Internet-Based Follow-Up Questionnaire for Measuring Patient-Reported Outcome after Total Hip Replacement Surgery—Reliability and Response Rate

Ola Rolfson, MD, PhDa,*, Roger Salomonsson, MScb, Leif E. Dahlberg, MD, PhDc, Göran Garellick, MD, PhDa

a Department of Orthopaedics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
b The Swedish Hip Arthroplasty Register, Gothenburg, Sweden
c Joint and Soft Tissue Unit, Department of Clinical Sciences, Skåne University Hospital, Lund University, Malmö, Sweden

\textbf{A B S T R A C T}

\textbf{Objective:} This randomized methodologic study sought to test the reliability of an Internet questionnaire and investigate the differences in response rates between traditional pen-and-paper questionnaires and Internet questionnaires for measuring patient-reported outcome after total hip replacement surgery.

\textbf{Methods:} From the Swedish Hip Arthroplasty Register, 2400 patients were chosen at random but stratified by age, sex, and diagnosis for inclusion in a 4-year follow-up using the health-related quality of life tool EQ-5D and visual analogue scales for pain and satisfaction. The patients were randomized to answer the follow-up model protocol either via a password-protected Internet questionnaire or via a mailed pen-and-paper questionnaire.

\textbf{Results:} A reliability test for the Internet follow-up instrument showed adequate correlation. However, the Internet group and the pen-and-paper group differed significantly (P < 0.001) with a 92% response rate in the latter and 49% in the former. Adjusted to the normal age distribution of the total hip replacement population, the Internet response rate was 34%.

\textbf{Conclusions:} The patient-administered Internet questionnaire alone does not give a sufficient response rate in the total hip replacement population to replace the pen-and-paper questionnaire. However, the system is reliable and could be used for measuring patient-reported outcome if supplemented with traditional pen-and-paper questionnaires for Internet nonrespondents. It is expected that this answer procedure will soon predominate in view of the general development of Internet functions. Register work may then become less resource-consuming and the results may be analyzed in real time.

Copyright © 2011, International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc.
Introduction

To monitor the quality of health care systems, patient-reported outcome measures (PROMs) should be collected and analyzed before and after medical interventions, optimally with both disease-specific and generic instruments. In Sweden, the Swedish Association of Local Authorities and Regions and the National Board of Health and Welfare are increasingly demanding that health care system provide PROMs.

Traditionally pen-and-paper questionnaires are used to gather this information and data are collected, recorded, and computerized manually. The administration of pen-and-paper forms is not only time-consuming and costly but it also constitutes a risk of errors when entering data. Another disadvantage of pen-and-paper questionnaires is that missing values often compromise data quality. This is a problem in routine use in health care quality registers but also in trials managed by clinical research organizations [1,2].

The development of information technology and software along with an exponential increase in the use of the Internet now allows new modalities for collecting PROMs, and these need to be compared to the traditional method [3]. Studies have shown comparable results between pen-and-paper versions and patient-administered computer versions of questionnaires in a variety of areas [4–7].

The Swedish Hip Arthroplasty Register is a nationwide health quality-register that has been collecting data regarding all primary total hip replacement (THR) surgery and hip revision surgery performed in Sweden since 1979, and prospective PROMs were introduced in 2002 [8]. The idea of collecting PROMs originated in the mid-1990s but due to a volume problem it was not realized until safe Internet-based applications for data entry had been developed.

The aim of the Registry is not only to monitor and improve the results of THR surgery but also to improve the tools for collecting data. For this purpose the health-related quality of life (HRQoL) questionnaire, including EQ-5D, Charnley category, and pain visual analogue scale (VAS), was adapted to an Internet-based touch-screen application for preoperative use in hospital clinics. This system has been tested internally for reliability and validity and is very effective. The advantages include immediate online access to the results, no missing values, and decreased risk of systematic errors (e.g., illegible handwriting and incorrect manual registration). The system is also less laborious, with no need for manual registration of questionnaires.

According to recent reports from the World Internet Institute in collaboration with the Internet Infrastructure Foundation, 90% of Swedes older than age 16 years had access to the Internet in 2008 and 81% are using it [9,10]. The largest increase in the past few years is among younger retired people (ages 65–74 years). Similar observations have been made in other countries with high Internet use (e.g., Canada, Australia, New Zealand, and the United States) [11].

Our objective was to develop an application for an Internet-based follow-up questionnaire for PROMs, test the reliability of the Internet questionnaire, and investigate the feasibility of replacing the traditional pen-and-paper questionnaire.

