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We consider a Markov decision process with an uncountable state space and
multiple rewards. For each policy, its performance is evaluated by a vector of total
expected rewards. Under the standard continuity assumptions and the additional
assumption that all initial and transition probabilities are nonatomic, we prove that
the set of performance vectors for all policies is equal to the set of performance

Ž .vectors for nonrandomized Markov policies. This result implies the existence of
Ž .optimal nonrandomized Markov policies for nonatomic constrained Markov deci-

sion processes with total rewards. We provide two examples of applications of our
results to constrained multiple objective problems in inventory control and finance.
Q 2000 Academic Press

1. INTRODUCTION

This paper studies a nonhomogeneous Markov decision process with an
uncountable state space and with a finite number of reward functions. For
each reward function we consider expected total rewards. For each policy,
these expected total rewards form a performance vector.

The main result of the paper, Theorem 1, shows that if the initial state
distribution and transition probabilities do not have atoms then, under

1 This research was partially supported by NSF Grants DMI-9500746 and DMI-9908258.
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standard continuity, compactness, and convergent conditions, for each
Ž .policy there exists a nonrandomized Markov policy with the same perfor-

mance vector. This result implies the existence of optimal Markov policies
Ž .Theorem 2 for problems with multiple total reward criteria and con-
straints.

At first glance, this result contradicts the well-known phenomenon that
optimal policies in problems with constraints are typically randomized.

w xExample 1 in Frid 11 demonstrates that randomized policies can be
significantly better than nonrandomized strategies in problems with con-
straints; see also examples in books on Markov decision processes with

w x w x w xconstraints by Kallenberg 12 , Piunovskiy 17 , and Altman 2 . In these
examples the state and action sets are finite, but they can be easily
modified to countable state problems with arbitrary action sets.

Since the use of randomization procedures can improve the system
performance, the natural question is how to obtain the best performance
and to limit the number of randomization procedures. When the state
space is countable, the number of randomization procedures can be
limited by the number of constraints. This fact was established by Borkar
w x6 for problems with average rewards per unit time and Feinberg and

w xShwartz 10 for problems with total discounted rewards. More particular
w x w x w xresults were proved earlier by Ross 19 , Sennott 21 , and Altman 1 .

Though comprehensive results for coutable state models were described
w xin Borkar 6 for average rewards per unit time and in Feinberg and

w xShwartz 10 for the total discounted rewards, significantly less is known for
w x w xmodels with uncountable state spaces; see Tanaka 24 and Piunovskiy 17 .

In particular, the results, that the number of randomization procedures is
limited by the number of constraints, are not available for models with
uncountable state spaces. If such results were available they would imply
the existence of optimal nonrandomized policies for models with nonatomic
initial distributions and transition probabilities. Indeed, if these probabili-
ties are nonatomic, the probability to visit any finite state is 0. Therefore,
randomized actions could be replaced with a nonrandomized one on the
finite state where they may be required by a general theorem, which, as we
mentioned, is not currently available for models with uncountable state
spaces.

This paper describes an important phenomenon that there are nonran-
domized optimal policies for problems with multiple total reward criteria
when the state space is uncountable and transition and initial probabilities
are nonatomic. To illustrate possible applications, we consider inventory
and financial examples for which we establish the existence of optimal
nonrandomized Markov policies for problems with multiple expected total

w xcost criteria and constraints; see Liu and Esogbue 13 for various criteria
for inventory systems.
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We introduce the model, major assumptions, and formulate the major
results in Section 2. These results are that for nonatomic Markov decision

Ž .processes with multiple criteria the following two statements hold: i the
set of performance vectors for all policies coincides with the set of

Ž .performance vectors for nonrandomized Markov policies Theorem 1 and
Ž .ii nonrandomized Markov policies are optimal for constrained problems
Ž .Theorem 2 . In Section 3 we prove our main result, Theorem 1, for a
one-step model. In Section 4 we construct an equivalent one-step model
for a multiple-step model. In Section 5 we prove our main theorem by
using the results of Sections 3 and 4. Section 6 deals with applications.

In the completion of this section we recall several measure-theoretical
Ž . Ž .definitions. Two measurable spaces V, FF and V , FF are called isomor-1 1

phic if there is a one-to-one measurable mapping f of V onto V such1
that fy1 is also measurable. A Polish space is a complete separable metric

Ž .space. For a topological space V, we denote by BB V its Borel s-field. A
measurable space is called Borel if it is isomorphic to a Borel subset of a
Polish space endowed with the Borel s-field. Any Borel space is either

w x wfinite or countable or isomorphic to 0, 1 ; see Dynkin and Yushkevich 8,
x w xAppendix 1 or Bertsekas and Shreve 5, Corollary 7.16.1 .

If V is finite or countable, we consider a discrete topology on V. In this
Ž .case, BB V is the set of all subsets of V.

Ž Ž .. Ž .For a Polish space V, BB V , we denote by PP V the set of probability
Ž Ž .. � 4measures on V, BB V . Let P , n s 1, 2, . . . and P be probabilityn

Ž Ž ..measures on a Polish space V, BB V . The measures P converge weaklyn
Ž . Ž . Ž . Ž .to P if H f v P dv ª H f v P dv for any bounded continuousV n V

Ž .function f on V. We always consider a weak topology on PP V which is
the weakest topology generated by the weak convergence. The weak

Ž .topology is metrizable and the space PP V is Polish in this topology; see
w x Ž .Bertsekas and Shreve 5, Proposition 7.20 . If V is compact then PP V is

wcompact in the weak topology; see Bertsekas and Shreve 5, Proposition
x7.22 .

Ž .Let q be a nonnegative measure on a Borel space V, FF . A point
Ž� 4.v g V is called an atom if q v ) 0. A measure is called nonatomic if it

does not have atoms. Obviously, if q is a nonatomic measure on a Borel
Ž . Ž .space V, FF and q V ) 0 then this space is uncountable and therefore it

w xis isomorphic to 0, 1 .

2. DESCRIPTION OF THE MODEL AND THE MAIN
RESULT

Ž . � Ž . 4We consider a Markov decision process MDP X, A, A. ? , p., r. ,
where

Ž .i X is a Polish state space;
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Ž .ii A is a Polish action space;
Ž . Ž .iii A x are sets of actions available at states x g X at epochst

Ž .t s 0, 1, . . . ; it is assumed that A x are nonempty measurable subsets oft
A;

Ž . Ž < .iv p dy x, a are measurable transition probabilities from X = At
to X at steps t s 0, 1, . . . ;

Ž . Ž . Ž 1 2 N .v r x, a s r , r , . . . , r are N-dimensional vectors of measur-t t t t
able rewards at steps t s 0, 1, . . . , where N is a positive integer and
Ž .x, a g X = A.

