X, a) | x € GF(q)*, Tr(x/t¥) = 0},

wherek = (2™h —1)/2" — 1) andk’ = (2™ —1)/(2" — 1). As(e, m+h) = 1, the maps
X > 1/x¥ andx — 1/x¥ are bijections orG F(q)*. Thus

IT'1(vo) NT2(Bo)| = IT"2(vo) N IM'1(Bo)| = (9/2) — 1.

For every block(0;t, 0) of I'1(vg) N I'2(Bp) there are exactly two points incident with both
(0;t,0) and By = (0;0,a), namely(1; x, a) and (1; x + t¢, a), wheree has the meaning
stated in Sectio@ andx € GF(q)* is a solution of the following equation:

2'x +tx2" = a. 1)

Note that such a solution exists becatise G F(q)* andTr(a/t) = 0. Similarly, for every
point(1; X, a) € I'2(vg)NI'1(Bp), there are exactly two blocks incident with bath x, a) and
vo, namely(0; t, 0) and(0; t + x1/¢, 0), witht € GF(q)* a solution of equatioiil) (where
t is now regarded as the unknown of (1)). In particul:‘sﬁnh has 2(q/2) — 1) vertices.

Therefore, we may identify the verticed ; t, 0), (0; x, a)) of Eﬁmh with the solutiongt, x)
of the equation (1) (the latter being now regarded as an equation in two unknowns). Accord-
ingly, the connected component Eﬁm containing a given solutio(tp, Xg) of (1) is obtained
inductively as follows:

(2) definetj;1 (=t + xil/g andxijy1 := X +tf fori = 0,...,n— 1, until we obtain
(th, Xn) = (to, Xo). Then the pairst;, i), (ti+1, Xi), (i, Xi+1) (fori =0,...,n—1)
form the connected componentEﬁLh containing(tp, Xo)-

The above is suitable for a computer, once explicit valuesfon anda are given. Here are
the results fore = 5,7,11,13, obtained via GAP. We only list the paifls, m) for which
Em.p IS connected. We also assume< e/2, in view of the isomorphisrSg, |, = Sg o h-
e (h,m
5 (2,1),(1,2)
7 (2,1),(3,1),4,1),(1,2),4,2),(1,3),(5,3),(6,3)
11 4,1),3,2),(5,2),(8,2),(2,3),(1,4),(2,5)
13 none

If Eﬁ]’h(vo, Bp) is disconnectedye shall find two solutions of the equation (1) which connect
distinct componentfiomotopically’. We start with a solutioftg, xp) of (1) and produce other
solutions(tj, x;) according to the recursive rule (2). At the same time, we add other solutions
obtained in the following way. Consider the hexagon

H := (vo. (0 to. 0), (1; X0, &), Bo, (1;Xi, &), (0 i, 0), vo).

As the edgeq(0; to, 0), (1; X0, &)} and{(1; x;, &), (0; ti, 0), vo)} of H belong to the same
connected component ﬁﬁ]’h, the hexagorH splits into quadrangles. Take a bloaé') =
(0; 5, wj) # Bp incident to(1, xg, @) and (1; x;, @), and choose an automorphigmin the

stabilizer ofvo which sends8(" to Bo. Then(ty', xg') and(t™, x™) are solutions of (1). They
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yield two paths of length three joining, to By, whichform a hexagorH’. The hexagorH’
is the image by of the hexagon

(v0, (0; 1o, 0), (1; %o, @), B, (1;xi, ), (0, 0), vo).

The latter is a sum ofl and a quadranglé&l; xo, a), Bé'), (1; %i,a), By, (1; Xg, @)). ThusH’
splits into quadrangles.

Now we define a grapt‘j h(vo. Bo) on the set of connected componentsEﬁfh(vo, Bo)
by declarlng two components to be adjacent when each of them contains one of the solutions
(tO ,xO ) and (tI . X 71y of (1), for some(tg, Xg) and (tj, xi) ands; as abwe. The previous
observation implies that, if the grapﬂﬁ1 h(vo, Bo) is connected, then every hexagonrtﬁ[m
is a sum of quadrangles, whendé (S .,) is simply connected.

The condition forB(') (0; s, wi) to be incident to bothil; xg, a) and(1; x;, a) forces
s =0o+x)Y5  wi=a+ (xo+x) Y7 % 4 xox? ).

Then we may choos,ebis 75 asoj, where

a @"-1)/@""-1)
b = ( ) . 3)
a+ (Xo + %)@ =2/@"=D(x2"x; + xox?")

Accordingly, (bi (to+(Xo-+xi) /%), bf Xo) and(b; (ti + (Xo+xi) /%), bf x; ) are thenew solutions.
Summarizing, the following is proved.

LEMMA 4.2. Letae GF(q)*. Declare two connected components C and D ﬁ)fnﬁo be
adjacent when there is a connected component containing the sol@tigorg) and (tj, x;) of
the equation(1) (with t andx; defined as ir(2)), such that C contains one of the following
two solutions of1) and D contains the other one:

(bi(to + (X0 + X)), bfx0),  (Bi(ti + (Xo+ x)Y®), bEx)

where b is defined as ir{3). If the resulting graph is connected, then every hexagd?ﬁgqc
is a sum of quadrangles.

The following is an another easy but useful observation.

LEMMA 4.3. The connected components of the gram\hEvo, Bo) bijectively corespond
to those of E .(vo, Bo), via the map sending, x) € Ef | to (x,t) € Eg . In particular,
Er, his connected if and only |f$m is connected.

In view of this, we may restrict ourselves to the casenok h, also assumingn < e/2 in
view of the |somorph|srr;|5'm h =SS me_h (Propositionl.3). Relying on Lemma.2 and
with theabove restrictions oth, m), the following is verified with the aid of GAP [7].

REsSULT4.4. Lete < 14,h £ mand(m+ h, €) = 1. ThenAf (S,ﬁ‘me) is simply connected.
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