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NewDistance Regular Graphs Arising from Dimensional Dual
Hyperovals

ANTONIO PASINI AND SATOSHI YOSHIARA

In [4] we have studied the semibiplanes6e
m,h = A f (Se

m,h) obtained as affine expansions of the
d-dimensional dual hyperovals of Yoshiara [6]. We continue that investigation here, but from a graph
theoretic pointof view. Denoting by0e

m,h the incidence graph of (the point-block system of)6e
m,h,

we prove that0e
m,h is distance regular if and only if eitherm+ h = e or (m+ h,e) = 1. In the latter

case,0e
m,h has the same array as the coset graphKe

h of the extended binary Kasami codeK (2e,2h)

but, as we prove in this paper, we have0e
m,h
∼= Ke

h if and only if m= h. Finally, by exploiting some
information obtained on0e

m,h, we prove that ife≤ 13 andm 6= h with (m+ h,e) = 1, then6e
m,h is

simply connected.

c© 2001 Academic Press

1. INTRODUCTION

In this Introduction we first recall a few definitions and known results (Sections1.1–1.3).
Then westate our main results (Section1.4). Finally, we discuss a conjecture concerning the
simple connectednessof some of the semibiplanes considered in this paper (Section1.5).

The restof the paper is organized as follows. In Section2 we recall some results taken
from [4], to be used in Sections3 and 4. The main theorems of this paper are proved in
Section3. In Section4 we collect some evidence for the conjecture discussed in Section1.5.

1.1. Semibiplanesand d-dual hyperovals.We refer to [3] for the few notions of diagram
geometry usedin this paper. We recall here that asemibiplaneof order s is a connected finite
incidence structure6 = (P,B), whereP andB are the set ofpointsand the set ofblocks
such that:

(S1) any two distinct points (blocks) are incident with either zero or two common blocks
(points) and

(S2) every block (point) is incident to exactlys+ 2 points(blocks).

If A, B are distinct blocks with non-trivial intersection and{a,b} = A ∩ B (see (S1)), then
the pair({a,b}, {A, B}) is called aline, with the convention thata andb (respectivelyA and
B) are the points (blocks) incident to it. In this way,6 is viewed as a rank three geometry
with diagram and orders as follows:

(c.c∗) • • •

c c∗

1 s 1
points lines blocks

If ({a,b}, {A, B}) is a line then, by (S1), either of the pairs{a,b} or {A, B} uniquely deter-
mines the other one. Accordingly, lines may also be regarded as pairs of points (or blocks)
belonging to the same block (respectively with non-trivial intersection).

The folding 8 = Fld(6) of a semibiplane6 is the rank three geometry of which the
elements are the points and the blocks of6 (calledpointsof 8), the point-block flags of6
(calledlinesof8) and the lines of6 (calledquads), with the incidence relation inherited from
6. The diagram and the order of8 are as follows:
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(C2.c) • • •

1 1 s
points lines quads

c

Clearly, the points and the lines of8 are the vertices and the edges of the incidence graph of
(the point-block system of)6 and, in view of (S1), every quadrangle of that graph belongs
to a quad. Furthermore, the universal cover of8 is the folding of the universal cover of6
(Rinauro [5]). Hence, by [3, Theorem 12.64], we have the following.

PROPOSITION1.1. A semibiplane6 is simplyconnected as a rank three geometry if and
only if, regarding6 as a rank two geometry of points and blocks, every closed path of its
incidence graph splits into quadrangles.

Halved hypercubes and projective (elation, homology and Baer) semibiplanes are the best
known examples of semibiplanes, but we are not going to recall their definitions here. The
reader may see [4] for these. We only recall a construction of semibiplanes from dimensional
dual hyperovals.

A d-dimensional dual hyperovalof PG(n,2) (a d-dual hyperoval, for short) is a familyS
of d-dimensional subspaces ofPG(n,2) such that:

(H1) every point ofPG(n,2) belongs to either no or just two members ofS,
(H2) any two members ofS have just one point in common and
(H3) the setS0 :=

⋃
X∈S X spansPG(n,2).

Given ad-dual hyperovalS of PG(n,2) and regardingPG(n,2) as the geometry at infinity
of AG(n + 1,2), theaffine expansion A f(S) of S is the rank three geometry defined as
follows. The points ofA f (S) are the points ofAG(n+ 1,2) and the blocks ofA f (S) are the
(d + 1)-subspaces ofAG(n+ 1,2) having a member ofS as the space at infinity. The lines
of A f (S) are the lines ofAG(n+ 1,2)with point at infinity belonging toS0. The incidence
relation is the natural one, inherited fromAG(n+ 1,2).

The connectedness ofA f (S) follows from (H3). Furthermore, by (H1) and (H2), the pair
(S, S0) is a complete graph with 2d+1 vertices. HenceA f (S) is a semibiplane of orders =
2d+1
− 2.

Two d-dual hyperovalsS andS ′ of PG(n,2) are said to beisomorphic(and we write
S ∼= S ′) if S ′ = ϕ(S) for someϕ ∈ Ln+1(2) (= Aut(PG(n,2))). Theautomorphism group
Aut(S) of S is the stabilizer ofS in Ln+1(2).

RegardingL := Aut(S) as a subgroup of the stabilizer inA = A0Ln+1(q) of a dis-
tinguished point ofAG(n + 1,2), we can consider the extensionAS := T L of L by the
translation groupT = O2(A) of AG(n + 1,2). Clearly,AS is a subgroup of Aut(A f (S)).
It is flag transitive onA f (S) if and only if L is two transitive onS. We call AS the affine
automorphism groupof A f (S).

1.2. The semibiplane A f(Se
m,h) and the graph0e

m,h. The semibiplanes considered in this
paper are affine expansions of thed-dual hyperovals of Yoshiara [6]. The latter are defined as
follows.

