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A l m t r a c t ~ T h e  use of fuzzy set-theoretlc measures is explored here in the context of data enve]op- 
ment analysis, which utilizes a nonparametrlc approach to measure efficiency. Three types of fuzzy 
statics are employed here e.g., fuzzy mathematlcM programme, fuzzy regression and fuzzy e~tropy, 
to illustrate the types of decisions and solutions that are achievable, when the data are v~ue  and 
prior infornmtion is inexact and imprecise. 

1. INTRODUCTION 

The measurement of productive efficiency of systems using various inputs to produce various 
outputs is an important area of current research in management science and operations research. 
The new tool of data envelopment analysis (DEA) originally developed by Chames, Cooper 
and his coworkers [1,2] has provided a challenging new nonparametric method of measuring the 
relative efficiency of a set of decision-making units (DMUs) by stipulating that a given DMU is 
not efficient in producing its outputs from given inputs, if some other DMU or combination of 
DMUs can produce more of some output without producing less of any other output and without 
utilizing more of any input. This technique, which has been recently extended by a number of 
authors [3,4] has been found to be most useful in public enterprises e.g., public schools, hospitals, 
where the concept of profit is not easily definable since many of the inputs and outputs do not 
have observed market prices. 

The fuzzy systems approach pioneered by Zadeh [5,6] and applied in systems engineering by 
number of researchers [7,8] has many features which are particularly suitable for the theory and 
practice of DEA models. First of all, the DEA model tests for the efficiency of the observed 
vector points by means of a sequence of linear programming (LP) models. For heterogeneous 
input-output data sets the efficiency facets characterized by the sequence of LP models need be 
classified into relatively homogeneous subsets. The principles of fuzzy classification and fuzzy 
regression are particularly applicable here. Secondly, the observed input output data are usually 
subject to stochastic generating mechanisms and hence the efficiency frontier in DEA model is 
probabilistic; however the assumption of any specific error distribution is not very realistic and the 
normal distribution is not appropriate here due to nonnegativity restrictions on the input-output 
space. Also the sample sizes are generally small. It is more robust in this situation to apply 
the methods of fuzzy mathematical programming and thereby determine an optimal solution 
under conditions of inadequate knowledge. Finally, the econometric theory of the production 
frontier [9,10] shows that the DEA model can be closely related to the minimization of the 
Ll-norm rather than the L2-norm of errors associated with the output equation and in case of 
stochastic data this may lead to a minimax formulation [11,12] of the efficiency frontier. This 
minimax formulation can be suitably generalized by incorporation maximum entropy estimation 
with inexact information i.e, by using the concept of entropy of fuzzy events. 

Our objects here is to explore the use of fuzzy measures and fuzzy mathematical programs in 
the DEA models, where the observed data set provides vague and imprecise knowledge about 
the generating process. Specifically, we consider three aspects of generalizing the DEA model as 
follows: (1) a fuzzy LP model approach based on memberships functions, (2) a fuzzy clustering 
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and regression approach to analyze heterogeneity, and (3) a minimax entropy characterization of 
the efficiency surface. Each of these approaches define nonparametric and robust procedures and 
they open up new lines of research for applying decision criteria under conditions of vague data. 

2. FUZZY P R O G R A M S  IN DEA MODELS 

The DEA model provides a nonparametric measurement of efficiency of a set of DMUs each 
using some common inputs to produce one or more outputs and this technique raises some im- 
portant issues when the input-output data are subject to incomplete knowledge. Even when such 
data are assumed to be generated by some stochastic generating mechanism, several problems in 
characterizing efficiency remain. These are related e.g., to the lack of robustness of the efficiency 
frontier and the probabilistic feasibility of the inequality constraints of the DEA model. A fuzzy 
LP transformation may be most suitable in such situations as an alternative viable approach. 

