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Abstract

We show that the framework developed by Voiculescu for free random variables can be extended to
arrays of random variables whose multiplication imitates matricial multiplication. The associated notion
of independence, called matricial freeness, can be viewed as a concept which not only leads to a natural
generalization of freeness, but also underlies other fundamental types of noncommutative independence,
such as monotone independence and boolean independence. At the same time, the sums of matricially free
random variables, called random pseudomatrices, are closely related to random matrices. The main results
presented in this paper concern the standard and tracial central limit theorems for random pseudomatrices
and the corresponding limit distributions which can be viewed as matricial semicircle laws.
© 2010 Elsevier Inc. All rights reserved.
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1. Introduction

It has been shown by Voiculescu [25] that free random variables arise naturally as limits
of random matrices. In particular, if we take symmetric matrices whose entries form a family
of independent Gaussian random variables and we let the size of these matrices go to infinity,
their joint distribution (with respect to normalized trace composed with classical expectation)
converges to the joint distribution of freely independent random variables with the semicircle
distribution obtained by Wigner [29] as the limit distribution of one Gaussian random matrix.

Therefore, we can study free random variables, using at least two different frameworks: op-
erator algebras and random matrices. However, it is to some extent surprising that a random
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matrix framework, of quite different nature than that of operator algebras, exists for free random
variables, and the connection between these two approaches does not seem to be very transparent.
In this connection, our first motivation is to better understand the relation between the operatorial
approach to free probability and random matrices.

The second motivation comes from the question whether different types of independence, like
freeness of Voiculescu, monotone independence of Muraki [19] and boolean independence based
on the regular free product of Bożejko [5], can be included in one natural framework. Note in
this context that models with more than one state on a given algebra, like conditional freeness
of Bożejko and Speicher [6] and freeness with infinitely many states of Cabanal-Duvillard and
Ionesco [8,9] extend free probability and include, as shown by Franz [12], certain elements of
monotone probability. For instance, this can be done for convolutions, but including monotone
independence in the framework of conditional freeness can be done only under additional (rather
restrictive) assumptions on the considered algebras. We show in this paper that one can remedy
this situation by introducing a concept of ‘independence’ which reminds freeness, but at the same
time has some ‘matricial’ features which places it somewhere between freeness and the model
of random matrices.

A different reason to look for a new concept of independence arises from concrete exam-
ples of interpolations between free probability and monotone probability [17,18]. In particular,
the continuous (p, q)-Brownian motions with Kesten distributions and related Poisson processes
studied in [2,18] lead to the first example of a two-mode interacting Fock space introduced di-
rectly and not by means of orthogonal polynomials. This example has certain matricial features
which also call for a new model of ‘independence’ that would be related to freeness.

The main result of our paper is the construction of a model, called matricial freeness, which
is related to the concept of the free product of states introduced and studied by Ching [10] in
the context of von Neumann algebras and by Avitzour [3] and Voiculescu [24] in the context of
C∗-algebras. The underlying concept is that of the matricially free product of an array of Hilbert
spaces with distinguished unit vectors

(H, ξ) = ∗M
i,j (Hi,j , ξi,j )

which reminds the free product of Hilbert spaces, to which we associate the matricially free
product of states. Multiplication of ‘matricially free random variables’ under this product of
states reminds the free product but it also satisfies the condition imitating matrix multiplication.
Similarities between free probability and ‘matricially free probability’ hold also on other levels,
some of which are studied in this paper.

Strictly speaking, however, one needs to take a ‘restriction’ of matricial freeness, in which
not all products imitating matrix multiplication are included, called strong matricial freeness,
to recover freeness and monotone independence without using the asymptotics. In particular, let
(Xi,j ) be a finite array of strongly matricially free random variables from some unital algebra A
which includes the diagonal. Then

(A) the sums corresponding to the rows of a square array,

Ai :=
∑
j

Xi,j

are free with respect to ϕ,
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(B) the sums corresponding to the rows of a lower-triangular array,

Bi :=
∑
j�i

Xi,j

are monotone independent with respect to ϕ,
(C) the diagonal variables Xj,j , j ∈ I , are boolean independent with respect to ϕ,

where ϕ is a distinguished state on A which lies everywhere on the diagonal of the associated
array of states (ϕi,j ). In the case of triangular arrays, we tacitly assume that the index sets in-
volved are linearly ordered. Let us add that upper triangular arrays give anti-monotone random
variables.