Let q = 2e with e ≥ 2 and regardGF(q) as ane-dimensional vector space overGF(2).
Accordingly, the setV := GF(q)×GF(q) has the structure of a 2e-dimensional vector space
overGF(2). Given two positive integersm, h < e, relatively prime withe, let

X(t) := {(x, x2m
t + t2h

x)}x∈GF(q) (for t ∈ GF(q))
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andSe
m,h := {X(t)}t∈GF(q). Clearly, X(t) is ane-dimensional subspace ofV , namely an

(e− 1)-dimensional subspace ofPG(V) ∼= PG(2e− 1,2). As proved by Yoshiara [6], the
family Se

m,h is an(e− 1)-dimensional dual hyperoval of the span〈Se
m,h〉 of

⋃
t∈GF(q) X(t) in

PG(V). Furthermore, we have the following.

PROPOSITION1.2 (Yoshiara [6]). If m + h = e, then〈Se
m,h〉 is a hyperplane of PG(V),

otherwise〈Se
m,h〉 = PG(V).

In any case, the affine expansionA f (Se
m,h) of Se

m,h is a semibiplane of order 2e
− 2. When

m+ h = e, that semibiplane has 22e−1 points; otherwise, it has 22e points. The following has
also been proved by Yoshiara [6].

PROPOSITION1.3. Let m,n, h, k be positive integers less than e and relatively prime
with e.

(1) If m+ h = n+ k = e, thenSe
m,h
∼= Se

n,k.
(2) Suppose m+ h 6= e 6= n+ k. ThenSe

m,h
∼= Se

n,k if and only if either(m, h) = (n, k) or
m+ n = h+ k = e.

The following are proved in [4].

PROPOSITION1.4. The universal cover of A f(Se
m,h) is a halved hypercube if and only if

m= h.

PROPOSITION1.5. If m+ h = e, then A f(Se
m,h) is an elation semibiplane.

Therefore, as elation semibiplanes are simply connected (Baumeister and Pasechnik [1]), we
have the following.

COROLLARY 1.6. If m+ h = e, then A f(Se
m,h) is simply connected.

In this paper, we are mainly interested in the incidence graph0e
m,h of A f (Se

m,h), where
A f (Se

m,h) is regarded as a point-block structure. The main properties of0e
m,h will be stated

in Section1.4. Here, we only mention that, whenm+ h is relatively prime withe, the graph
0e

m,h has the same array as the coset graphKe
h of the extended binary Kasami codeK (2e,2h)

(see Brouwer, Cohen and Neumaier [2, 11.2]). We describe this graph in the next subsection.

1.3. ThegraphKe
h. Given an odd positive integere and a positive integerh < e coprime to

e, let q := 2e andF := GF(q). Consider the spaceGF(2)F of row vectors with entries in-
dexed byF , and identify a vectorv = (vx)x∈F of GF(2)F with its support{x ∈ F | vx = 1}.
Then the set {

S⊆ F | |S| even,
∑
x∈S

x = 0,
∑
x∈S

x2h
+1
= 0

}
is a subspace ofGF(2)F , called theextended binary Kasami code K(2e,2h) (notation as

in [2, 11.2]). This subspace is the kernel of theGF(2)-linear map

f : GF(2)F 7→ GF(2)× F × F

(vx)x∈F 7→

(∑
x∈F

vx,
∑
x∈F

vxx,
∑
x∈F

vxx2h
+1

)
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(whereGF(2)× F × F is regarded as a(2e+ 1)-dimensional vector space overGF(2)).
The vertices ofKe

h are the cosets ofK := K (2e,2h) in GF(2)F , two such cosetsX + K
andY + K (X,Y ⊆ F) being adjacent precisely when there are vectorsX′ ∈ X + K and
Y′ ∈ Y + K such that eitherX′ ⊂ Y′ and|X′| = |Y′| + 1 orY′ ⊂ X′ and|Y′| = |X′| + 1.

It is well known (Brouwer, Cohen and Neumaier [2, 11.2]) thatKe
h is abipartite distance-

regular graph of diameter four with intersection array as follows:{
q q− 1 q − 2 (q/2)+ 1 ∗

∗ 1 2 (q/2)− 1 q

}
.

Clearly, the vertices ofKe
h bijectively correspond to the values of the functionf . In particular,

K corresponds to(0,0,0) and we can construct a copy ofKe
h on the image Im(f ) of f as

follows:

(∗) two distinct elements(i, x, y), ( j, z, t) of Im( f ) are adjacent as vertices ofKe
h precisely

wheni + j = 1 and(x + z)2
h
+1
= y+ t .

The following is now straightforward:

PROPOSITION1.7. For i = 1,2,3,4, let Ki be the i-neighborhood of(0,0,0) in Ke
h.

Then,

K1 = {(1,x, x2h
+1)}x∈F ,

K2 = {(0,x, x2h
+1
+ xy2h

+ x2h
y) | x, y ∈ F, x 6= 0},

K3 = {(1,x, y) | (1,x, y) ∈ Im( f )−K1},

K4 = {(0,x, y) | (0,x, y) ∈ Im( f )− (K2 ∪ {(0,0,0)})}.

1.4. Main results. Clearly0e
m,h, being the incidence graph of a rank two geometry, is bi-

partite. Whenm+ h = e, it easily follows from Proposition1.5 that0e
m,h is distance regular

of diameter four, with intersection array as follows, whereq = 2e:{
q q− 1 q − 2 1 ∗

∗ 1 2 q − 1 q

}
.

The following will be proved in Section3.

THEOREM 1.8. Assume m+ h 6= e. Then0e
m,h has diameter four. Furthermore,0e

m,h is
distance regular if and only if e is coprime to m+ h. If that is the case, then0e

m,h has the
same array asKe

h.

(Note that, asm, h are coprime toe, if e is also coprime tom+ h then it is odd, as required
for Ke

h.) The following will also be proved in Section3.

THEOREM 1.9. Let e> 2. Then0e
m,h
∼= Ke

h if and only if m= h.

The next corollary immediately follows from Theorem1.9and Proposition1.4.