Let D = (X, y) be the input-output data set, where X = (zji) is the quantity of input i, 
i E Irn = {1,2, . . .  ,m} for the jth DMU j G In = {1,2, . . .  ,n} producing a single output Yi- The 
DEA efficiency frontier is then specified by the following LP model: 

m 

mingk = E xkif~i, 
i----1 

m 

subject to ~ zji~ _> Yj, 
i----1 

o; 

j = 1 ,2 , . . . , n ,  

i = 1 ,2 , . . . ,m ,  

(1) 

when the inputs of the reference unit k is used in the objective function. For a fixed k, where k 
belongs to the s e t / n  let ]~*(k) be the optimal solution of the above LP model. Then the unit 
k is efficient if it holds that ~"~n=l z k i ~ ( k )  -- Yk, and sk ---- y~ - Yk = 0, where sk is the slack 
variable representing the excess of potential output y~ - )"~ira=l zki~*(k) over actual output y~. 
By varying k over the set In we can generate the whole efficiency surface and the associated 
values of the production parameters: {/~*(k), k E S}, where S is a subset of In containing only 
the efficient units. 

When the data set D -- (X, y) has stochastic components, one may take two viewpoints in 
characterizing the subset of efficient units. One is the estimation viewpoints, whexe the objective 
is to estimate the parameters fl from the distribution of errors ej (/~) = yj - E 7 - - 1  z J i / ~ "  Thus in 
ordinary least squares (OLS) we would minimize ~"~=z eJ2(/~) subject to/~ >_ 0, thus yielding a 
quadratic programming (QP) estimate. However since the errors e i (1~) are nonpositive for all j 
due to the production frontier being an envelope, this estimate may not be very appropriate. More 
over since the errors are one-sided and the parameter estimates are required to be nonnegative, 
the usual notions of an unbiased estimate and/or the class of best linear unbiased estimates fail 
to apply. A alternative approach is to adopt the least absolute value (LAV) of errors criterion, 
by which we minimize the loss function: ~"~=1 [ej(/~)[ subject to ~ > 0. But since the errors are 
one-sided, this leads to the equivalent LP model: 

rain # = (2) 
s.t. X ~  ~_ y; ~ _> O, 

where ~ = (£~i) is an m-element column vector of mean inputs i.e., ~i = ~"~7=x z j i / n .  

This is the method followed by Timmer [10] in his empirical applications to U.S. agricultural 
production functions. One objection to this formulation is the truncation method followed by 
Timmer, by which he discards, e.g., two, three or five percent of the efficient observations in 
order to obtain estimates of/~ which are closest to 'average practice' rather than 'best practice' 
situations. Clearly such truncation of efficient observations tend to produce inferior estimates 
away from the best production frontier. However the real issue is the robustness of an estimate 
/~* of the mean-input model (2) against specified types of truncation. 
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A second viewpoint in characterizing efllciency in the LP model (I) under a stochastic data 
set D - (X, y) is to adopt a chance-constrained programming approach [13,14], whereby each 
constraint is feasible at a probability level a or higher (0 < a < I). This yields, e.g., a nonlinear 
programming (NLP) model for determining the efficiency parameters fl as follows: 

Find fl s.t. Pr.(Xfl > y) >__ ae (3) 

P r . ( X ~  < gk) ~ a ~ ~ 0 

where e is a column vector with each element unity. For a fixed a, this specifies a stochastic 
efficiency surface if one varies/~ over the index set In. Note that other types of NLP formulations 
are also possible (see, e.g., [15]). 

Although these stochastic transformations of the DEA model provide interesting generalizations 
of the deterministic DEA model, they are deficient in several aspects. First of all, one has to 
assume specific forms of distributions, e.g., normal or exponential to derive specific results in 
e.g., the chance-constrained model. And on a priori basis there is very little empirical evidence 
to choose one type of distribution except on grounds of mathematical convenience. Secondly, 
the solutions of the stochastic DEA models (2) and (3) always emphasize point solutions rather 
than interval solutions, although in terms of data sensitivity the latter may be more preferable. 
Finally, the heterogeneity of the data structure in terms of diverse clusters is almost ignored. 
Hence the need for a fuzzy systems approach which provides partial if not complete anAwers to 
the problems above. 