As usual, a policy p is a sequence of measurable transition probabilities
Ž < . Ž .p da h concentrated on the sets A x , where h s x , a , . . . , a , x ist t t t t 0 0 t t

the observed history. If transition probabilities p depend only on the
Ž < . Ž < .current time and the current state, i.e., p ? h s p ? x for all t st t t t

0, 1, . . . , then the policy p is called randomized Markov. If the measure p ,t
Ž . Ž .for all t s 0, 1, . . . , is concentrated at the point w x g A x then thet t t t

policy is called Markov and it is denoted by w. Let D be the set of all
policies and DM be the set of all Markov policies. A policy p is called

Ž < . Ž < . Žrandomized Markov if p da h s p da x for all h s x a ??? x g Xt t t t t t t 0 0 t
. t= A = X.

�Ž .Condition 1. A is compact; the graph Gr A J x, a : x g X, a gt
Ž .4 ŽA x is closed in X = A for all t s 0, 1, . . . . In particular, all the setst
Ž . .A x are compact.t

Ž .For a fixed t, a measurable mapping w ? : X ª A is called a selector ift
Ž . Ž .w x g A x for all x g X. The existence of at least one policy ist t

wequivalent to the existence of at least one selector for each t s 0, 1, . . . 8,
x w xSect. 3.1 . According to 3, Corollary I.1.1 , Condition 1 implies the upper

Ž .semicontinuity of the multifunction x ª A x for each t s 0, 1, . . . .t
w xHence, in view of 25, Theorem 4.1 , there exists at least one selector.

wAccording to the Ionescu Tulcea theorem 8, Sect. 5.4; 5, Proposition
x7.45 , a policy p and an initial distribution m on X define a unique

p Ž .`probability measure P on the space of trajectories H s X = A . Wem `
p p 1 2 Ž p 1

denote by E expectations with respect to P . If p s p P -a.s. orm m
p 2 . p 1 p 2 1 2P -a.s. then P s P and the strategies p and p are equivalent

Ž .indistinguishable . If the initial distribution is concentrated at the point x,
we use notations Pp and Ep.x x

q � 4 y � 4For a number c we define c s max c, 0 and c s min c, 0 . For a
policy p , an initial distribution m, and n s 1, . . . , N, we define

`
qn p nR m , p s R m , p s E r x , a ,Ž . Ž . Ž .Ž .Ýq m t t t

ts0
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`
yn p nR m , p s R m , p s E r x , a ,Ž . Ž . Ž .Ž .Ýy m t t t

ts0

nŽ . n Ž . n Ž .and R m, p s R m, p q R m, p . Everywhere in this paper, ` y `q y
is assumed equal y`.

The performance of a policy p is evaluated by a vector

R Pp s R m , p s R1 m , p , R2 m , p , . . . , R N m , p . 1Ž . Ž . Ž . Ž . Ž .Ž .Ž .m

Condition 2. For any initial state x g X and for any policy p

p nE r x , a F c , n s 1, . . . , N ,Ž .x t t t t

where c is a summable sequence, Ý` c - `.t ts0 t

Ž .Condition 2 guarantees the correctness of formula 1 . For instance,
nŽ .Condition 2 is satisfied for discounted model where r x, a st

t nŽ . < nŽ . < Ž .b r x, a , r x, a F c - `, b g 0, 1 .
Unless it is specified explicitly, we assume that the initial distribution
Ž .m dx of x has been fixed. In order to simplify the notations, we usually0

p p Ž . p p Ž .write P , E , and R p instead of P , E , and R m, p , respectively. Wem m

define the sets of performance vectors for all policies

<VV J R p p g D 2� 4Ž . Ž .

and for Markov policies

M < MVV J R w w g D .� 4Ž .

We also define the set of all strategic measures

p <� 4DD J P p g D

and its subset generated by Markov policies

M w < MDD J P w g D .� 4
Ž . M Ž . Ž .If the initial distribution m is not fixed, we write VV m , VV m , DD m ,

M Ž .and DD m . We replace m with x if measure m is concentrated at x.
The set of strategic measures DD is convex and a measurable subset of
Ž . w xPP H ; see Dynkin and Yushkevich 8, Sect. 5.5 . According to a well-known`

w x w xresult by Derman and Strauch 7 and Strauch 22 , for any policy p there
exists a randomized Markov policy s with the same marginal distributions

Ž . w xof couples x , a ; see, e.g., Dynkin and Yushkevich 8, Sects. 4.8 and 5.2t t
w x Ž . Ž .or Puterman 18, Theorem 5.5.1 . Therefore R s s R p and one may

replace the set of all policies with the set of all randomized Markov
Ž .policies in 2 .
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Ž < .Condition 3. The transition probabilities p dy x, a are weakly contin-t
Ž .uous in x, a g Gr A , t s 0, 1, . . . .t

Condition 4. The function r : X = A ª R N is continuous and boundedt
on Gr A for every t s 0, 1, . . . .t

Ž .LEMMA 1. i The set DD is con¨ex.
Ž .ii If Condition 2 holds, then the performance set VV is con¨ex.
Ž .iii If Conditions 1 and 3 hold then the set DD is compact.
Ž .iv If Conditions 1]4 hold then VV is compact.

Proof. The convexity of DD was pointed out earlier. The compactness of
w x w xDD under Conditions 1 and 3 was proved in Balder 4 and Schal 20 .¨

Under Condition 2 the mapping R: DD ª R N is affine. Conditions 2 and 4
imply that this mapping is continuous. Hence, VV is also convex and
compact under Conditions 1]4.

The main result of this paper is Theorem 1 that states the sufficiency of
the class of Markov policies. It is worth noting that Conditions 1]5 do not
imply that the set DD M is either convex or compact. In fact, this set may be

w x Ž . � 4neither convex nor compact. For example, if X s 0, 1 , A s A x s 0, 1 ,t
and m is the Lebesgue measure then DD M is neither convex nor compact in

w x Ma one-step model; see Piunovskiy 17, Sect. 3.4.2 . Nevertheless, VV s VV

is convex and compact under the following additional condition.

Ž .Condition 5. The measure m ? is nonatomic and for every t s 0, 1, . . . ,
Ž . Ž < .for every x g X, and for every a g A x the measure p ? x, a ist t

nonatomic.

THEOREM 1. Let Conditions 1]5 be satisfied. Then VV M s VV .