COROLLARY 1.10. The graphKe
h is covered by the(collinearity graph of the)2e-dimen-

sional hypercube.

Theorems1.8and1.9also imply the following.

COROLLARY 1.11. Given an odd positive integer e and a positive integer h< e coprime
to e, suppose there is a positive integer m< e, different from h and such that e is coprime to
both m and m+ h. Then there exists a distance-regular graph of diameter4, with the same
array asKe

h but not isomorphic toKe
h.
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1.5. On the universal cover of A f(Se
m,h). In view of Corollary 1.6, thec.c∗-geometry

A f (Se
m,e−m) is simply connected for any positive integerm < e coprime toe. On the other

hand, by Proposition1.4, the universal cover ofA f (Se
m,m) is the 2e-dimensional halved hy-

percube. HenceA f (Se
m,m) is not simply connected whene> 2. (Note thatA f (S2

1,1) is a copy
of the four-dimensional halved hypercube.)

As noticed in [4] (final remark of Section 1), whenm+ h 6= e, m 6= h ande= 5 or7, then
A f (Se

m,h) is simply connected. (Note that, whene = 2,3,4 or 6, no pair(m, h) exists with
(m,e) = (h,e) = 1, m 6= h andm+ h 6= e.) The above result for the cases ofe = 5 and
7 has been obtained by applying coset enumeration to the amalgam of element stabilizers in
the affine automorphism group ofA f (Se

m,h). Regretfully, computing times with that method
seem too long whene> 7.

We continue that investigation in this paper (Section4), but with a different method. In view
of Proposition1.1, in order to prove thatA f (Se

m,h) is simply connected, we only need to show
that every closed path of0e

m,h splits into quadrangles. Exploiting the information obtained on
0e

m,h in Section3, but under the additional assumption that(m+ h,e) = 1 (whichforcese to
be odd), we shall prove that every closed path of0e

m,h splits into quadrangles and hexagons.
To finish, we should also prove that every hexagon of0e

m,h splits into quadrangles. Computer
aided calculations show that this is indeed the case whene ≤ 14 for all pairs(m, h) with
m 6= h and(m+ h,e) = 1. (Once again, we recall that the condition(m+ h,e) = 1 forcese
to be odd.) On the basis of the above, we dare to propose the following.

CONJECTURE. If m 6= h and(m+ h,e) = 1, then A f(Se
m,h) is simply connected.

2. MORE INFORMATION ON A f (Se
m,h)

In this section we recall some definitions and results of [4], to be used in Section3.
Henceforth,e is aninteger greater than unity andh andm are positive integers less thane

and relatively prime withe. As Proposition1.5completely settles the case ofm+ h = e, we
alsoassumem+ h 6= e. Hencee> 2.

We setq := 2e andV := GF(q)×GF(q), regarded as a 2e-dimensional vector space over
GF(2).

The members ofSe
m,h are distinguishede-dimensional linear subspaces ofV and, asm+h 6=

e by assumption, they spanV (Proposition1.2). The points (blocks) ofA f (Se
m,h) are the

vectors ofV (the cosets inV of the members ofSe
m,h). However, another description of

A f (Se
m,h), more suited to our purposes in this paper, is given in [4].

Let6e
m,h := (H1, H0, ∗) be theincidence structure withH1 as the set points,H0 as the set

of blocks and∗ as the incidence relation, where

H0 := {(0;x, y)|(x, y) ∈ V}, H1 := {(1;x, y) | (x, y) ∈ V} and

(1;x, y) ∗ (0; t, z) iff y+ z= x2m
t + xt2

h
.

Then6e
m,h is a semibiplane, and the function sending every element(1;x, y) ∈ H1 to (x, y)

and(0; t, z) ∈ H0 to the block(0,z) + X(t) of A f (Se
m,h) is an isomorphism from6e

m,h to
A f (Se

m,h), the latter being now regarded as a point-block structure [4, Proposition 3.4].
The affine automorphism groupG of A f (Se

m,h) is described in [4, Subsection 3.3]. It is a
subgroup ofthe automorphism groupASL(2e,2) of the geometryAG(V) of affine varieties
of V and contains the translation groupT of AG(V). The stabilizer inG of a point ofAG(V)
is a copy of Aut(Sem,h). Whene > 3 or e = 3 but m 6= h, then Aut(Sem,h) = T0MS ∼=
A0L1(q), whereT0 is elementary abelian, of orderq = 2e, andM andSare cyclic, of order
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q − 1 ande, respectively. The elements ofT0 are translationsτa (for a ∈ GF(q)) acting as
follows onV and on the members ofSe

m,h:

τa :

{
(x, y) 7→ (x, x2m

a+ a2h
x + y),

X(t) 7→ X(t + a).

In order to describe the action ofM , we need to state some notation. Note first that, asm and
h are coprime toe, the functions

γ : x 7→ x2h
−1, δ : x 7→ x2m

−1, (x ∈ GF(q)×)

are automomorphisms of the multiplicative groupGF(q)× of GF(q). We denote byε the
composition ofγ with the inverse 1/δof δ, and 1/εis the inverse ofε:

ε : x 7→ x(2
h
−1)/(2m

−1), 1/ε : x 7→ x(2
m
−1)/(2h

−1), (x ∈ GF(q)×).

Furthermore, we define a mappingη : GF(q)× 7→ GF(q)× as follows:

η : x 7→ x(2
m+h
−1)/(2h

−1).

We can now describe the action ofM . The elements ofM are dilatationsµb (for b ∈
GF(q)×), acting as follows:

µb :

{
(x, y) 7→ (xb, ybη),
X(t) 7→ X(b1/εt).

Finally, the elements ofSare field automorphismsσ ∈ Aut(GF(q)), acting as follows:

σ :

{
(x, y) 7→ (xσ , yσ ),
X(t) 7→ X(tσ ).