In this paper, of main interest to us are limit theorems, in which we consider a sequence
(Xi,j (n))1�i,j�n of matricially free arrays of variables taken from unital ∗-algebras A(n), re-
spectively, equipped with distinguished states φ(n) and associated states (φj (n))1�j�n called
‘conditions’. We study sums

S(n) =
n∑

i,j=1

Xi,j (n)

called random pseudomatrices, and their asymptotic distributions with respect to the states φ(n)

and with respect to normalized traces

ψ(n) = 1

n

n∑
j=1

φj (n),

respectively. We assume that the distributions of the Xi,j (n) in the states φ(n) and φj (n) depend
on n in a suitable way and are block-identical.

It turns out that the central limit theorem for the distributions of random pseudomatrices in
the states φ(n) may be viewed as an analog of the central limit theorem for free random variables
(especially, if we take square arrays). In turn, the ‘tracial’ central limit theorem for random pseu-
domatrices in the states ψ(n) is related to the limit theorem for random matrices (especially,
if we take square arrays with block-symmetric variances). The limit distributions play then the
role of multivariate generalizations of the semicircle distributions. Let us point out, however, that
when we consider lower-triangular arrays, the central limit laws can be viewed as generalizations
of the arcsine law.

More importantly, refinements of our limit theorems give a deeper analogy between random
pseudomatrices and random matrices. By a refinement we understand the scheme in which pseu-
domatrices are replaced by smaller sums which play the role of blocks. Namely, in the case of
block-symmetric variances

(D) the ψ(n)-distributions of symmetric blocks of random pseudomatrices agree asymptotically
with those of random symmetric blocks,
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where random symmetric blocks are symmetric blocks of random matrices in the approach of
Voiculescu [25] and Dykema [11]. It is worth mentioning that in this scheme the difference
between blocks built from matricially free random variables and strongly matricially free random
variables disappears as n → ∞ (in both cases blocks are asymptotically matricially free).

This and other asymptotic properties of random pseudomatrices and their blocks are studied in
a subsequent paper [16]. Among these properties are also asymptotic versions of (A)–(C) which
refer to matricial freeness. Thus, the subarrays corresponding to row blocks of pseudomatrices
are asymptotically free, asymptotically monotone independent, or asymptotically boolean inde-
pendent, depending on whether the pseudomatrices are square, block lower-triangular, or block
diagonal, respectively. Therefore, matricial freeness can be treated as a notion of independence
which underlies the fundamental types of noncommutative independence as well as the asymp-
totic structure of random matrices.

In Section 2, we introduce the concepts of the ‘matricially free product of states’ and the ‘ma-
tricially free Fock space’. We obtain from these structures their strong counterparts in Section 3.
In Section 4, we introduce the notions of ‘matricial freeness’ and ‘strong matricial freeness’ and
discuss the example of the discrete (strongly) matricially free Fock space. In Section 5, of com-
binatorial nature, we define and study certain real-valued functions on the set of non-crossing
partitions, defined in terms of traces of certain matrices. In Section 6, we study the asymptotic
behavior of random pseudomatrices and we prove standard and tracial central limit theorems. The
limit distributions, which can be interpreted as matricial multivariate generalizations of semicir-
cle laws, are studied in Section 7. Their decompositions in terms of s-free additive convolutions
in the case of two-dimensional arrays are proved in Section 8. Two geometric realizations of the
limit distributions, in terms of walks on weighted binary trees and in terms of weighted Catalan
paths, are given in Section 9.

2. Matricially free products

In this section we introduce the notion of the matricially free product of states as well as the
corresponding notions of the matricially free product of Hilbert spaces and the matricially free
Fock space.

When speaking of arrays indexed by two indices, say i, j , we shall assume that (i, j) ∈ J ⊆
I × I , where {(j, j): j ∈ I } = � ⊂ J and I is an index set. This refers to the situation when we
deal with arrays which contain the diagonal. In particular, this includes lower-triangular arrays
of the form J := {(i, j): i � j, i, j ∈ I }, in which case we shall tacitly assume that I is linearly
ordered. Without loss of generality we can use the square array formulation most of the time
and take their subarrays if needed. Of special interest will be the finite-dimensional case when
I = [n] := {1,2, . . . , n}.