We consider an important application of Theorem 1. For given numbers
C 2, . . . , C N, we consider a constrained optimization problem

maximize R1 p 3Ž . Ž .

subject to

Rn p G C n , n s 2, . . . , N. 4Ž . Ž .

The following result follows from Theorem 1 and Lemma 1.

Ž . Ž .THEOREM 2. Let Conditions 1]5 be satisfied. If problem 3 , 4 is
feasible then there exists an optimal Markö policy.
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3. ONE-STEP MODEL

Suppose that the life time of the controlled process equals one step. In
this case, the symbol q` is replaced by 0 in all the constructions. In other

p w Ž .xwords, in this section our performance vector is E r x , a . We omit0 0 0
the index t s 0 in this section.

In a one-step model, the set of Markov policies coincides with the set of
Ž . Ž .all selectors w x g A x . Since there is no history, the set of all policies

coincides with the set of randomized Markov policies. Strategic measures
are defined on X = A.

In this section, we prove Theorem 1 for a one-step model. The starting
point of our approach is based on the following observation.

Ž .LEMMA 2. If the probability measure m dx is nonatomic then there is a
� w x4 Ž .collection of measurable sets X : X, a g 0, 1 such that m X s 0,a 0

Ž . Ž .m X s 1, and m X is a continuous function of a .1 a

Proof. Since m is a nonatomic measure, the Borel space X is isomor-
w x w xphic to the interval 0, 1 . Let C: X ª 0, 1 be an isomorphism. Then C

can be interpreted as a random variable with the distribution function

w xF b J m x : C x F b , b g y`, ` .� 4Ž . Ž .Ž .

Since m has no atoms, the function F is continuous. We define quantiles
Ž . � < Ž . 4 Ž Ž ..q a s inf b G 0 F b s a . Since F is continuous, F q a s a for any

w xa g 0, 1 .
We set

X J x : C x - q a . 5� 4Ž . Ž . Ž .a

Ž .Obviously, m X s a .a

A subset B of a metric space is called connected if for any two points
w xc, d g B there is a continuous mapping f of the interval 0, 1 into B such

Ž . Ž .that f 0 s c and f 1 s d.

Ž . MLEMMA 3. If the measure m ? is nonatomic then the set DD is con-
nected.

Proof. If Gr A does not contain a selector, DD M s B and the lemma is
0Ž . 1Ž . w 0

obvious. Let us fix two arbitrary selectors w x and w x . Then P and
P w1

are the corresponding strategic measures on X = A.
Let

w1 x , if x g X ,Ž . aaw x sŽ . 0½ w x , if x f X ,Ž . a
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Ž .where X are the sets given by formula 5 . Consider the mappinga

g a J P w aŽ .

w x Mfrom 0, 1 into DD . Clearly,

g 0 s P w 0
, g 1 s P w1

.Ž . Ž .

Ž .In the first case, X s B. In the second case, m X s 1.0 1
w x MIt is sufficient to show that the mapping g : 0, 1 ª DD is continuous.

< Ž . <Let c be a bounded measurable function on X = A, c x, a F C - `. We
a Ž . bŽ . Ž . <observe that w x s w x when x f X ^ X and m X ^ X s a ya b a b

<b . Thus

a bw wE c x , a y E c x , aŽ . Ž .
a bw ws E I x g X ^ X c x , a y E I x g X ^ X c x , a� 4 � 4Ž . Ž .a b a b

< <F 2 a y b C , 6Ž .

w x Mwhere I is the indicator function. Therefore, the mapping g : 0, 1 ª DD is
continuous.

We consider the following relaxation of Conditions 1]5.

Condition 6. The following assumptions hold:

Ž . Ži Gr A is measurable, contains at least one selector measurable
. Ž .function , and all sets A x are compact, x g X ;

Ž . kŽ .ii the functions r x, a , k s 1, . . . , N, are bounded, measurable,
and continuous in a;

Ž .iii the fixed initial measure m is nonatomic;
Ž . Ž .iv the VV n are convex and compact for all initial measures n such

that n < m.

LEMMA 4. Conditions 1, 4, and 5 imply Condition 6.

Ž . Ž .Proof. Conditions 1 and 5 imply respectively i and iii . For one-step
Ž . Ž .models, ii follows from Condition 4. Lemma 1 implies iv .

Ž . Ž .If the sets of feasible actions A x are substituted with subsets B x :
Ž .A x , x g X, then the corresponding MDP is called a submodel. We

Ž . M Ž .denote by VV n and VV n the performance sets for all policies and forB B
all selectors in the submodel where n is an initial probability distribution.

Ž . Ž . M Ž . M Ž .Obviously, VV n : VV n and VV n : VV n . As usual, we may omitB B
Ž .the fixed initial distribution in our notations. So, we set VV s VV m andB B

M M Ž .VV s VV m .B B
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Let  VV be the boundary of VV . By Lemma 1, VV is closed and convex.
Therefore VV has a supporting hyperplane at each boundary point. We
recall that a subset E ;  E9 of a closed convex set E9 in an Euclidean
space is called exposed if E is an intersection of E9 and its supporting
hyperplane. Note that dim E - dim E9.

LEMMA 5. Let Condition 6 hold. For any exposed subset E of VV there
Ž . Ž .exists a submodel with sets of a¨ailable actions B x such that: i this

Ž .submodel satisfies Condition 6 and ii VV s E.B

�Proof. Consider a supporting hyperplane that defines E. Let E s z g
n N 4 N nŽ .R : Ý b z s d l VV . Then Ý b R s s d for any policy s suchns1 n n ns1 n

Ž .that R s g E. In addition, let the signs of b be selected in a way thatn
N nŽ .Ý b R p F d for any p g D. Therefore, if we consider the objectivens1 n

Ž . N nŽ .function r* x, a s Ý b r x, a then a policy p is optimal for thens1 n
maximization problem with this objective function and with the initial

Ž .distribution m if and only if R p g E.
Ž . Ž . Ž . �Let r x s max r* x, a , x g X. Then the sets B* x s a g˜ ag AŽ x .

Ž . < Ž . Ž .4 wA x r* x, a s r x are compact. In view of 5, Propositions 7.47 and˜
x7.50 , r is a universally measurable function and there exists a universally˜

Ž . Ž .measurable mapping w : X ª A such that w x g A x for all x g X and
Ž Ž .. Ž .r* x, w x s r x . Let c be an arbitrary selector. We consider a Borel˜

Ž� Ž . Ž .4.mapping w9: X ª A such that m x : w x / w9 x s 0. Let Y be a
Ž . Ž . Ž .Borel subset of X such that m Y s 1 and w x s w9 x when x g Y. We

define compact sets

B* x , if x g Y ,Ž .
B x sŽ . ½ c x , if g X _ Y .� 4Ž .