Whene= 3 andm= h, then Aut(Sem,h) ∼= ASLe(2), but Aut(Sem,h) still contains a subgroup
T0MSas above.

The action ofG on6e
m,h is easy to describe. The groupT acts as follows: for everyv =

(a,b) ∈ V , the translationtv ∈ T associated withv sends(1;x, y) and(0; t, z) to (1;x +
a, y+ b) and(0; t + a, z+ b) respectively. Turning to Aut(Sem,h), the elements ofT0, M and
Sact as follows:

τa :

{
(1;x, y) 7→ (1;x, x2m

a+ a2h
x + y),

(0; t, z) 7→ (0; t + a, z)

µb :

{
(1;x, y) 7→ (1;xb, ybη),
(0; t, z) 7→ (0;b1/εt,bηz)

σ :

{
(1;x, y) 7→ (1;xσ , yσ ),
σ : (0; t, z) 7→ (0; tσ , zσ ).

Whene= 3 andm= h, we should also say how the elements of Aut(Se
m,h) not belonging to

T0MSact on6e
m,h, but we do not need this information for the following.

3. PROOFS OFTHEOREMS1.8 AND 1.9

Henceforth we assumem+ h 6= e, as in Section2. Hencee ≥ 3 andAf (Se
m,h) is not an

elation semibiplane.



New Distance Regular Graphs 553

As the semibiplane6e
m,h = (H1, H0, ∗) defined inSection2 is isomorphic to the point-

block systemof A f (Se
m,h), we may regard0e

m,h as the incidence graph of6e
m,h. Accordingly,

H1 ∪ H0 is the set of vertices of0e
m,h and two distinct vertices(1;x, y) and(0; t, z) of 0e

m,h

form an edge of0e
m,h if and only if y+ z= x2m

t + xt2
h
.

The graph0e
m,h is bipartite with partsH1 andH0 and each ofH1 andH0 is a regular orbit

of the groupT (Section2). As in Section2, in the followingT0 andM are thesubgroups of
Aut(Se

m,h) consisting of the translations and the dilatations, respectively.

3.1. Lemmas.Two points(1;x, y) and (1;x′, y′) of 6e
m,h have distance two in0e

m,h if
and only if there is a block(0; t, z) incident with both of them. This occurs exactly when
y+ z= x2m

t + xt2
h

andy′ + z= (x′)2
m

t + x′t2h
for somet, z ∈ GF(q). The last condition

is equivalent to saying thatx 6= x′ and the following equation has a solution inGF(q):

(∗) t2h
+ (x + x′)(2

m
−1)t +

y+ y′

x + x′
= 0.

Werecall that, denoting by Tr(x) the trace overGF(2)of an elementx ∈ GF(q), an equation
t2h
+at+b = 0 witha,b ∈ GF(q)× has a solution inGF(q) if and only if Tr(b/a2h/(2h

−1)) =

0 (see [6, Proof of Lemma 2]). By this criterion applied to(∗), weobtain the following.

LEMMA 3.1. Two points(1;x, y) and(1;x′, y′) of6e
m,h have distancetwo in0e

m,h if and
only if x 6= x′ and

Tr((y+ y′)/(x + x′)(2
m+h
−1)/(2h

−1)) = 0.

Similarly, two blocks(0; t, z) and (0; t ′, z′) of 6e
m,h have distance two in0e

m,h if and only if
t 6= t ′ and

Tr((z+ z′)/(t + t ′)(2
m+h
−1)/(2m

−1)) = 0.

Given a vertexv of 0e
m,h, for i = 1,2,3,4 we denote by0i (v) its i -neighborhood in0e

m,h.
Whenv = (1;0,0), we briefly write0i for 0i (1;0,0).

LEMMA 3.2. The graph0e
m,h has diameterfour and01, 02, 03 and04 satisfy the follow-

ing.

(1) The elements of01 are the q blocks(0; t,0). They form a single orbit under T0.
(2) The elements of 02 are the q(q − 1)/2 points (1;x, y) where x 6= 0 and

Tr(y/x(2
m+h
−1)/(2h

−1)) = 0. They form an orbit of T0M.
(3) The elements of03 are the q(q − 1) blocks(0; t, z) with z 6= 0. These blocks form

2(e,m+h)
− 1 distinct orbits under T0M with representatives(0;0, ζ j ) ( j = 0, . . . ,

2(e,m+h)
− 2 andζ a generator of GF(q)×).

(4) The elements of04 are the q(q − 1)/2 points (1;x, y) where x 6= 0 and
Tr(y/x(2

m+h
−1)/(2h

−1)) = 1, as well as the q− 1 points (1;0, y) with y 6= 0. The
former points form a single orbit of T0M, while the latter split into2(e,m+h)

− 1 orbits
under T0M with representatives(1;0, ζ j ) ( j = 0, . . . ,2(e,m+h)

− 2 andζ as above).

PROOF. A block (0; t, z) of 6e
m,h is incidentto (1;0,0) if and only if z = 0. Suppose that

no point (1;x, y) incident to a block(0; t, z) with z 6= 0 has distance two from(1;0,0).
Then, for anyx, y ∈ GF(q) with y + z = x2m

t + xt2
h
, either x = 0 or x 6= 0 and

Tr(y/x(2
m+h
−1)/(2h

−1)) = 1. The element

(x2m
t + xt2

h
)/x(2

m+h
−1)/(2h

−1)

= t/x(2
m
−1)/(2h

−1)
+ (t/x(2

m
−1)/(2h

−1))2
h
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has trace 0. Hence Tr(z/x(2
m+h
−1)/(2h

−1)) = 1 for everyx 6= 0. However, the elements of the
form x(2

m+h
−1)/(2h

−1) with x 6= 0 form a subgroup ofGF(q)× of index(2m+h
−1,2e

−1)=
2(e,m+h)

− 1. Letζ1 be a generator of that (cyclic) subgroup. Ase 6= m+ h, we haveζ1 6= 1.
Then