Methods and Patients

Register, demographic classification, and outcome measures

All units performing THR surgery in Sweden continuously report to the Swedish Hip Arthroplasty Registry. A standardized follow-up protocol, including patient-reported outcome parameters, is used. All patients are asked to complete a 10-item questionnaire, including Charnley’s functional categories (A, B, and C) [12]; a disease-specific pain VAS where zero = no pain and 100 = unbearable pain; and the generic EQ-5D measurement. This is done preoperatively and at 1 and 6 years postoperatively, with the intention to repeat the measurement at 10 years postoperatively. The EQ-5D [13] is a HRQoL instrument that evaluates subjects in five dimensions, namely mobility, self-care, usual activities, pain/discomfort, and anxiety/depression [13,14]. Each dimension is divided into three levels of inclining severity generating 243 possible response combinations. The EQ-5D can be presented as a health profile or as a global health index with a weighted total value for HRQoL. The minimum value is -0.594 and the maximum is 1.0. The Charnley categories permit correction of scores due to differing musculoskeletal comorbidity burdens. Supplementing the follow-up instrument, a VAS (zero = satisfied and 100 = dissatisfied) addressing satisfaction with the outcome of the intervention has been added. At the clinical follow-ups (1, 6, and 10 years) the questionnaire is mailed to each patient. The general response rate to the Registry after one reminder is 92%.

Patients, stratification, and randomization

This study includes patients derived from the Swedish Hip Arthroplasty Register for an “extra” 4-year follow-up after THR surgery. All patients had baseline data (from the questionnaire answered preoperatively). Four different age cohorts of 600 patients each were created: younger than 50 years at operation, 50 to 59 years, 60 to 75 years, and older than 75 years. Each cohort was also stratified regarding diagnosis and sex (80% osteoarthritis and 20% other diagnosis, 60% women and 40% men, which represents the overall distribution in the Register). Following the stratification parameters, patients were selected at random from the Register database and also randomized to answer either via the traditional pen-and-paper questionnaire or via the Internet questionnaire. In the total sample 30% lived in metropolitan regions, 35% in fairly large cities, 7% in densely populated areas, 21% in areas of intermediate population, and 8% in sparsely populated areas. The distribution between the two groups after randomization was largely identical.

For the pen-and-paper questionnaire group the form and an information letter were sent with a stamped, addressed envelope enclosed. The Internet group received an information letter with a personal password and an Internet address. Nonrespondents in both groups received a reminder after 8 weeks. A second reminder was sent out after another 4 weeks offering the nonrespondents the possibility of answering via the alternative mode (crossover) (i.e., the nonrespondents of the Internet question-
naire group received a pen-and-paper form and the non-respondents of the pen-and-paper group received personal access information for the Internet questionnaire.

Additional questions about the type of Internet connection used and the experience of security when answering via Internet were added to the Internet questionnaire.

Reliability test

A reliability test was performed among the 100 first answerers to the Internet questionnaire. They were asked to reanswer the Internet questionnaire a short time later.

The Internet application

A Web-based questionnaire application (Patient Information Via Internet [PIVI]) was developed for performing online patient surveys. The database is implemented through a terms catalogue so that it can accommodate new questionnaire designs without programming or restructuring. It also permits reuse of standardized questions, helpful when using EQ-5D or other strictly standardized forms.

Patients (or any other respondents) are allocated through an administrative page by entering the number to be allocated. The application then generates a list of serial numbers and corresponding passwords (eight characters long, six letters, and two digits in mixed case). This list can, and should, be merged with patient data and constitutes the link between the PIVI-generated serial number and, for example, a personal identity number. The advantage of this approach is that the PIVI database contains only anonymous data. All sensitive data are managed offline.

A patient receives a printed letter with a Web address and a password, together with instructions on how to open the questionnaire in a Web browser where the survey is outlined. A patient logs in with the enclosed password, answers the questions all on one Web page, and submits the questionnaire. Any unanswered mandatory questions are marked with a red frame, clearly stating what needs to be corrected before the questionnaire can be submitted. Once submitted, the questionnaire cannot be updated by a patient.

Survey results can be retrieved continuously in many ways through the Web service. For example, with Microsoft Excel (Microsoft Corp., Redmond, WA, USA), they are delivered in XML format through a strongly encrypted connection, which in turn is established with proper authorization to the Web service. When the survey is completed, this retrieved data can be merged with the rest of the patient data through the PIVI-generated serial number (Fig. 1).