We notice that Gr B s G j G where1 2

<G s x , a r* x , w9 x s r* x , a , x g Y� 4Ž . Ž . Ž .Ž .1

and

<G s x , a a s c x , x g X _ Y .� 4Ž . Ž .2

The set G is measurable because it can be presented as a set on which a1
Borel function is equal to 0. The set G is measurable because it is a graph2
of a Borel function. Therefore, Gr B is measurable. In addition, Gr B
contains the selector

w9 x , if x g Y ;Ž .
w x sŽ .˜ ½ c x , if x g X _ Y .Ž .
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Ž . Ž . Ž . Ž .For an arbitrary policy p , r* x, p F r x m-a.s. , where r* x, p s˜
Ž . Ž < . Ž Ž .. Ž . Ž .H r* x, a p da x . We also have that r* x, w9 x s r x m-a.s. . There-˜X

Ž . Ž . Ž .fore, r* x, p s r x m-a.s. if and only if p is an optimal policy for the˜
reward function r* and the initial distribution m. Therefore, if p is a

Ž . Ž .policy in the submodel with action sets B ? then R p g E. Thus VV : E.B
p w Ž .xLet ¨ g E. Then ¨ s E r x, a for a policy p which is optimal for the

MDP with the reward function r* and initial distribution m. Therefore,
Ž . Ž . Ž . Ž .r* x, p s r x m-a.s. . Let Z be a Borel subset of X such that m Z s 1˜

Ž . Ž . Ž Ž . < .and r* x, p s r x for x g Z. Then p B* x x s 1 for every x g Z. We˜
Ž .define a policy s in the submodel with action sets B ? ,

<p C x if x g Z l Y ,Ž .
<s C x sŽ . ½ <g C x otherwise,Ž .

where g is an arbitrary policy in this submodel. Then s is a policy in this
Ž . Ž .submodel and R s s R p s ¨ . Thus VV = E. So, VV s E.B B

Ž . Ž .The constructed submodel meets Conditions 6 1 ] iii . We verify Condi-
Ž . Ž . Ž .tions 6 iv . Lemma 1 ii implies that VV n is convex. For an arbitraryB

Ž .initial distribution n and for an arbitrary policy p , we define r* n , p s
Ž . Ž < . Ž .H H r* x, a p da x n dx . Let us fix an arbitrary initial measure n < m.X A

˜ Ž .Let d s max r* n , p . If p is a policy in the submodel with action sets˜p
˜Ž . Ž . Ž . Ž . �B ? then r* n , p s d. So R n , p g E9 where E9 s VV n l z g˜ ˜

N N 4̃R : Ý b z s d is the exposed subset of the convex compact setns1 n n
Ž . Ž . Ž .VV n . Hence, VV n : E9. Let ¨ g E9. Then ¨ s R n , p for a policy pB

which is optimal for the MDP with the reward function r* and the initial
Ž .distribution n . Similarly to the previous paragraph we obtain R n , s s

Ž . Ž .R n , p s ¨ for a policy s in the submodel. Thus E9 : VV n . So,B
Ž .VV n s E9 is compact.B

For a selector w and a measurable set Y : X, we consider a submodel
with the sets of available actions

w x , if x g Y ;� 4Ž .w xA w , Y x sŽ . ½ A x , if x g X _ Y .Ž .

w xŽ . � Ž .4 w xŽ . Ž .We notice that A w, X x s w x and A w, B x s A x , x g X.

LEMMA 6. If Condition 6 holds then it holds for each submodel with
w xŽ . Ž .a¨ailable sets of actions A w, Y x where x g X and Y g BB X .

Ž . Ž . Ž .Proof. Conditions 6 i ] iii are obvious. We verify Condition 6 iv .
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Let n be the initial measure and n < m. For any measurable E : X we
consider the following version of condition probabilities

n Z l E rn E , if n E ) 0;Ž . Ž . Ž .
<n Z E sŽ . ½ n E , if n E s 0.Ž . Ž .

Ž . Ž < . Ž . Ž < .We define two measures n 9 Z s n Z X _ Y and n 0 Z s n Z Y .
If p is a policy in the submodel then

R p , n s n X _ Y R p , n 9 q n Y R w , n 0 .Ž . Ž . Ž . Ž . Ž .

Therefore

VV n s n X _ Y VV n 9 q n Y R w , n 0 . 7Ž . Ž . Ž . Ž . Ž . Ž .Aw w , Y x

Ž . Ž .Since n 9 < n < m, VV n 9 is convex and compact. Formula 7 implies
Ž .that VV n is convex and compact too.Aw w , Y x

LEMMA 7. If Condition 6 holds then for any selector w and for any ¨ g VV

there exists a measurable subset Y of X such that ¨ g  VV .Aw w , Y x

Proof. We consider a collection of sets X whose existence is stated ina
a 0 1 � Ž .4Lemma 2. We denote VV by VV . Then VV s VV and VV s R w .Aw w , X xa

In addition, VV a = VV b if a F b. By Lemma 6, each set VV a is convex
w xand compact, a g 0, 1 .

We have that ¨ g VV s VV 0. Let

� a 4inf a G 0 : ¨ f VV , if ¨ / R w ;Ž .
a* s ½ 1, if ¨ s R w .Ž .

w xIt is clear that a* g 0, 1 . We shall show that

¨ g  VV a*. 8Ž .

Ž 1 N . Ž 1 N . NFor two points e s e , . . . , e and g s g , . . . , g in R , we define
the distance

< i i <d e, g s max e y g : i s 1, . . . , N .� 4Ž .
N Ž . � Ž .4Besides, for E ; R , d e, E s min d e, g .g g E

w xFor an arbitrary policy p and for an arbitrary a g 0, 1 , we consider
policy p a defined at epoch 0 by

<p E x , if x g X _ X ;Ž .0 aa <p E x sŽ .0 ½ I w x g E , if x g X .� 4Ž . a
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Then for 1 G a G b G 0 we have

n a n bR p y R pŽ . Ž .

n n <s r x , w x y r x , a p da x m dxŽ . Ž . Ž . Ž .Ž . .ŽH H 0
X _X Aa b

nF m X _ X 2 sup r x , a F 2C a y b , 9Ž . Ž . Ž .Ž .a b
x , a

< nŽ . <where r x, a F C, n s 1, . . . , N, and the existence of a finite constant C
Ž . Ž .follows from Condition 6 ii . Inequality 9 implies that for any policy
w xp g D and for any a , b g 0, 1

a b < <d R p , R p F 2C a y b . 10Ž . Ž . Ž .Ž .
Ž . a* a * a *If 8 does not hold then either ¨ f VV or ¨ g VV _  VV .

a* Ž a*. a*Let ¨ f VV . Then a* ) 0. We set d s d ¨ , VV . Since ¨ f VV ,
d� 4 Ž .d ) 0. Let a s max 0, a* y - a*. Inequality 10 implies that

4 C q 1Ž .
da a * aŽ .VV is within the -neighborhood of VV . Thus d ¨ , VV ) 0 and
2

therefore ¨ f VV a. Since a* ) a G 0, we get a contradiction.
a* a * Ž a*.Now let ¨ g VV _  VV . Then a* - 1. We set D s d ¨ ,  VV .