Definition 2.1. Let Ĥ := (Hi,j ) be an array of complex Hilbert spaces. By the matricially free
Fock space over Ĥ we understand the Hilbert space direct sum

M(Ĥ) = CΩ ⊕
∞⊕

m=1

⊕
(i1,i2)	=···	=(im,im)

n1,...,nm∈N

H⊗n1
i1,i2

⊗ H⊗n2
i2,i3

⊗ · · · ⊗ H⊗nm

im,im
,

where Ω is a unit vector, with the canonical inner product.
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Let us observe that the Hilbert space tensor powers which appear in the above direct sum have
the following three properties:

(P1) the ‘matricial property’ – the second index of the preceding power agrees with the first
index of the following power,

(P2) the ‘freeness property’ – the consecutive pairs of indices are different,
(P3) the ‘diagonal subordination property’ – the last pair is ‘diagonal’.

The last property is needed to ensure existence of limit mixed moments in limit theorems with
the square-root normalization. The term ‘subordination’ follows from the ‘subordination’ of the
related additive convolution of an array of measures to the diagonal measures. Although we do
not study this convolution in this paper, the basic idea can be understood on the example of the
binary tree in Section 9, which can be viewed as a comb product of two graphs, of which the first
one is labelled by a diagonal variance.

Of course, if the index set I consists of one element and thus Ĥ is just one Hilbert space H,
the corresponding matricially free Fock space reduces to the usual free Fock space F (H). In
general, however, M(Ĥ) is a (usually, proper) subspace of the free Fock space F (

⊕
i,j Hi,j ) ∼=

∗i,j F (Hi,j ).
Related to the ‘matricially free Fock space’ is the ‘matricially free product of Hilbert spaces’.

The terminology parallels that introduced in free probability [24,28].

Definition 2.2. Let (Hi,j , ξi,j ) be an array of Hilbert spaces with distinguished unit vectors. By
the matricially free product of (Hi,j , ξi,j ) we understand the pair (H, ξ), where

H = Cξ ⊕
∞⊕

m=1

⊕
(i1,i2)	=···	=(im,im)

H0
i1,i2

⊗ H0
i2,i3

⊗ · · · ⊗ H0
im,im

,

with H0
i,j = Hi,j � Cξi,j and ξ being a unit vector. We denote it (H, ξ) = ∗M

i,j (Hi,j , ξi,j ).

Proposition 2.1. It holds that

(
M(Ĥ), ξ

) ∼= ∗M
i,j

(
M(Hi,j ), ξi,j

)
.

Proof. We use the definition of the matricially free Fock space, the isomorphism M(Hi,j ) ∼=
F (Hi,j ) for any i, j and regroup terms. �

For any j , introduce diagonal subspaces of H of the form

H(j, j) = Cξ ⊕
∞⊕

m=2

⊕
(j,i2)	=···	=(im,im)

i2 	=j

H0
j,i2

⊗ H0
i2,i3

⊗ · · · ⊗ H0
im,im

,

and the associated diagonal partial isometries Vj,j : Hj,j ⊗ H(j, j) → H:
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ξj,j ⊗ ξ → ξ,

H0
j,j ⊗ ξ → H0

j,j ,

ξj,j ⊗ (
H0

j,j1
⊗ · · · ⊗ H0

jm,jm

) → H0
j,j1

⊗ · · · ⊗ H0
jm,jm

,

H0
j,j ⊗ (

H0
j,j1

⊗ · · · ⊗ H0
jm,jm

) → H0
j,j ⊗ H0

j,j1
⊗ · · · ⊗ H0

jm,jm
,

where m > 1.
For any i 	= j we introduce off-diagonal subspaces of H of the form

H(i, j) =
∞⊕

m=1

⊕
(j,i2)	=···	=(im,im)

H0
j,i2

⊗ H0
i2,i3

⊗ · · · ⊗ H0
im,im

and the associated off-diagonal partial isometries Vi,j : Hi,j ⊗ H(i, j) → H for i 	= j :

ξi,j ⊗ (
H0

j,j1
⊗ · · · ⊗ H0

jm,jm

) → H0
j,j1

⊗ · · · ⊗ H0
jm,jm

,

H0
i,j ⊗ (

H0
j,j1

⊗ · · · ⊗ H0
jm,jm

) → H0
i,j ⊗ H0

j,j1
⊗ · · · ⊗ H0

jm,jm
,

where m � 1.
Each H(i, j) is spanned by simple tensors which do not begin with vectors from H0

i,j and
for that reason it is suitable for the left free action of the operators creating such vectors. Thus,
roughly speaking, both types of partial isometries jointly replace the unitary maps used in free
probability. It is the diagonal subordination property which is responsible for distinguishing two
types of isometries.