Statistical methods

Randomization was carried out with Tave’s Minimization [15]. Probability values less than 0.05 represented a significant difference. The Mann-Whitney U test, Fisher’s exact test, or logistic regression was used to evaluate any difference between the groups as appropriate. Patient-reported outcome measurements are presented as the mean and the median with standard deviation. Spearman’s correlation was used for reliability tests. SPSS version 17.0, 2008 (SPSS Inc, Chicago, IL, USA) was used for all statistical analyses.

Results

After stratification and randomization there was a delay of 12 months due to difficulties in obtaining the proper certificate to set up and publish the Internet questionnaire in the university’s Web domain. At the time of mailing, 49 of the patients randomized to Internet questionnaire group and 61 in the pen-and-paper questionnaire group had either died or could not be found in the national population register (due to emigration, identity secrecy, or some other reason). The mean time from operation to answering the 4-year follow-up protocol was 47.6 months (median 48 ± 7.1 months).

After the first reminder, the 92% response rate in the pen-and-paper questionnaire group (exactly the response frequency the Register has had in earlier measurements) significantly differed from the 49% response rate in the Internet questionnaire group (P < 0.01, based on Fisher’s exact test) (see Table 1). The total frequency in the Internet group rose to 81% when the nonrespondents were offered the possibility to answer via the pen-and-paper questionnaire. The difference in response frequency between the four age groups was not significant in the pen-and-paper questionnaire group (P = 0.093, based on logistic regression) but was significant in the Internet group (P < 0.001, based on logistic regression). Response rates declined with increasing age in the Internet group (Table 1).

Fifty-two percent of men in the Internet questionnaire group answered and 93% in the pen-and-paper group answered. The
corresponding response frequency among the women was 47% and 92%, respectively. The differences in response rates between men and women were not significant (P = 0.09 and P = 0.74 respectively, based on Fisher’s exact test).

As presented in Table 2, there were no significant differences in response rates within the two groups with regard to population density (P > 0.05, based on logistic regression).

Adjusting from age-cohort grouping to normal age distribution in the Swedish Hip Arthroplasty Register, the Internet response rate was computed to 34% and the pen-and-paper version to 94% (Table 3).

Sixty-four percent of those who answered via the Internet used their own computers, 72% used a broadband connection, 21% used a dial-up connection, and the rest did not know what Internet connection they used. The majority (67%) stated that they felt secure in answering the questionnaire via the Internet, whereas 12% felt insecure, and 21% had no view on this.

<table>
<thead>
<tr>
<th>Age category</th>
<th>n</th>
<th>Pen-and-paper questionnaire</th>
<th>Internet questionnaire</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Response rate</td>
<td>Response rate</td>
<td>Response rate</td>
</tr>
<tr>
<td></td>
<td>after first reminder (%)</td>
<td>with crossover (%)</td>
<td>after first reminder (%)</td>
</tr>
<tr>
<td><50 y</td>
<td>293</td>
<td>88</td>
<td>2</td>
</tr>
<tr>
<td>50-59 y</td>
<td>296</td>
<td>92</td>
<td>1</td>
</tr>
<tr>
<td>60-75 y</td>
<td>287</td>
<td>97</td>
<td>0</td>
</tr>
<tr>
<td>>75 y</td>
<td>275</td>
<td>91</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>1151</td>
<td>92</td>
<td>1</td>
</tr>
</tbody>
</table>

All respondents’ answers in the two groups are compared in Tables 4 and 5. Mean EQ-5D was lower among the respondents in the pen-and-paper group than among those in the Internet group (P = 0.002, based on Mann-Whitney U test). Adjusting for age and sex removed this difference in EQ-5D index (P = 0.15, based on logistic regression). Mean pain VAS was higher in the Internet group than in the pen-and-paper group (P = 0.018, Mann-Whitney U test) and this difference remained after adjusting for age and sex (P = 0.002, based on logistic regression). Despite this adjustment, no significant differences between the groups with regard to satisfaction VAS were detected (P = 0.132, based on Mann-Whitney U test and P = 0.53, based on logistic regression).

The EQ-5D index differed significantly when comparing the patients who responded as they were initially randomized. Pen-and-paper answerers in the pen-and-paper group reported lower EQ-5D index (mean 0.74, median 0.80, and SD 0.28) than Internet answerers who reported via the Internet questionnaire (mean 0.80, median 0.85, and SD 0.27) (P < 0.001, based on Mann-Whitney U test). When age, sex, and EQ-5D index were included in the same regression analysis model, the difference was still significant (P = 0.001, based on logistic regression). Pain VAS was lower (mean 15, median 8, and SD 0.19) among the pen-and-paper respondents among than the Internet-respondents (mean 19, median 9, and SD 21) (P = 0.001, based on Mann-Whitney U test). A similar adjustment for age and sex showed that the difference in pain VAS persisted (P = 0.001, based on logistic regression). Satisfaction VAS did not differ between the groups (pen-and-paper mean 17, median 9, and SD 22, Internet mean 16, median 92, and SD 21) (P = 0.94, based on Mann-Whitney U test), and adjusting for age and sex did not affect this observation (P = 0.94, based on logistic regression).