Since VV a* is compact,  VV a* is compact. Since ¨ f  VV a*, D ) 0. We
D a*� 4 Ž .set a s min 1, a* q ) a*. Then inequality 10 implies that VV

4 C q 1Ž .
D a aŽ .belongs to the -neighborhood of VV and d ¨ ,  VV ) 0. This implies
2

a a b a * w x b¨ g VV . Since VV : VV : VV for any b g a*, a and ¨ f VV for
w x a asome b g a*, a , we have ¨ f VV which contradicts ¨ g VV .
Ž .Formula 8 is proved.

THEOREM 3. If a one-step model satisfies Condition 6 then VV s VV M.

Proof. Let n s dim VV . We observe that n F N. We prove this lemma
by induction in n.

Let n s 1. In this case either N s 1 or for some j s 1, . . . , N there are
Ž . Ž .constants c and d such that R p s c q d R p for all p g D, i si i i i i j

1, . . . , N. Thus, if Theorem 3 holds for N s 1 then it holds for n s 1.
Ž . 1Ž .We prove the lemma for N s 1. In this case, R p s R p and VV is a

1 w xclosed interval in R . Let VV s c, d .
Ž .We consider a policy p such that R p s d. For any policy p there

0 Ž 0. Ž . w xexists a Markov policy w such that R w G R p ; see Feinberg 9 .
M M w xTherefore, d g VV . Similarly, c g VV . Lemma 3 implies that c, d g

VV M. Since VV M : VV , we have VV M s VV .
Let Theorem 3 hold when dim VV F n for some n s 1, 2, . . . . Let dim VV

s n q 1 and ¨ g VV . By Lemma 7, ¨ g  VV for some selector w andAw w , Y x
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for some Borel Y : X. By Lemma 6, Condition 6 holds for this submodel.
Consider a hyperplane that supports VV at ¨ . Lemma 5 implies thatAw w , Y x

Ž . w xŽ .there is a submodel with the sets of available actions B ? : A w, Y ?
Ž .such that the following properties hold for this submodel: i Condition 6

Ž . Ž .holds, ii ¨ g VV , and iii dim VV F n. The inductive assumption impliesB B
MŽ .that ¨ s R c for some c g D .

COROLLARY 1. If Conditions 1, 4, and 5 hold then VV s VV M.

Proof. The corollary follows from Lemma 4 and Theorem 3.

The following example demonstrates that if all assumptions of Corollary
1 hold except the assumption that the initial measure m is nonatomic then
VV may not be equal to VV M.

w x Ž . � 4 Ž� 4.Let X s 0, 1 , A s A x s 0, 1 for all x g X. Let x g X and m xˆ ˆ
s b ) 0. We consider some d ) 0 such that

w x � 4m X l x y d, x q d _ x F br3.� 4Ž .ˆ ˆ ˆ

Ž .We set r x, 0 ' 0;

< < < <1 y x y x rd, if x y x F d;ˆ ˆ
r x , 1 JŽ . ½ < <0, if x y x ) d.ˆ

0Ž . 1Ž . Ž 0. Ž 1.Let w x ' 0 and w x ' 1. Obviously, R w s 0 and R w G b.
w xSince VV is convex VV = 0, b . Let us show that there does not exist a
Ž . Ž . Ž .selector with the property R w s br2. Indeed, if w x s 1 then R w G bˆ

Ž . Ž . Mand if w x s 0 then R w F br3. So the set VV is not convex. In viewˆ
of Lemma 1, VV / VV M.

4. REDUCTION OF A MULTIPLE-STEP MODEL
TO A ONE-STEP MODEL

We define the set of all strategic measures

p <D s P p g D ; n g PP X� 4Ž .n

and its subsets

p <U s P p g D , n g PP X , and p is nonrandomized at the epoch t s 0 ,� 4Ž .n

p <UU x s P p g D and p is nonrandomized at the epoch t s 0 ,� 4Ž . x

x g X .

w xAccording to Dynkin and Yushkevich 8, Sects. 3.5 and 5.5 , D is a
Ž .measurable subset of PP H .`
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Ž .LEMMA 8. U and UU x are measurable subsets of D.

Ž . Ž wProof. Since DD x are measurable Dynkin and Yushkevich 8, Sects.
x. Ž . Ž .3.5 and 5.5 and UU x s U l DD x , we need only to prove that U is

Ž .measurable. Let G be the subset of all probability measures P g PP H1 `

Ž < . Ž Ž . .such that P da x is degenerated P dx -a.s. . In other words, if Q is a0 0 0
Ž . � 4 Ž .set of measures r on A such that r G g 0, 1 for any G g BB A then

< <G s P g PP H P da dx g Q P dx -a.s. .� 4Ž . Ž .Ž . Ž .1 ` 0 0 0

w xBy Lemma 6.1 in Parthasarathy 16, Chap. 2 , Q is a measurable subset of
Ž .PP A .
Let Y and Y be two Polish spaces. We consider a natural projection f1 2

Ž . Ž . Ž .Ž . Ž .of PP Y = Y on PP Y defined by f P dy s P dy = Y for all1 2 1 1 1 2
Ž .P g PP Y = Y . Then mapping f is measurable. Indeed, the s-field on1 2

Ž . Ž . �PP Y is defined as a sigma-field generated by sets G C, c s P g1
Ž . < Ž . 4 Ž .PP Y P C G c for all C g BB Y and all real c. We have that1 1

y1Ž Ž .. Ž . Ž .f G C, c s G C, c = PP Y . Since the product of two Borel sets is a2
y1Ž Ž ..Borel set in a product topology, f G C, c is measurable. So, the

measurability of f is established.
We have that U s D l G . So, the measurability of G implies the1 1

Ž .lemma. We define G g PP X = A by2

< <G s P g PP X = A P da dx g Q P dx -a.s. .� 4Ž . Ž .Ž . Ž .2 0 0 0

Ž .First, we observe that G is a measurable subset of PP X = A in view of2
w x Ž .Sudderth 23, Lemma 2 . Second, for any P g PP H we consider its`

Ž .projection F on PP X = A ,
`

F P dx da s P dx da = X = A .Ž . Ž . Ž .Ž .0 0 0 0

In view of the general fact explained in the previous paragraph, F is a
Ž . Ž . y1Ž .measurable mapping of PP H on PP X = A . Since G s F G , G is` 1 2 1

measurable.