∑k−1
j=0 ζ

j
1 = 0 and hence

∑k−1
j=0 Tr(zζ j

1 ) = 0, wherek = (2e
− 1)/(2(e,m+h)

− 1) is

the order ofζ1. However, as Tr(zζ j
1 ) = 1 for every j = 0,1, . . . ,k − 1 andk is odd, we

obtain
∑k−1

j=0 Tr(zζ j
1 ) = 1, which is a contradiction. Hence we have proved that every block

has distance at most three from the point(1;0,0). Since every point is incident to a block, the
diameter of0e

m,h is at most four.
The above argument also shows that01 consists of theq blocks(0; t,0)and that03 consists

of theq2
−q remaining blocks(0; t, z)with z 6= 0. The groupT0 acts regularly on01 and each

T0-orbit on03 contains a unique block of the shape(0;0,z). Now applying dilatations, it is
easy to see that the latter block is sent to exactly one of(0;0, ζ j ) for j = 0, . . . ,2(e,m+h)

− 2
andζ a generator ofGF(q)×.

The previous remark shows that02 consists of the points(1;x, y) with x 6= 0 and
Tr(y/x(2

m+h
−1)/(2h

−1)) = 0. Since there are exactlyq/2 elements ofGF(q)with trace 0, for a
givenx ∈ GF(q)× there are exactlyq/2 elementsy ∈ GF(q)with Tr(y/x(2

m+h
−1)/(2h

−1)) =

0 and hence02 consists ofq(q − 1)/2 points. By applying a suitable dilatation, every point
of 02 is sent to a point of the form(0;1, y). As this point has distance two from(0;0,0), we
have Tr(y) = 0, and soy = a2h

+ a for somea ∈ GF(q). Then, by applying the translation
τa, the point(0;1, y) is sent to(0;1,0). Thus02 is an orbit ofT0M .

The set04 of the remaining points consists of theq(q − 1)/2 points of the form(1;x, y)
with x 6= 0 and Tr(y/x(2

m+h
−1)/(2h

−1)) = 1 and theq − 1 points of the form(1;0, y) with
y 6= 0. Each of the latter points is fixed byT0 and sent byM to exactly one of(1;0, ζ j )

( j = 0, . . . ,2(e,m+h)
− 2). On the other hand, the argument in the previous paragraph shows

that the points of the former shape are sent byT0M to a point(1;1, ζ0), whereζ0 is a given
element ofGF(q) of trace unity. 2

LEMMA 3.3. Let A := {x ∈ GF(q)|Tr(x) = 0} and, for u, v ∈ GF(q), define u A:=
{ua}a∈A andv + u A := {v + ua}a∈A. Then for any two distinct elements u, v ∈ GF(q) −
GF(2) and everyw ∈ GF(q), we have

|u A∩ A| = |u A∩ vA| = |u A∩ (w + vA)| = q/4.

PROOF. First note thatu A containsan element of trace unity, for otherwiseu A = A and
so u A′ = A′ where A′ := {x ∈ GF(q)|Tr(x) = 1}. This implies that the elementu acts
fixed-point freely onA′, as A′ does not contain zero. However,u has odd order>1 while
|A′| = q/2, which is a contradiction. Henceu A∩ A′ 6= ∅.

Given an elementua ∈ u Awith Tr(ua) = 1, the mapua′ 7→ ua+ua′ = u(a+a′) induces
a bijection fromu A∩ A to u A∩ A′. As u A is the disjoint union ofu A∩ A andu A∩ A′, we
have|u A∩ A| = |u A∩ A′| = |u A|/2= q/4.

Then|u A∩vA| = |A∩u−1vA| = q/4, asu−1v 6= 0,1. Furthermore, asv−1w+A coincides
with A or A′ according to whether Tr(v−1w) = 0 or 1, we have|uv−1A ∩ (wv−1

+ A)| =
|uv−1A∩ A| or |uv−1A∩ A′|. In either case,|u A∩ (w + vA)| = |uv−1A∩ (wv−1

+ A)| =
q/4. 2

3.2. Proof of Theorem 1.8.The graph0e
m,h has diameter four, by the first claim of Lemma

3.2. It remains to prove that0e
m,h is distanceregular if and only if(m+ h,e) = 1 and that, if

(m+ h,e) = 1, then0e
m,h has the same array asKe

h.
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Let d := (m+ h,e) and assumefirst thatd = 1. Then Lemma3.2 implies that, for each
i = 1,2,3, thei -neighborhood0i of (1;0,0) is an orbit ofT0M . Thus, fori = 1,2,3, the
number of vertices in0i−1 (resp.0i+1) adjacent to a vertexx ∈ 0i does not depend on the
particular choice ofx. As the diameter of0e

m,h is four, there are exactlyq vertices of03
adjacent to every vertex of04. Hence0e

m,h is distance regular. It is not difficult to check that
its array is the same as that ofKe

h.
Conversely, letd > 1. ThenGF(2d) is a subfield ofGF(q) properly containingGF(2).

Thus, ifw is a generator ofGF(2d)×, we havew 6= 1 andw2m+h
−1
= 1. Therefore, the dilata-

tionµw fixes the point(1;0, y) for everyy 6= 0 and acts on the set of points02∩02((1;0, y))
at distance two from both(1;0,0) and(1;0, y). As a point of02 has the form(1;a,b) with
a 6= 0, every non-trivial element of〈µw〉 moves every point of02 ∩ 02((1;0, y)). In partic-
ular, for (1;0, y) ∈ 04, the cardinal number|02 ∩ 02((1;0, y))| is a multiple of the order of
w. On the other hand, it follows from Lemma3.1 that, for another point(1;1, ζ0) ∈ 04, the
set02 ∩ 02((1;1, ζ0)) consists of points(1;x, y) with x 6= 0,1 and

Tr

(
y

x(2m+h−1)/(2h−1)

)
= Tr

(
y+ ζ0

(x + 1)(2m+h−1)/(2h−1)

)
= 0.