The probability of responding in any way for the two alternatives, start with pen-and-paper questionnaire or start with Internet questionnaire, is illustrated in Fig. 2. The logistic regression model from which these probability curves are created includes age and randomization group as dependent variables and any response as independent variable.
and this is offered via the Internet questionnaires. Further, a
registers currently do not include PROMs. Thus there is a great
present 71). However, partly due to lack of resources, most
reported for all national health quality registers in Sweden (at
Regions require that PROMs for individual patients should
requires exhaustive work. The National Board of Health and
naires yearly. Manual handling of these questionnaires re-
the follow-up program will generate about 35,000 question-
proximately 20,000 postoperative questionnaires yearly. This
At present the Swedish Hip Arthroplasty Register handles ap-

Discussion
At present the Swedish Hip Arthroplasty Register handles ap-
approximately 20,000 postoperative questionnaires yearly. This
burden will successively increase as the stock of patients
scheduled for long-term follow-up grows. Fully implemented,
the follow-up program will generate about 35,000 question-
naires yearly. Manual handling of these questionnaires re-
quires exhaustive work. The National Board of Health and
Welfare and the Swedish Association of Local Authorities and
Regions require that PROMs for individual patients should be
reported for all national health quality registers in Sweden (at
present 71). However, partly due to lack of resources, most
registers currently do not include PROMs. Thus there is a great
need for an effective and safe system for collecting PROMs,
and this is offered via the Internet questionnaires. Further, a
computerized answering system is scientifically and method-
ologically attractive because it supplies better data quality
with no missing values or systematic errors. Such a system
also facilitates immediate feedback and online analysis to the
participating clinics.

Reliability test
To test the reliability of the questionnaire the 100 patients
who answered the Internet questionnaire first were asked to
reanswer it 3 weeks after the first mail was delivered. Seventy
patients completed the retest form. Spearman’s correlation
for the EQ-5D index was 0.82, for VAS pain 0.83, and for VAS
satisfaction 0.63.

Table 4 – Comparisons of EQ-5D, pain visual analogue scale (VAS), and satisfaction VAS among all respondents
(regardless of final mode of response) in the two randomization groups. Results are presented as the mean and the
median with standard deviation (SD). The P value was computed with Mann-Whitney U test.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Pen-and-paper group</th>
<th>Internet group</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>EQ-5D</td>
<td>0.74 (0.28)</td>
<td>0.76 (0.28)</td>
<td>0.002</td>
</tr>
<tr>
<td>Pain VAS</td>
<td>15 (18)</td>
<td>18 (21)</td>
<td>0.018</td>
</tr>
<tr>
<td>Satisfaction VAS</td>
<td>17 (22)</td>
<td>17 (21)</td>
<td>0.132</td>
</tr>
</tbody>
</table>

SD, standard deviation.

Analysing the content of the questionnaires after combin-
ing the answering modalities indicated no significant differ-
ces for satisfaction or EQ-5D index after adjusting for age
and sex. This rather suggests that the content of the answer is
not affected by the type of administration, only the tendency
to answer. However, pain remained significantly higher
among all Internet group respondents even after adjusting for
age and sex. This implies that the proportion of the THR pop-
ulation that would normally respond to the traditional ques-
tionnaire but in fact responded neither to the Internet ques-
tionnaire but in fact responded neither to the Internet ques-
tionnaire but in fact responded neither to the Internet ques-
tionnaire but in fact responded neither to the Internet ques-
tionnaire but in fact responded neither to the Internet ques-
tionnaire but in fact responded neither to the Internet ques-
tionnaire but in fact responded neither to the Internet ques-
tionnaire but in fact responded neither to the Internet ques-
tionnaire but in fact responded neither to the Internet ques-
tionnaire but in fact responded neither to the Internet ques-
tionnaire but in fact responded neither to the Internet ques-
tionnaire but in fact responded neither to the Internet ques-
tionnaire but in fact responded neither to the Internet ques-
tionnaire but in fact responded neither to the Internet ques-
tionnaire but in fact responded neither to the Internet ques-
tionnaire but in fact responded neither to the Internet ques-
tionnaire but in fact responded neither to the Internet ques-
tionnaire but in fact responded neither to the Internet ques-
tionnaire but in fact responded neither to the Internet ques-
tionnaire but in fact responded neither to the Internet ques-
tionnaire but in fact responded neither to the Internet ques-
tionnaire but in fact responded neither to the Internet ques-
tionnaire but in fact responded neither to the Internet ques-
tionnaire but in fact responded neither to the Internet ques-
tionnaire but in fact responded neither to the Internet ques-
tionnaire but in fact responded neither to the Internet ques-
tionnaire but in fact responded neither to the Internet ques-
tionnaire but in fact responded neither to the Internet ques-
tionnaire but in fact responded neither to the Internet ques-
tionnaire but in fact responded neither to the Internet ques-
tionnaire but in fact responded neither to the Internet ques-
tionnaire but in fact responded neither to the Internet ques-
tionnaire but in fact responded neither to the Internet ques-
tionnaire but in fact responded neither to the Internet ques-
tionnaire but in fact responded neither to the Internet ques-
tionnaire but in fact responded neither to the Internet ques-
tionnaire but in fact responded neither to the Internet ques-
tionnaire but in fact responded neither to the Internet ques-
tionnaire but in fact responded neither to the Internet ques-
tionnaire but in fact responded neither to the Internet ques-
tionnaire but in fact responded neither to the Internet ques-
tionnaire but in fact responded neither to the Internet ques-