We consider the one-step model with the state space X, the state of
Ž . Ž .available actions UU x : D, and the reward vector-function R x, P s

Ž .R P , P g D. We remark that if p is a nonrandomized policy in the
original model then the Ionescu Tulcea theorem implies that x ª Pp is ax

˜ Ž .measurable selector in the new model. We denote by VV n the set of
performance vectors for the new model when an initial distribution n g
Ž .PP X is fixed.

˜Ž . Ž . Ž .LEMMA 9. VV n s VV n for any n g PP X .

˜Ž . Ž .Proof. Each of the sets VV n and VV n is empty if and only if for
some t s 0, 1, . . . the set of measurable selectors in the original model is
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˜Ž . Ž .empty. Therefore, VV n s B if and only if VV n s B. According to the
w xresult by Derman and Strauch 7 mentioned before Condition 3, for a

fixed initial distribution n and for any policy s there exists a randomized
Ž . Ž .Markov policy p such that R n , p s R n , s .

Ž .Let ¨ g VV n . We consider a randomized Markov policy p for which
Ž . Ž . a, p Ž . sR n , p s ¨ . For every pair x g X, a g A x , we denote by u x s P0 x

the strategic measure corresponding to the policy s which is concentrated
Ž .at the point a g A x for t s 0 and coincides with p for t ) 0. The0

mapping

g x , a s ua , p x : X = A ª D 11Ž . Ž . Ž .

is measurable in accordance with the Ionescu Tulcea theorem; see Neveu
w x15, Sect. V.1 .

We wish to construct a measurable stochastic kernel g p from X to D
p Ž Ž . < .such that g UU x x s 1 for all x g X and

p <n dx g du x R x , u s R n , p . 12Ž . Ž . Ž . Ž . Ž .H H
X D

Let us introduce the stochastic kernel

< <p G x J p G x ,Ž . Ž .ˆ 0 0 x

Ž . � Ž . <Ž . 4where G g BB X = A is an arbitrary set, and G s a g A x x, a g Gx 0
is the section of the set G at x g X. For each nonnegative measurable
function l on X = A

<l y , a p d y , a xŽ . Ž .Ž .ˆH 0
X=A

< <� 4s l y , a I x s y p d y , a x s l x , a p da x . 13Ž . Ž . Ž . Ž . Ž .Ž .ˆH H0 0
X=A A

w xIn view of Bertsekas and Shreve 5, Proposition 7.29 , the last integral in
Ž .13 is a measurable function of x g X. Therefore p is the measurableˆ 0

Ž .kernel. Using the mapping g : X = A ª D defined in 11 , we introduce
the desired stochastic kernel g p by

p < y1 <g G x s p g G x ,Ž . Ž .ˆ Ž .0

Ž . pwhere G g BB D . The measurability of g follows from the measurability
p Ž < . p Ž Ž . < . Ž .of p and g. Since g G x s g G l UU x x for any G g BB D , we getˆ 0

p < p < <g D x s g UU x x s p A x x s 1.Ž . Ž . Ž .Ž . Ž .0 0
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Ž .Let us check equality 12 . Clearly, for any x g X

p a , p < <P s u x p da x s g x , a p da x . 14Ž . Ž . Ž . Ž . Ž .H Hx 0 0
A A

Ž wAccording to properties of images of probability measures Meyer 14,
x.Theorem T12, Chap. 2 , we have

p < < <ug du x s g y , a p d y , a x s g x , a p da x , 15Ž . Ž . Ž . Ž . Ž . Ž .Ž .ˆH H H0 0
D X=A A

Ž . Ž . Ž .where the second equality is 13 . We have from 14 , 15 that

p p <P s ug du x .Ž .Hx
Ž .UU x

Hence we have

p p <R x , P s R x , u g du x ;Ž . Ž .Ž . Hx
Ž .UU x

p p <R n , p s R x , P n dx s n dx g du x R x , u .Ž . Ž . Ž . Ž . Ž .Ž .H H Hx
Ž .X X UU x

˜Ž . Ž . Ž .Formula 12 is proved. So, VV n : VV n .
Ž < . Ž .Let g du x be a stochastic kernel concentrated on UU x . Then the

measure

<P s n dx ug du xŽ . Ž .H H
X D

w xbelongs to D; see Dynkin and Yushkevich 8, Sects. 3.5 and 5.5 . From
w xFubini theorem, Meyer 14, Theorem T16, Chap. 2 ,

<n dx g du x R x , u s R n , pŽ . Ž . Ž . Ž .H H
X D

˜ Ž . Ž .for some policy p in the initial model. Hence, VV n : VV n .

LEMMA 10. If the original model satisfies Conditions 1]5 then the new
one-step model satisfies Condition 6.

Proof. We check each of the four Conditions 6.
Ž .i First of all, we show that the graph Gr UU of the multifunction

Ž .x ª UU x is closed in X = D. Let

Gr UU 2 x n , P n ª x , P g X = D, n s 1, 2, . . . . 16Ž . Ž . Ž .
nª`
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Ž . Ž X A Ž .`. �If Q g D then Q g UU y if and only if Q G = G = X = A s I y g
X A4 Ž . X Ž .G , a g G for some point a g A y and for all G g BB X and all0
A Ž . � n X n A4G g BB A . We consider points a g A such that I x g G , a g G sn
nŽ X A Ž .`. X Ž . A Ž .P G = G = X = A for all G g BB X and all G g BB A . Then

Ž . n16 implies the existence of the limit a s lim a . According to Condi-nª`

Ž . Ž X A Ž .`. � Xtion 1, a g A x . Therefore, P G = G = X = A s I x g G , a g0
A4 Ž . Ž .G . So, a g A x and P g UU x . Thus, Gr UU is closed.0

Ž .Since Gr UU is closed, the sets UU x are closed for all x g X. According
Ž . Ž .to Lemma 1, DD x is compact. Therefore, its closed subset UU x is

compact too. The measurability of the set D was explained before Lemma
Ž8. Since Condition 1 implies the existence of a Markov policy w Dynkin

w x. wand Yushkevich 8, Sect. 3.1 and the mapping x ª P is measurablex
Ž w x.according to the Ionescu Tulcea theorem Neveu 15, Sect. V.1 , the Gr UU

contains a measurable selector.
Ž .Conditions 2 and 4 imply that R x, P is continuous in P for each

Ž . Ž .x g X. So, Condition ii holds. Condition iii is obvious, and Lemmas 1
Ž .and 9 imply that Condition iv holds for any initial measure n .