Some basic motivations for applying the fuzzy systems approach in this context are as follows. 
First of all, one could apply the "principle of incompatibility" of the fuzzy set theory here, which 
has the ability to arrive at decisions based on qualitative data in contrast to formal mathematics 
and precise quantitative data. As Zadeh [5] has explained this principle thus: "The closer one 
looks at a 'real world' problem, the fuzzier becomes its solution. Stated informally, the essence 
of this principle is that as the complexity of system increases, our ability to make precise and 
yet significant statements about its behavior diminishes until a threshold is reached beyond 
which precision and significance (or relevance) become almost mutually exclusive characteristics." 
Secondly, the methods of fuzzy mathematical programming [16,18] which transform the standard 
LP versions of the DEA model can be easily applied here so as to incorporate the elements 
of imprecision and uncertainty. Finally, by using suitable membership functions the stochastic 
transformations such as (3) of the DEA model may be given a fuzzy programming interpretation, 
which may be more nonparametric and also more robust in suitable cases. 

For simplicity we consider only two versions of the fuzzy mathematical programming model 
in the framework of data envelopment analysis. One uses a linear membership function and the 
other nonlinear. In the linear case we write the DEA model (1) as: 

i > I~nX~/~, s.t. X ~ : y j ,  j E In ~ ~_ O, (4) 

by setting h = 0 in the objective function of the reference unit and using the notation ~ to indicate 
that both the objective function and the n constraints are fuzzy. By making the constraints fuzzy 
we accept tolerances in their realization, e.g., by fixing maximal levels of tolerance violations 
dj, j E I ,  we can define linear membership functions 

pj(fl)---- 1 -  yj -X~fl  
di , j E I . .  (5a) 

Similarly the membership function for the fuzzy objective function can be related to a predeter- 
mined aspiration level go with 

p(/~)_<l X ~ f l - g 0 ,  
do 

where do is the maximal level of tolerance violation. This yields 

dopo(~) 4" X ~  < go + do. (5b) 
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The decision problem (4) is then to find a fuzzy solution vector fl where the membership function 
is given by: 

n 

= min [~(~)],  ~ • R". (5c) 
j=O 

This solution can be interpreted in two ways. One is to reformulate it as an LP model: 

maxA 

s.t. Ado + X~fl < go + do, 

~d~ < d~ + x ~  - y~, j • x., (Sd) 

0 < A < I ,  fl_>0, 

where the sensitivity of the optimal ~* = fl*(do, dl,. . . ,  dn) to tolerance variations can be para- 
metrically analyzed. It is clear that there will always exist an optimal solution/~* (d) for some 
tolerance vector d, furthermore if the tolerance variations can be ~enerated by a known sto- 
chastic generating mechaniam, then the sensitivity coefficients ~ - ~  can he given a statistical 
interpretation. A second interpretation of (5c) is that it defines a set R of the elements of an 
m-dimensional nonnegative orthant such that 

R= /~lmax [~(/~ (6a) /~ 

i.e., R is the set of m-dimensional vector points in the nonnegative orthant which minimizes X~/~ 
in a fuzzy sense and has the greatest degree of membership to fuzzy set solution D of the n fuzzy 

constraints 
rA ~(~) = ~ n  ~ ( ~ ) ] .  (6b) 

Note that the LP model (6) defines only the first stage of the DEA model, where the reference 
unit in the objective function has to be varied in the second stage over k • In, where k = 0, 
is the notation used for the objective function. This second stage variation may be handled by 
the same method of linear fuzzy membership function as developed before; also the concept of 
nondominated solutions for multi-objective LP models can be easily applied here. 