Consider an array of C∗-algebras (Ai,j ), each with a unit 1i,j and a state ϕi,j , and let
(Hi,j , πi,j , ξi,j ) be the associated GNS triples, so that ϕi,j (a) = 〈πi,j (a)ξi,j , ξi,j 〉 for any
a ∈ Ai,j . For any i, j , let λi,j be the ∗-representation of Ai,j given by

λi,j (a) = Vi,j

(
πi,j (a) ⊗ IH(i,j)

)
V ∗

i,j for a ∈ Ai,j ,

where IH(i,j) denotes the identity on H(i, j). Note that these representations are, in general,
non-unital. In fact,

λi,j (1i,j ) = Vi,jV
∗
i,j = ri,j + si,j ,

where ri,j and si,j are canonical projections in B(H) given by

ri,j = PH(i,j) and si,j = PK(i,j),

where K(i, j) = H0
i,j ⊗ H(i, j). For given i, j , the projections ri,j and si,j are orthogonal and

their sum is the canonical projection onto the subspace of H onto which λi,j (Ai,j ) acts non-
trivially.
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The λi,j ’s remind the representations λi of free probability [24,28], but the corresponding
operators λi,j (a) have larger kernels. Using λi,j ’s, we shall define product representations on

A :=
⊔
i,j

Ai,j ,

the free product without identification of units, equipped with the unit 1A, and products of states
which are analogs of the free product representation and the free product of states, respectively.

Definition 2.3. The matricially free product representation πM = ∗M
i,jπi,j is the unital ∗-homo-

morphism λ : A → B(H) given by the linear extension of

λ(1A) = 1 and λ(a1a2 . . . an) = λi1,j1(a1)λi2,j2(a2) . . . λin,jn(an)

for any ak ∈ Aik,jk
, k = 1, . . . , n, with (i1, j1) 	= (i2, j2) 	= · · · 	= (in, jn). The associated state

ϕ = ∗M
i,jϕi,j : A → C is given by

ϕ(a) = 〈
πM(a)ξ, ξ

〉
and will be called the matricially free product of (ϕi,j ).

Basic properties of the product state ϕ are collected in the proposition given below. Roughly
speaking, they show that this state (on the free product of C∗-algebras without identification of
units) has similar properties as the free product of states (on the free product of C∗-algebras
with identification of units) except that the units of these algebras act as units only on ‘matricial’
tensor products and otherwise they act as null projections.

For that purpose, it will be useful to introduce sets of indices associated with ‘matricial’ tensor
products:

Λn = {(
(i1, i2), (i2, i3), . . . , (in, in+1)

)
: (i1, i2) 	= (i2, i3) 	= · · · 	= (in, in+1)

}
and their union Λ = ⋃∞

n=1 Λn. Finally, I stands for the unital subalgebra of A generated by
the units 1i,j . In analogy to the notion of marginal laws in classical probability, by marginal
moments we shall understand moments of the form ϕi,j (a1 . . . ak), where a1 . . . ak ∈ Ai,j and i,
j are arbitrary.

Proposition 2.2. Let ϕ be the matricially free product of states (ϕi,j ) and let ak ∈ Aik,jk
, where

k ∈ [n] and (i1, j1) 	= · · · 	= (in, jn).

1. If ak ∈ Kerϕik,jk
for k ∈ [n], then ϕ(a1a2 . . . an) = 0.

2. If ar = 1ir ,jr and am ∈ Kerϕim,jm for r < m � n, then

ϕ(a1 . . . an) =
{

ϕ(a1 . . . ar−1ar+1 . . . an) if ((ir , jr ), . . . , (in, jn)) ∈ Λ,

0 otherwise.
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3. For any a ∈ A, u1, u2 ∈ I and i, j ∈ I , it holds that

ϕ(u1au2) = ϕ(u1)ϕ(a)ϕ(u2) and ϕ(1i,j ) = δi,j .

4. The restriction of ϕ to Aj,j is ϕj,j for any j ∈ I .
5. The mixed moments ϕ(a1a2 . . . an) are uniquely expressed in terms of marginal moments.

Proof. If ak ∈ Kerϕik,jk
for k ∈ [n], where (i1, j1) 	= · · · 	= (in, jn), then it follows from the

definition of the λi,j that

1. πM(a1 . . . an)ξ = 0 if ((i1, j1), . . . , (in, jn)) /∈ Λ or in 	= jn,
2. πM(a1 . . . an)ξ ∈ H0

i1,j1
⊗ · · · ⊗ H0

in,jn
if ((i1, j1), . . . , (in, jn)) ∈ Λ and in = jn.