˜MLet D be the set of nonrandomized Markov policies for the one-step
˜Mmodel introduced in this section. In fact, D is the set of nonrandomized

˜ Mpolicies in the one-step model. Let VV be the set of performance vectors
for the policies from this set when the original initial distribution m is
fixed. The following result follows from Lemmas 9 and 10 and from
Theorem 3.

˜ MTHEOREM 4. Let the original model satisfy Conditions 1]5. Then VV s
ṼV s VV .

5. PROOF OF THEOREM 1

Unless it is specified, we consider the original infinite-step model in this
section.

LEMMA 11. Let Conditions 1]5 be satisfied. For any policy p there exist a
Markö policy w and randomized Markö policies g m, m s 0, 1, . . . , such

Ž . Ž m. Ž . Ž . mthat: i R g s R p and ii each policy g is nonrandomized at steps
mŽ < . � Ž .t s 0, . . . , m and it coincides with w at these steps, i.e., g G x s I w x gt t

4 Ž .G for t s 0, 1, . . . , m and G g BB A .

Proof. We fix a policy p . We construct policies g m and w. Let m s 0.
According to Theorem 4, there exists a measurable mapping f from X to

ˆ ˆŽ . Ž .U such that R f s R p . Here R is the performance vector in the
one-step model introduced before Lemma 9. According to Dynkin and

w xYushkevich 8, Sect. 3.6 , there exists a policy s in the original model such˜
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s̃ Ž . Ž . Ž . Ž .that P s f x m-a.s. . Therefore, R s s R p . We show that this˜x
Ž < .policy can be selected nonrandomized at step 0. It means that s G x s˜0 0

� Ž . 4 Ž .I w x g G for some Markov policy w and for all G g BB A .0 0
We consider the set Q of all probability measures on A concentrated at

Ž . wone point. This set is a measurable subset of PP A ; see Parthasarathy 16,
x � < Ž < . 4Lemma 6.1, Chap. 2 . Therefore, the set Y s x g X s ? x g Q is a˜0

s̃ Ž . Ž .measurable subset of X. Since P g U m-a.s. , m x g Y s 1. Let c bex 0
Ž < .an arbitrary selector from X to A . We can redefine s ? x being equal to˜0 t

� Ž . 4I c x g G when t s 0, x g X _ Y, and remaining unchanged on Y at
Ž .epoch 0 and in all states at epochs 1, 2, . . . . Since m Y s 1, the measure

s̃P remains unchanged after this modification and policy s is nonrandom-˜m

Ž .ized at step 0. We set w x to be equal to the point where the measure0
Ž < .s ? x is concentrated.˜0
By using the well-known procedure described by Derman and Strauch

w x Ž w x.7 see also Strauch 22, Theorem 4.1 we consider a randomized Markov
0 Ž 0. Ž .policy g such that R g s R s . According to this procedure, we can˜
0Ž . Ž . 0Ž < . � Ž . 4select g ? s s ? . This implies that g G x s I w x g G for all G g˜0 0 0 0

Ž .BB A . The step m s 0 is completed.
Let the Markov policy w be defined at the steps 0, 1, . . . , m. We consider

w ˜Ž . Ž .the probability measure m dx s P dx on X. Let A s A ,˜ 0 m mq1 t mq1qt
r s r , and p s p , t s 0, 1, . . . . We consider a new model with˜ ˜t mq1qt t mq1qt

˜the action sets A , reward functions r , and transition probabilities p at˜ ˜t t t
steps t s 0, 1, . . . . The initial state distribution is m. Condition 5 implies˜
that this measure is nonatomic.

Ž < . m Ž < .We consider a Markov policy p , p da x s g da x ,˜ ˜ t t t mq1qt mq1qt mq1qt
Ž̃ .where t s 0, 1, . . . . Let R p be the performance vector in the new model.˜

We observe that

m `
mm gR p s R g s E r x , a q r x , aŽ . Ž . Ž . Ž .Ý Ým t t t t t t½ 5

ts0 tsmq1

m
w ˜s E r x , a q R p .Ž . Ž .˜Ým t t t½ 5

ts0

We apply our result for m s 0 to the new model with the initial
distribution m. We have that there is a Markov policy g such that this˜ ˜

˜ ˜Ž . Ž . Ž .policy is not randomized at step 0 and R g s R p . We define w x˜ ˜ mq 1
Ž < .to be equal to the point where the measure g ? x is concentrated; for any˜0

Ž .G g BB A

I w x g G , when t s 0, . . . , m q 1;� 4Ž .tmq1 <g G x sŽ .t ½ <g G x , when t ) m q 1.Ž .˜tymy1
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Then
m

mq 1 w ˜R g s E r x , a q R gŽ . Ž .Ž . ˜Ým t t t½ 5
ts0

m
w ˜s E r x , a q R p s R p .Ž . Ž . Ž .˜Ým t t t½ 5

ts0

So, we have constructed the Markov policy w and randomized Markov
mpolicies g satisfying conditions of the lemma.

Proof of Theorem 1. We fix an arbitrary policy p and consider the
policy w and policies g m, m s 0, 1, . . . , from Lemma 11. We have that
Ž m. Ž .R g s R p and Condition 2 implies that for all n s 1, . . . , N and for

all m s 0, 1, . . . .
`

n m nR g y R w F 2 c .Ž . Ž . Ý t
tsmq1

Ž . Ž .Therefore, R w s R p .

6. APPLICATIONS

EXAMPLE 1. We consider a discrete-time single-product inventory sys-
tem with finite capacity. The amount of inventory in the system is limited
above by some number M. The demand at epoch t s 0, 1, . . . is j andt
j , j , . . . is a sequence of independent and identically distributed random0 1
variables. We assume that the distribution of j has no atoms and the jt t
are bounded above with probability 1. The latter assumption and the

� 4nonnegativity assumption mean that P 0 F j F C s 1 for some 0 - C -t
`.