With A asin Lemma3.3, the above condition is equivalent to the following:

y ∈ (ζ0+ (x + 1)(2
m+h
−1)/(2h

−1)A) ∩ x(2
m+h
−1)/(2h

−1)A

(for all x ∈ GF(q)− GF(2)). Now it follows from Lemma3.3that

|(ζ0+ (x + 1)(2
m+h
−1)/(2h

−1)A) ∩ x(2
m+h
−1)/(2h

−1)A| = q/4.

Hence|02 ∩ 02((1;1, ζ0))| = (q − 2)q/4. However, the order ofw, being a divisor of
|GF(q)×| = q−1, is prime to(q−2)q/4. Thus|02∩02((1;1, ζ0))| 6= |02∩02((1;0, y))|.
This implies that the number of points at distance two from(1;0,0) and from a pointv ∈ 04
does depend on the choice ofv, and hence0e

m,h is not distance regular. 2

3.3. Proof of Theorem 1.9.With Ki as in Proposition1.7, letρ be the map fromKe
h to

0e
h,h that, for i = 1, . . . ,4 and(k,a,b) ∈ Ki , sends(k,a,b) to the vertex(k + 1;a,b +

a2h
+1) of 0e

m,h. Clearly, ρ sends(0,0,0) to (1;0,0) and induces a bijection fromK1 to
the one-neighborhood01 of (1;0,0) in 0e

m,h. It also mapsK2 into 02. Indeed, according

to Proposition1.7, if (0,a,b) ∈ K2 thena 6= 0 andb = a2h
+1
+ ac2h

+ a2h
c for some

c ∈ GF(q). Thereforeρ(0,a,b) = (1;a,ac2h
+ a2h

c) and

ac2h
+ a2h

c

a2h+1
= (c/a)2

h
+ c/a

has tracezero. Comparing sizes, we conclude thatρ induces a bijection fromK2 to 02.
Let (1,a,b) ∈ K3. Thenρ(1,a,b) = (0;a,b + a2h

+1) belongs to either03 or 01. In
the latter case we haveb+ a2h

+1
= 0, henceb = a2h

+1 and(1,a,b) ∈ K1: contradiction.
Therefore,ρ mapsK3 into 03. Comparing sizes, we see thatρ induces a bijection fromK3
to 03.

Finally, let(0,a,b) ∈ K4. Henceρ(0,a,b) = (1;a,b+ a2h
+1) belongs to either04 or02.

Suppose it belongs to02. Then, asρ induces a bijection fromK2 to02, there arec,d ∈ GF(q)
such thata = c andb+a2h

+1
= cd2h

+c2h
d. Henceb = a2h

+1
+ad2h

+a2h
d and, according

to Proposition1.7, this forces(0,a,b) ∈ K2: contradiction.Henceρ(0,a,b) ∈ 04. As K4
and04 have the same size,ρ induces a bijection fromK4 to 04.
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According to Section1.3, (∗), two vertices(i,a,b) and( j, c,d) of Ke
h areadjacent if and

only if i + j = 1 and(a+ c)2
h
+1
= b+ d, namely

i + 1 6= j + 1 and (b+ a2h
+1)+ (d + c2h

+1) = a2h
c+ ac2h

.

The latter says thatρ(i,a,b) andρ( j, c,d) are incident in6e
h,h. Henceρ is an isomorphism

fromKe
h to 0e

h,h.
Conversely, letm 6= h. An isomorphismρ between0e

m,h and0e
h,h, if any, naturally extends

to an isomorphism between thec.c∗-geometriesA f (Se
m,h) andA f (Se

h,h). By Proposition1.4,
the semibiplanesAf (Se

h,h) andA f (Se
m,h) have different universal covers. HenceA f (Se

m,h) 6
∼=

A f (Se
h,h). Consequently,0e

h,h 6
∼= 0e

m,h and, asKe
h
∼= 0e

h,h,Ke
h 6
∼= 0e

m,h. 2

4. ON THE FINAL CONJECTURE OFSECTION 1

Supposem 6= h. As remarked in Section1.5, in order to prove thatA f (Se
m,h) is simply

connected, we must show that every closed path of0e
m,h splits into quadrangles. As0e

m,h
is bipartite of diameter four (Theorem1.8), every closed path of0e

m,h splits intooctagons,
hexagons or quadrangles. Hence, we only need to prove that all octagons and hexagons of
0e

m,h split into quadrangles.
Needless to say, the above might be very hard to prove (possibly false) if0e

m,h is not distance
regular. Thus, in view of Theorem1.8, henceforth we assume the following.

(∗) (e,m+ h) = 1 (hencee is odd andm 6= h, as already assumed above).

Accordingly, 0e
m,h is distance regular, with the same array asKe

h. In the following, as in
Section3, the vertices of0e

m,h are regarded as elements ofH1 ∪ H0 and, given a vertexv
of 0e

m,h, we denote by0i (v) the set of vertices of0e
m,h at distancei ≤ 4 from v. We set

v0 := (1;0,0).

LEMMA 4.1. Every octagon of0e
m,h is asum of hexagons and quadrangles.

PROOF. If all points of A f (Se
m,h) belonging to an octagon containingv0 have distance two

from v0, then every such octagon splits into hexagons and there is nothing to prove. Thus, we
assume that there are points at distance four fromv0 that belong to some octagons containing
v0. Let v be any of these points.

Define a graphB(v0, v) on03(v0) ∩ 01(v) by declaring that two blocksB, B′ ∈ 03(v0) ∩

01(v) are adjacent when01(v0) contains a block at distance two from bothB and B′. If B
andB′ are adjacent inB(v0, v), every octagon containingv0, B, v andB′ splits into hexagons
and, possibly, quadrangles. Therefore, if the graphB(v0, v) is connected, then every octagon
containingv0 andv is a sum of hexagons and, possibly, quadrangles.