Table 5 – Beta coefficient (β), standard error (SE), and P
value for three different logistic regression models
comparing the two randomization groups among
patients who answered the questionnaire, with respect
to EQ-5D, pain visual analogue scale (VAS),
and satisfaction VAS respectively. Age at primary operation,
and sex, were taken into account in the comparisons.

<table>
<thead>
<tr>
<th>Variable</th>
<th>β</th>
<th>SE</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>EQ-5D</td>
<td>0.237</td>
<td>0.163</td>
<td>0.15</td>
</tr>
<tr>
<td>Constant</td>
<td>0.110</td>
<td>0.284</td>
<td>0.64</td>
</tr>
<tr>
<td>Sex</td>
<td>-0.0145</td>
<td>0.0922</td>
<td>0.88</td>
</tr>
<tr>
<td>Age at operation</td>
<td>-0.0667</td>
<td>0.00318</td>
<td>0.031</td>
</tr>
<tr>
<td>Pain VAS</td>
<td>0.007</td>
<td>0.002</td>
<td>0.002</td>
</tr>
<tr>
<td>Constant</td>
<td>0.177</td>
<td>0.249</td>
<td>0.58</td>
</tr>
<tr>
<td>Sex</td>
<td>-0.016</td>
<td>0.092</td>
<td>0.860</td>
</tr>
<tr>
<td>Age at operation</td>
<td>-0.007</td>
<td>0.003</td>
<td>0.030</td>
</tr>
<tr>
<td>Satisfaction VAS</td>
<td>0.001</td>
<td>0.002</td>
<td>0.533</td>
</tr>
<tr>
<td>Constant</td>
<td>0.307</td>
<td>0.244</td>
<td>0.29</td>
</tr>
<tr>
<td>Sex</td>
<td>-0.021</td>
<td>0.092</td>
<td>0.817</td>
</tr>
<tr>
<td>Age at operation</td>
<td>-0.007</td>
<td>0.003</td>
<td>0.022</td>
</tr>
</tbody>
</table>
pain at follow-up. In line with the discussion above about the Internet respondents, the Internet group nonrespondents who would normally respond may tend to be less active and demanding and therefore experience less discomfort from the hip replacement.

Strictly using an Internet-based method for collecting PROMs in the THR population would bias the results because older patients and those with more severe comorbidities do not respond. For this reason it is at present of great importance to give the opportunity to combine the methods of answering.

The Internet questionnaire system requires an initial investment. Still we think that at present a combined system, where the patients may answer either via Internet or in the traditional way, is feasible. The continuous but slowing increase in Internet use suggests a future improved response rate among the THR population using the Internet application. However, even at limited Internet response rates, the combined answering system appears cost-saving for large volumes. Accordingly, the Swedish Hip Arthroplasty Register plans shortly to introduce a system that will allow the patient a choice of answering mode.

Conclusions

This patient-administered Internet questionnaire alone gave an insufficient response rate in the THR population to replace pen-and-paper questionnaires. However the system is reliable and could be used for measuring patient-reported outcomes if supplemented with traditional pen-and-paper questionnaires for Internet nonrespondents. In view of the general development of Internet functions, it is expected that this dual answer procedure will soon predominate. Register work may then become less resource-consuming and the results may be analyzed in real time.

REFERENCES