In general, back orders are allowed. However, when the inventory level
declines below some level B, at least D units of inventory have to be
ordered, where D G C. We assume that D F M y B. Orders are placed
after the demand is known and it is possible to order up to the full capacity
M of the system.

Ž .Let h x be the holding cost of the amount of x during one period of
Ž .time. If x - 0 then h x is the cost of back orders during one unit of time.

Ž . x w Ž .We assume that the function h x is continuous, x g y`, ` , and h 0 s
Ž . Ž .0. Ordering costs of u units are K u when u ) 0. We assume that K u is

w wa continuous function of u g 0, ` . In the literature, typical examples of
functions h and K are

bx , if x G 0;h x sŽ . ½yb9x , if x F 0;
Ž .where b9 ) b ) 0 and K u s k q du for some k, d ) 0 when u ) 0.
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Let the initial inventory be y, B F y F M. Then the initial state of the
system x s y y j . The random variable x has the nonatomic distribu-0 0 0

Ž . � 4tion m x F c s P j G y y c . The dynamics of the system is defined by0 0
the equation x s x q a y j , where t s 0, 1, . . . and a is thetq1 t t tq1 t
amount of inventory ordered which is the decision parameter, 0 F a F Mt
y x .t

First, we describe a Markov decision process for this situation. Then we
w xshall introduce the objective functions. Let X s B y C, M be the state

w xspace and A s y1, M y B q C be the action set. The sets of available
actions for t s 0, 1, . . . are

w x� 4y1 j 0, M y x , if x G B ;
A x s A x sŽ . Ž .t ½ w xD , M y x , if x - B.

We explain why we consider action a s y1. According to Conditions 1
Ž .and 4, the sets A x are compact and the costrreward functions are

Ž .continuous. However, ordering costs K u are not continuous at point
Ž .u s 0 in many applications where K u s k q du for small positive u and

Ž .K 0 s 0. So, in our model a s y1 means that there is no order and
Ž .a s 0 means that the order of size 0 has been placed. We define K y1 s

0. The introduction of action a s y1 is possible because we have convex-
Ž .ity assumptions neither on A nor on A x . We also define transition

Ž < . � .probabilities p x F c x , a s P j G x q a y c t s 0, 1, . . . .tq1 t tq1 t
1Ž . 1Ž . Ž . � 4We consider reward functions r x, a s r x, a s yh x I x G 0 ,t

2Ž . 2Ž . Ž . � 4 3Ž . 3Ž . Ž .r x, a s r x, a s yh x I x F 0 , and r x, a s r x, a s yK a , tt t
Ž . 1 2s 0, 1, . . . . Since h 0 s 0, the reward functions r and r are well-de-

Ž .fined. In addition, all three functions are continuous in x, a . For a
w wdiscount factor b g 0, 1 , we define for n s 1, 2, 3 the expected total

discounted criteria
`

n p n nR p s E b r x , a .Ž . Ž .Ým t t
ts0

We observe that Conditions 1]5 hold for this model. We can consider
various criteria which are functions of R1, R2, and R3. For example, we
can define R4 s R1 q R3 as a criterion that characterizes operational
costs which are the sums of ordering and holding costs. The criterion R2 is
related to backorders and it characterizes the quality of service. As an
example, we can consider optimization of R4 subject to constraints on R2.

Ž .Theorems 1 and 2 imply that nonrandomized Markov policies for this
problem are as good as general policies.

EXAMPLE 2. An investor has an option to sell a portfolio at epoch
t s 1, . . . , T. The value of the portfolio at epoch t s 0, . . . , T is z g R.t
The value of z is given and the value of z is defined by transition0 tq1

Ž < . Ž < .probabilities q dz z , t s 0, . . . , T y 1. We assume that q ? z aret tq1 t t t
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x w Ž .nonatomic, weakly continuous, and for each z g ỳ , ` there is f z such
Ž . Ž� Ž .4 < . Ž . Ž .that i q z F f z z s 1 and ii f ? is bounded from above ont tq1 t t

w xevery bounded interval z , z .1 2
At each epoch t s 1, . . . , T , the investor has two options: to sell the

whole portfolio or to keep it. If the portfolio is sold at epoch t, the gain is
z . The goal is to maximize the expected gain under the constraint thatt
with at least probability P ) 0 the gain is greater or equal than a given
level C. We remark that if the value of the portfolio is negative, the
investor should not sell it. In this case the policy to hold the portfolio
forever yields better results.

Ž .We construct a Markov decision process for this problem. Let D s f z1 0
Ž . � < 4and D s f D . We set D s max D t s 1, . . . , T . We consider thetq1 t t

� 4 x x � 4state space X s 0, 1 = y`, D and the action set A s 0, 1, 2 . Action
0 means to hold the portfolio, action 1 means to sell the portfolio at the
price less than or equal to C, and action 2 means to sell the portfolio at
the price greater than or equal to C. It is obvious that this problem is not
feasible if D F C. So, we consider the nontrivial case D ) C.

Ž .The state of the system is x s 0, z if the portfolio has not beent tq1
Ž .sold and x s 1, z otherwise, t s 0, 1, . . . , T y 1. In particular, x st tq1 0

Ž .0, z has a nonatomic distribution.1
Ž . � 4 Ž . � 4For t s 0, . . . , T y 1 we set A 0, z s 0 if z - 0, A 0, z s 0, 1 ift t

Ž . � 4 Ž . � 40 F z - C, A 0, C s 0, 1, 2 , and A 0, z s 0, 2 if C - z F D. If x st
Ž . Ž .1, z or t ) T y 1, the control sets A x are not important. We sett
Ž . � 4A x s 0 in these cases.t

Ž .If at epoch t s 0, . . . , T y 2, the system is in state x s 0, z and actiont
Ž .0 is selected then the next state is 0, y , where y has the distribution

Ž < .q dy z . In all other situations, the system moves from state x to thetq1 t
Ž . w xstate 1, u where u has a uniform distribution on D y 1, D . The selec-

tion of q in the latter cases satisfies the nonatomic and continuitytq1
conditions.

1ŽŽ . .For t s 0, . . . , T y 1, we define r 0, z , i s z for i ) 0 andt
2ŽŽ . . nŽ .r 0, z , 2 s 1. We also set r x s 0 in all other situations, n s 1, 2. Thet t

problem of maximization of the expected gain subject to the constraint
that the gain exceeds C with at least probability P is equivalent to the

1Ž . 2Ž .maximization of R p subject to the constraint that R p G P. This
model satisfies the conditions of Theorem 2. Therefore, if this problem is
feasible, there exists an optimal Markov policy.
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