Thus, we only need to show thatB(v0, v) is connected. We will show that every block of
03(v0) ∩ 01(v) is adjacent inB(v0, v) to at leastq/2 blocks. As03(v0) ∩ 01(v) consists
of q blocks, the above implies that every two non-adjacent blocks have an adjacent block in
common, whenceB(v0, v) is connected.

Lemma3.2 implies that the stabilizer ofv0 in Aut(0e
m,h) is transitive on0i (v0) for i =

1,2,3. Hence we may assume thatv is incident with the block(0;0,1) ∈ 03(P0). Accord-
ingly, v = (1;x,1) for somex ∈ GF(q).

Take a blockB = (0;c,d) of 03(v0) ∩ 01(v). As B is incident tov = (1;x,1), we
haved = 1+ x2m

c + xc2h
. Moreover,d 6= 0, asB is not incident tov0. A block (0; t,0)

of 01(v0) has distance two fromB if and only if t 6= c and Tr(d/(c + t)k) = 0, where
k = (2m+h

− 1)/(2m
− 1).
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Let B′ = (0;c′,d′) be ablock of 03(v0) ∩ 01(v) distinct from B and not adjacent toB.
Thenc 6= c′, for otherwised = d′ = 1+ x2m

c+ xc2h
and B = B′. The definition of the

adjacency inB(v0, v) implies the following:

(a) for every block(0; t,0) ∈ 01(v0) with c 6= t and Tr(d/(c+ t)k) = 0, eithert = c′ or
t 6= c′ and Tr(d′/(c′ + t)k) = 1.

Let f be the function sendingd/(c+ t)k to d′/(c′+ t)k. Note that the equations= d/(c+ t)k

for c 6= t is equivalent tot = (d/s)1/k + c for s 6= 0, since(e,m+ h) = 1. Thus f works as
follows:

f (s) =
d′

((d/s)1/k + c+ c′)k
=

d′s

(d1/k + (c+ c′)s1/k)k

wheres ∈ GF(q)−{0,d/(c+ c′)k}, in order to avoid null denominators in the above expres-
sions. As f (s) = d′/(c+ c′)k impliesd/s = 0, butd 6= 0, the image off does not contain
d′/(c+c′)k. Then f is a bijection fromGF(q)−{0,d/(c+c′)k} to GF(q)−{0,d′/(c+c′)k}
and (a) can be rephrased as follows:

(b) if Tr(s) = 0 ands 6∈ {0,d/(c+ c′)k}, then Tr(f (s)) = 1 (whencef (s) 6= s).

The equationf (s) = s has a unique solution

s0 =

(
d1/k
+ (d′)1/k

c+ c′

)k

,

which isdifferent from either 0 ord′/(c+ c′)k. By (b), Tr(s0) = 1.
We shall show that Tr(d/(c + c′)k) = 0. Suppose Tr(d/(c + c′)k) = 1. Then there are

q/2− 1 elements of trace 0 in the domainGF(q) − {0,d/(c+ c′)k} of f . Their images by
f have trace unity. Ass0 is not the image of any element of trace zero, there are at leastq/2
elements of trace unity in the image off . As there are exactlyq/2 elements ofGF(q) of
trace unity, all of them belong to the image off . In particular, Tr(d′/(c+ c′)k) = 0. Then

Tr(d + d′)/(c+ c′)k) = Tr(d/(c+ c′)k)+ Tr(d′/(c+ c′)k) = 1+ 0= 1,

which contradicts the assumption thatB = (0;c,d) andB′ = (0;c′,d′) are at distance two.
We conclude that ifB′ = (0;c′,d′) is a block of03(v0) ∩ 01(v) distinct fromB = (0;c,d)
and not adjacent toB, thenc 6= c′ and Tr(d/(c+ c′)k) = 0. As (e,m+ h) = 1, the function
sendingc′ ∈ GF(q)− {c} to d/(c+ c′)k ∈ GF(q)− {0} is a bijection.

Thus, for a givenB = (0;c,d) ∈ 03(v0)∩01(v), there are exactlyq/2−1 elementsc′ 6= c
with Tr(d/(c+ c′)k) = 0. Asd′ = 1+ x2m

c+ xc2h
is uniquely determined byc′, there are at

most(q/2)−1 blocksB′ ∈ 03(v0)∩01(v) distinct fromB and not adjacent toB in B(v0, v).
Hence there are at leastq/2 blocks of03(v0) ∩ 01(v) distinct fromB and adjacent toB. The
connectivity ofB(v0, v) follows. 2

So far, we are reduced to seeing whether every hexagon of0e
m,h is a sum of quadrangles. In

view of this, given a point-block pair(v0, B0) at distance three in0e
m,h, we consider another

graph, which we denoteEe
m,h(v0, B0) (also Ee

m,h, for short, when no confusion arises). Its
vertices are the incident block-point pairs(B, v) with B ∈ 01(v0)∩02(B0) andv ∈ 02(v0)∩

01(B0). Two distinct vertices(B, v) and(B′, v′) of Ee
m,h are declared to be adjacent when

either B = B′ or v = v′. It is easy to see that, ifEe
m,h is connected, then every hexagon

containingv0 andB0 is a sum of quadrangles.
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Still with v0 := (1;0,0), let B0 := (0;0,a) (∈ 03(v0)) for somea ∈ GF(q)×. Then the
following hold:

01(v0) ∩ 02(B0) = {(0; t,0) | t ∈ GF(q)×,Tr(a/tk) = 0},

02(v0) ∩ 01(B0) = {(1;x,a) | x ∈ GF(q)×,Tr(x/tk′) = 0},

wherek = (2m+h
−1)/(2m

−1) andk′ = (2m+h
−1)/(2h

−1). As(e,m+ h) = 1, the maps
x 7→ 1/xk andx 7→ 1/xk′ are bijections onGF(q)×. Thus

|01(v0) ∩ 02(B0)| = |02(v0) ∩ 01(B0)| = (q/2)− 1.