Nonlinear membership functions provide a more general transformation than the linear func- 
tions and these are particularly suitable for problems of stochastic LP models. Although several 
standard forms of nonlinear membership functions [19] have been applied in fuzzy systems theory, 
the following two are closely related to the exponential and normal distributions which have been 
frequently applied [20] in stochastic DEA models 

pj(~) = 1--exp { -k j  [Xj~-y j]} ,  
po(/~) -- 1 -- exp {--ko [go - X~f l ] } ,  

for the exponential case and, 

/ 2 pj(~) = 1 - exp {-kj [X~ - yj] }, 

Po(fl) = 1 - exp ~-ko  [go - X;fl] 2 ~, 
I ,  

X~fl~yj, k j > l ;  j e I n  (Ta) 
go >_ x~/~, ko _> 1, 

k j > l ;  j e l n  
(7b) 

ko > 1, 

for the normal case. Some comments are in order about these nonlinear membership functions 
which can be directly substituted into the formula (5a) to derive a fuzzy optimal solution. First 
of all, they generally lead to nonlinear programming formulations, which have far less restrictive 
assumptions than the LP model such as (Sd). In applied studies [20] of DEA models it has been 
consistently found that the nonlinear models out perform the linear ones. Secondly, the nonlinear 
membership functions (Ta) can be closely related to some of the stochastic formulations of the 
DEA model, where the transformed model tend= to be linear. Finally, the decision maker may 
choose between a class of nonlinear membership functions by applying the criterion of minimal 
predictive error [20]. 
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3. FUZZY REGRESSION IN DEA MODELS 

The programming approach to efficiency measurement in the DEA models raises two major 
issues against the application of standard regression theory. One is due to the heterogeneity of 
the input output data set over which the DEA model is applied. The regression application to 
estimate production frontiers for U.S. agriculture, Timmer [10] found striking differences between 
the two approaches and he tried to correct them by ad hoc procedures of rejection some obser- 
vations in a certain way. The second reason is that the errors ej = yj ~-~Tfa zji~i in the DEA 
model are one-sided (i.e., ej _< 0) and nonsymmetric, where minimizing the Ll-norm (i.e., the 
LAV criterion) may be more appropriate than the L2-norm (i.e., the least squares criterion). 

The fuzzy regression approach in DEA framework is most suitable in relaxing the two objections 
above. The standard theory of linear fuzzy regression [22] first classifies the set of observations 
into homogeneous clusters and then minimizes for the h th fuzzy cluster (/¢ = 1,2 , . . . ,  K) the loss 
functions 

n 

Lk = e h = ( y -  X.k)'Fk(y-- X.k),  
j=l 

where 

y - -  X a ~  + ek, 

F - ( f jk) ,  f jk  is the membership grade of object 0j to the k th fuzzy cluster, 
K 

such that 0 ~ f jk  <_ 1, ~ f.i~ = 1, 
k--1 

(8a) 

by applying the generalized least squares approach one easily obtains the vector dt of linear fuzzy 
regression coefficients 

ak -- ( X ' F k X )  -1 X 'Fky .  

This approach however is not directly applicable to the DEA model, since the object 0j char- 
acterized by the output and input variables (y, z l , . . .  ,zm) are not randomly determined. We 
may adopt however an alternative two-stage approach. In the first stage we solve the n LP 
models (1) and determine for each unit j turning out to the efficient, then we order the units as 
PO) >- P(2) _> "'" _> P(,). Clearly 0 < p(j) < 1. Then in the second stage we form clusters on the 
basis of these ordered frequencies PC/)" For example cluster one may contain those units which 
have PC/) -> 0.90, the second cluster may have 0.79 _< P0) < 0.90 and so on. For each cluster one 
could then estimate linear of nonlinear regressions. This method has been applied [4,21] in several 
empirical studies of DEA models, where it has out-performed the ordinary regression approach. 
We may note two advantages of this approach. One is that it is completely data-based, since the 
estimates of the probabilities p(j) have to be derived directly from the sequence of n LP models of 
the DEA system. These estimates would be more reliable if the number n is large. Secondly, the 
role of those units which are most often efficient i.e., they have the highest frequency of retaining 
their efficiency label may be empirically tested by a dummy variable regression procedure. Some 
empirical results are reported elsewhere [21]. It is clear that once we have the clusters determined 
by the estimated probabilities PO) above, it is easy to apply the least squares principle in the 
form (8a), which can be rewritten in terms of the DEA notation as 

y = x ~ k  - ek.  ( 8 b )  

But since ek is nonnegative with a certain probability, the LAV method of estimation can also 
be applied. Since the probabilities pj may be more appropriately viewed as fuzzy measures (i.e., 
"possibilities" in fuzzy set theory [23]) due to the inadequate and imprecise knowledge about the 
data generating process, the above estimation procedure is based on fuzzy statistics. 

