follow-up in subsequent years following a cardiovascular event. First-year costs of the cardiovascular events considered were myocardial infarction (US$5,106), angina (US$2,379), composite cardiovascular failure (US$2,572), and peripheral vascular disease (US$2,508). The cost of laser intervention was US$4,348, while the cost of a cataract operation was US$2,916.

CONCLUSIONS: Costs for treating diabetes-related complications are an important driver of economic burden for DM. Costs presented in this study provide useful inputs for further economic evaluations of DM treatments in Mexico.

PD847
DIRECT MEDICAL MANAGEMENT COSTS OF DIABETES-RELATED COMPLICATIONS IN AFRICA

Hnoosh A1, Vega-Hernández G1, Kangethe AW2, Franic D2, Koroma E3, Corso PS2, Southwood R2
1IMS Health Consulting Group, London, UK, 2Kaneria Health and Information Management Centre, Nairobi, Kenya, 3University of Georgia, Athens, GA, USA

OBJECTIVES: Diabetes mellitus (DM) represents a challenging problem to healthcare systems and decision makers around the world. This study aimed to assess the DM-related treatments.

METHODS: Structured Haggling (SH) interviews using the ex-ante approach. Program costs were estimated based on World Health Organization (WHO) guidelines and income levels in Africa, and program costs tabulated in the literature (eg Haddix et al 2006), supplemented expert opinion: diabetes educators at the Kenya Diabetes Management and Information Centre. RESULTS: WTP data was collected from 158 rural residents (70% male, 30% female) who provided prosthesis (US$618), with a follow-up cost of US$22. The cost of a laser eye operation was US$4,800, while the cost of a cataract operation was US$2,916. A recent randomized, open-label, parallel group trial showed that liraglutide is superior to sitagliptin for reduction of HbA1c. Although these findings support the use of liraglutide as an effective GLP-1 agent to add to metformin, the value of liraglutide needs to be quantified in the form of the first-year outcomes were stroke (US$2,865), diabetic heart failure (US$2,444), and angina (US$2,095). The cost of an amputation procedure was US$5,333, excluding the cost of prosthesis (US$1,681), with a follow-up cost of US$22.

CONCLUSIONS: The estimated mean costs were US$5,468 vs. US$7,769, a cost-effectiveness analysis (CE) in a US setting. This current study sets out to assess the long-term CE outcomes of liraglutide vs. sitagliptin based on treatment effects data from the 52-week trial. METHODS: The IMS CORE Diabetes Model, a non-product-specific, calibrated computer simulation model that projects the long-term outcomes related to interventions for type 2 diabetes, is used for simulation over 35 years. Patients were simulated on one of the 3 treatment options: liraglutide 1.2 mg daily, 1.8 mg daily, or sitagliptin 100 mg daily, each used as add-on therapy to metformin. Incremental cost-effectiveness ratios (ICERs) were generated for liraglutide 1.2 mg versus sitagliptin and liraglutide 1.8 mg versus sitagliptin. Transition probabilities, health state utility values and complication costs were obtained from published sources. All outcomes were discounted at 3% per annum, and the analysis was conducted from the perspective of a third-party payer in the United States. Sensitivity analyses were performed to test robustness of the base case scenario. RESULTS: For liraglutide 1.8 mg versus sitagliptin, the ICER was US$37,234 per QALY gained, while for liraglutide 1.2 mg versus sitagliptin, the ICER was US$25,742 per QALY gained. In all sensitivity analyses including setting the HbA1c reduction to its 95% lower limit, the ICERs remained below US$50,000/QALY, a commonly accepted threshold in the United States, except for the shortest time horizon of 10 years. CONCLUSIONS: The availability of liraglutide 1.2 mg and 1.8 mg with improved efficacy profiles over sitagliptin could improve patient care, while being cost-effective treatment options over to metformin.

PD850
LONG-TERM CLINICAL AND ECONOMIC BENEFIT ASSOCIATED WITH LIRAGLUTIDE VERSUS SITAGLIPTIN THERAPY WHEN ADDED TO METFORMIN IN THE TREATMENT OF TYPE 2 DIABETES: A CORE DIABETES MODEL STUDY

Hnoosh A1, Vega-Hernández G2, Kangethe AW2, Franic D2, Koroma E3, Corso PS2, Southwood R2
1IMS Health Consulting Group, Alexandria, VA, USA, 2IMS Health Consulting Group, London, UK, 3Kaneria Health and Information Management Centre, Nairobi, Kenya, 4University of Georgia, Athens, GA, USA

OBJECTIVES: A recent randomized, open-label, parallel group trial showed that liraglutide is superior to sitagliptin for reduction of HbA1c. Although these findings support the use of liraglutide as an effective GLP-1 agent to add to metformin, the value of liraglutide needs to be quantified in the form of the first-year outcomes were stroke (US$2,865), diabetic heart failure (US$2,444), and angina (US$2,095). The cost of an amputation procedure was US$5,333, excluding the cost of prosthesis (US$1,681), with a follow-up cost of US$22. The cost of a laser eye operation was US$4,800, while the cost of a cataract operation was US$2,916. A recent randomized, open-label, parallel group trial showed that liraglutide is superior to sitagliptin for reduction of HbA1c. Although these findings support the use of liraglutide as an effective GLP-1 agent to add to metformin, the value of liraglutide needs to be quantified in the form of the first-year outcomes were stroke (US$2,865), diabetic heart failure (US$2,444), and angina (US$2,095). The cost of an amputation procedure was US$5,333, excluding the cost of prosthesis (US$1,681), with a follow-up cost of US$22. The cost of a laser eye operation was US$4,800, while the cost of a cataract operation was US$2,916.