For every block(0; t,0) of 01(v0) ∩ 02(B0) there are exactly two points incident with both
(0; t,0) and B0 = (0;0,a), namely(1;x,a) and (1;x + tε,a), whereε has the meaning
stated in Section2 andx ∈ GF(q)× is a solution of the following equation:

t2h
x + t x2m

= a. (1)

Note that such a solution exists becauset ∈ GF(q)× andTr(a/tk) = 0. Similarly, for every
point(1;x,a) ∈ 02(v0)∩01(B0), there are exactly two blocks incident with both(1;x,a) and
v0, namely(0; t,0) and(0; t + x1/ε,0), with t ∈ GF(q)× a solution of equation(1) (where
t is now regarded as the unknown of (1)). In particular,Ee

m,h has 2((q/2)− 1) vertices.
Therefore, we may identify the vertices((1; t,0), (0;x,a)) of Ee

m,h with the solutions(t, x)
of the equation (1) (the latter being now regarded as an equation in two unknowns). Accord-
ingly, the connected component ofEe

m,h containing a given solution(t0, x0) of (1) is obtained
inductively as follows:

(2) defineti+1 := ti + x1/ε
i and xi+1 := xi + tεi for i = 0, . . . ,n − 1, until we obtain

(tn, xn) = (t0, x0). Then the pairs(ti , xi ), (ti+1, xi ), (ti , xi+1) (for i = 0, . . . ,n − 1)
form the connected component ofEe

m,h containing(t0, x0).

The above is suitable for a computer, once explicit values forh, m anda are given. Here are
the results fore = 5,7,11,13, obtained via GAP. We only list the pairs(h,m) for which
Ee

m,h is connected. We also assumem≤ e/2, in view of the isomorphismSe
m,h
∼= Se

e−m,e−h.

e (h,m)
5 (2,1), (1,2)
7 (2,1), (3,1), (4,1), (1,2), (4,2), (1,3), (5,3), (6,3)

11 (4,1), (3,2), (5,2), (8,2), (2,3), (1,4), (2,5)
13 none

If Ee
m,h(v0, B0) is disconnected,we shall find two solutions of the equation (1) which connect

distinct components‘homotopically’. We start with a solution(t0, x0) of (1)and produce other
solutions(ti , xi ) according to the recursive rule (2). At the same time, we add other solutions
obtained in the following way. Consider the hexagon

H := (v0, (0; t0,0), (1;x0,a), B0, (1;xi ,a), (0; ti ,0), v0).

As the edges{(0; t0,0), (1;x0,a)} and {(1;xi ,a), (0; ti ,0), v0)} of H belong to the same
connected component ofEe

m,h, the hexagonH splits into quadrangles. Take a blockB(i )0 =

(0;si , wi ) 6= B0 incident to(1,x0,a) and(1;xi ,a), and choose an automorphismσi in the
stabilizer ofv0 which sendsB(i ) to B0. Then(tσi

0 , xσi
0 ) and(tσi

i , xσi
i ) are solutions of (1). They
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yield two paths of length three joiningv0 to B0, which form a hexagonH ′. The hexagonH ′

is the image byσi of the hexagon

(v0, (0; t0,0), (1;x0,a), B(i )0 , (1;xi ,a), (0; ti ,0), v0).

The latter is a sum ofH and a quadrangle((1;x0,a), B(i )0 , (1;xi ,a), B0, (1;x0,a)). ThusH ′

splits into quadrangles.
Now we define a graphCe

m,h(v0, B0) on the set of connected components ofEe
m,h(v0, B0)

by declaring two components to be adjacent when each of them contains one of the solutions
(tσi

0 , xσi
0 ) and (tσi

i , xσi
i ) of (1), for some(t0, x0) and (ti , xi ) andσi as above. The previous

observation implies that, if the graphCe
m,h(v0, B0) is connected, then every hexagon of0e

h,m
is a sum of quadrangles, whenceA f (Se

h,m) is simply connected.

The condition forB(i )0 = (0;si , wi ) to be incident to both(1;x0,a) and(1;xi ,a) forces

si = (x0+ xi )
1/ε, wi = a+ (x0+ xi )

(1/ε)−1(x2m

0 xi + x0x2m

i ).

Then we may chooseµbεi
τsi asσi , where

bi :=

(
a

a+ (x0+ xi )(2
m−2h)/(2h−1)(x2m

0 xi + x0x2m

i )

)(2m
−1)/(2m+h

−1)

. (3)

Accordingly,(bi (t0+(x0+xi )
1/ε),bεi x0) and(bi (ti+(x0+xi )

1/ε),bεi xi ) are thenew solutions.
Summarizing, the following is proved.

LEMMA 4.2. Let a∈ GF(q)×. Declare two connected components C and D of Ee
h,m to be

adjacent when there is a connected component containing the solutions(t0, x0) and(ti , xi ) of
the equation(1) (with ti and xi defined as in(2)), such that C contains one of the following
two solutions of(1) and D contains the other one:

(bi (t0+ (x0+ xi )
1/ε),bεi x0), (bi (ti + (x0+ xi )

1/ε),bεi xi )

where bi is defined as in(3). If the resulting graph is connected, then every hexagon of0e
m,h

is a sum of quadrangles.

The following is an another easy but useful observation.

LEMMA 4.3. The connected components of the graph Ee
m,h(v0, B0) bijectively correspond

to those of Eeh,m(v0, B0), via the map sending(t, x) ∈ Ee
m,h to (x, t) ∈ Ee

m,h. In particular,
Ee

m,h is connected if and only if Eeh,m is connected.

In view of this, we may restrict ourselves to the case ofm < h, also assumingm ≤ e/2 in
view of the isomorphismSe

m,h
∼= Se

e−m,e−h (Proposition1.3). Relying on Lemma4.2 and
with theabove restrictions on(h,m), the following is verified with the aid of GAP [7].

RESULT 4.4. Lete≤ 14,h 6= m and(m+ h,e) = 1. ThenAf (Sh
m,e) is simply connected.
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