24:819-R 
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4. M A X I M U M  E N T R O P Y  E S T I M A T I O N  

One of the major motivations of exploring the use of fuzzy set-theoretic measures in DEA 
models is the lack of exact prior information about the stochastic generating process. To see this 
very clearly one could consider the mean LP model (2) proposed by Timmer and transform it as 
a two-person noncooperative game model 

min max ~(/~, 7) = (fl 'X' - V') 7, 
~ec(~) -re c(-r) 

s.t. C(~')  = {.0 l x ~  ' - ~, > O, ~"e,.. = 1, ~' > 0} ,  

C (7 )  = {7  17 '~ ,  = 1, 7 _ 0}. 

(9a)  

Here player I is the decision maker who has to estimate the vector/~, where the second player 
is Nature who selects the vector 7. In the language of the theory of statistical games, player II 
maximizes the loss of player I which is proportional to e ~ = / ~ X  ~ -  9/, whereas player I chooses/~ 
to minimize the loss. This can be seen more clearly by dropping the term Y~7 and rewriting the 
payoff function as ~(/3, 7) = 7~X/~, which is the expected loss or cost for player I, if 7 is known or 
given. Clearly if 7j = 1/n for all j E In we get back the mean LP model (2). But this means that  
either the second player is passive or player I lacks adequate information to statistically estimate 
the value of 7j in any other way i.e., the principle of insufficient reasons. The minimax principle 
specified in (9a) provides more caution as a safety-first decision rule for player I, since for each 
of his strategies he considers first the worst risk (i.e., most unfavorable distribution of 7j's) and 
then selects the best of the worst. Note that  the strategy vectors/~ and 7 may now be treated 
as mixed strategies and also the n data  points may be grouped into r subsets (r < n) with 7j as 
the probability of state of nature belonging to the jth subset, j = 1 ,2 , . . .  ,r .  Now the decision 
problem is that  there is lack of exact information on 7, although there may be some inadequate or 
vague knowledge. Two approaches are available in this framework. One is based on the principle 
of maximum entropy and the other on the principle of "possibility distribution" [24] as defined in 
fuzzy systems theory. Following the first approach one would modify the payoff function of (ga) 
as follows: 

}91 r r 

rain m a x  ~b(~,7) = ) - ~ ) - ~ T j ( z j i ~ i - y j ) - Z T j l n T j ,  (9b) 
~ c ( ~ )  7~c(~) i=1 i=1 j=l  

to incorporate the entropy measure H(7 ) = - ~-'~'=1 7/ in  7 / o f  uncertainty in the Shannon sense. 
This modified payoff function (9b) has two interesting interpretations. One is that  it provides a 
nonparametric method of introducing the so-called least informative prior distribution in Bayesian 
language• Secondly, it is compatible with the concept of a fuzzy entropy in the form 

r 

j=l  

first introduced by Zadeh [23] in fuzzy set theory, where pj denotes a membership function 
discussed before. Maximizing Shannon entropy H(7) is considered to he the most objective way 
of assigning the probabilities 7j of states of nature. Likewise the maximization of the fuzzy 
entropy measure (9c) may be the best way of assigning 7/ in the presence of uncertainly of data  
and inexact information [25]. 

Some theoretical results may be useful to emphasize here. 

THEOREM 1. I f  the mean LP model (2) has an optimal solution for given data set D -- (X,  y), 
then there must exist a Nash equilibrium point (fl0, 70) for the model (9b) which is defined as a 
pair of  strategies satisfying 

4~(/J'°,7 °)  = m a x  ~( /9° ,7  °) 
"r~c(-r) 

• (9d)  
7 o) = 7 o) 
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PROOF. Since the mean LP model (2) has an optimal solution, there exists a vector ~ E C(7),  
for which the function ~b(/s,~) is minimized with respect to fl E C(/S). But the conditional 
payoff function ~b(fl, 7 [ 7 = 7) is continuous over the compact set C(fl) for every vector 7 
in C(7).  Hence by the theorem of bimatrix games, there exists a Nash equilibrium point satisfy- 
ing (gd).  | 

THEOREM 2. A necessary and su~cient condition that the point (/so, 7 o) defines a Nash equi- 
librium point is that there exist scalar values u °, v ° and a vector A ° such that they satis£y the 
fo//owing conditions 

(i) X'A ° + u ° em _< X ' 7  ° 
(ii) 7° 'Xf l  ° - A°X/S° - u ° = 0 

(iii) X ~  ° - In 7 0 - (1 + v °) en _< y (9e) 
(iv) 7°(X/S ° - y) - 7 0' In7 ° - (1 + v °) = 0 
(v)/so c(/S), 7 0 e c(7) 

(vi) u °_>O,v  ° > O , A  °_>0 

PROOF. The Lagrangean function for the problem 

L(fl ,7) = 7'(X/S - y) + A'(y - X/S) + u(1 - / s ' em)  + v(1 - 7'en) - 3/ In7  

is a continuous differentiable function over the compact set C(/S) f3 C(7).  Furthermore, for any 
given/3 E C(/S), it is strictly concave and twice differentiable in 3' and for any given 7 E C(7)  
it is linear and convex in/3. Hence the constraint qualification for the application of the Kuhn- 
Tucker theorem on nonlinear programming holds. The proof follows by a direct application of 
the Kuhn-Tucker theorem. 

Two implications of these theorems are of some importance in economic applications. First 
of all, the set of 7j 's  may be interpreted in a Bayesian framework as providing maximal average 
data  information relative to the information in the prior distribution, with information being 
represented by Shannon's entropy measure. This aspect has been analyzed by Zellner [26] to 
derive operational results for the problem of selecting 'diffuse' prior density functions, clearly 
this line of  reasoning provides a more logical basis than the principle of insufficient reason which 
sets 7j = 1/r  for all j .  Secondly, this formulation can easily incorporate fuzzy measures by 
replacing the term H ( 7  ) in (9h) by the fuzzy entropy defined by (9c). 

Note however that  there is an alternative way of introducing fuzzy measures by means of "pos- 
sibility distribution" [23,25] particularly when the available data are vague and inexact. Assume 
that the state of nature is indexed by a variable S which can take the value s l , s 2 , . . . ,  sr with 
probabilities 7h  72 , . - . ,  7r and possibilities ~rl, Ir2, . . . ,  ~rr. To estimate over given observations, 
the probabilities 7j 's  with respect to the prior information set {Trj}, we need to introduce first a 
relationship between the two distributions. An intuitively appealing principle advocated in fuzzy 
systems theory is the possibility-probability consistency principle 

r 

E 7i ~rj -- a,  a preassigned, (90 
j=l  

which represents the appealing notion that lessening of the possibility of a random event tends 
to lessen its probability. Introducing (gf) as separate constraint in the minimax model (9b), one 
could compute an optimal distribution 7 °~ = (7~, 7~ , . . . ,  7~) which generates a confluence of the 
possibility and probability distributions. Furthermore, the consistency principle stated in (9f) 
may itself he represented as a fuzzy subset defined, e.g., by the following membership function: 

[{ }] - e x p  - - 

where t is a positive number. Thus the maximum entropy principle is made applicable through 
the fuzzification of the moment constraint, although the exact numerical value of the expectation 
parameter a is not known. 
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5. CONCLUSION 

Three methods based on fuzzy set statistics are proposed here to generalize the scope of appU- 
cability of the technique of data envelopment analysis. These methods employ fuzzy transforms- 
tions of the linear programming models used in DEA theory, and also fuzzy regression and fuzzy 
entropy. These methods are most suitable when the available data are inexact, vague and fail to 
satisfy the usual conditions required for random variables. 
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