In both cases we obtain a vector orthogonal to ξ on the RHS, which proves (1). Suppose
now that the assumptions of (2) hold. If ((ir , jr ), . . . , (in, jn)) ∈ Λ, then λir ,jr (1ir ,jr ) acts
as a unit on H0

ir+1,jr+1
⊗ · · · ⊗ H0

in,jn
by the definition of the representations λi,j . On the

other hand, λir ,jr (1ir ,jr ) kills any simple tensor beginning with h ∈ H0
ir+1,jr+1

if jr 	= ir+1 or
((ir+1, jr+1), . . . , (in, jn)) /∈ Λ since Vir ,jr does, which completes the proof of (2). In turn,
(3) follows from the action of the λ(1i,j ) onto ξ . That ϕ agrees with ϕj,j on Aj,j for any
j ∈ I follows from the action of the λj,j (a), a ∈ Aj,j , onto ξ , namely πM(a)ξ = (πj,j (a)ξ)0 +
ϕj,j (a)ξ , which gives (4). Finally, (5) is a consequence of (1)–(2). �

In a similar way we can define states associated with other unit vectors from H. We shall
consider the simplest case of states associated with unit vectors ej ∈ H0

j,j , j ∈ I , which are in
the ranges of πj,j (Aj,j ), respectively, namely ϕj : A → C defined by the formulas

ϕj (a) = 〈
πM(a)ej , ej

〉
,

called conditions associated with ϕ, which will be used for computing normalized traces. Most
properties of the states ϕj are inherited from ϕ as the proposition given below demonstrates.
However, ϕj |I is quite different than ϕ|I due to different normalization conditions.

Proposition 2.3. Let ϕj , j ∈ I , be the conditions associated with ϕ and let ak ∈ Aik,jk
, where

k ∈ [n] and (j, j) 	= (i1, j1) 	= · · · 	= (in, jn) 	= (j, j).

1. If ak ∈ Kerϕik,jk
for k ∈ [n], then ϕj (a1a2 . . . an) = 0 for each j .

2. If ar = 1ir ,jr and am ∈ Kerϕim,jm for r < m � n, then

ϕj (a1 . . . an) =
{

ϕj (a1 . . . ar−1ar+1 . . . an) if ((ir , jr ), . . . , (in, jn)) ∈ Λ,

0 otherwise.

3. For any a ∈ A, u1, u2 ∈ I and i, j, k ∈ I , it holds that

ϕj (u1au2) = ϕj (u1)ϕj (a)ϕj (u2) and ϕj (1i,k) = δj,k.

4. The restriction of ϕj to Ai,j is ϕi,j for any i 	= j .
5. The mixed moments ϕj (a1a2 . . . an) are uniquely expressed in terms of marginal moments.
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Proof. Properties (1) and (2) follow from (1) and (2) of Proposition 2.2. The normalization in
(3) follows directly from the action of λi,k(1i,k) onto H0

j,j . In this context, notice that the unit
vectors ej play the same role with respect to the action of the λi,j (a) for any i 	= j as ξi,j

plays with respect to the action of πi,j (a), where a ∈ Ai,j , and thus ϕj (a) = 〈λi,j (a)ej , ej 〉 =
〈πi,j (a)ξi,j , ξi,j 〉 = ϕi,j (a), which gives (4) for i 	= j . Finally, there exists bj ∈ Aj,j ∩ Kerϕ
such that

ϕj (w) = ϕ
(
b∗
jwbj

)
for any w ∈ ⊔

i,j Ai,j , which reduces computations of mixed moments in each state ϕj to com-
putations of mixed moments in the state ϕ. This proves (5). �
Remark 2.1. The states ϕ and (ϕj ) share together the property of extending the array of states
(ϕi,j ). Thus, ϕ extends the diagonal states ϕj,j for all j , but it does not extend the off-diagonal
states ϕi,j for i 	= j since πM(a)ξ = 0 for any a ∈ Ai,j . In turn, ϕj extends the off-diagonal
states ϕi,j , where i 	= j , but it does not extend ϕj,j . This is a natural consequence of differences
in the definitions of the diagonal and off-diagonal partial isometries.

Finally, let us denote by λ(I) the unital commutative ∗-subalgebra of B(H) generated by the
λ(1i,j ), where i, j ∈ I . By abuse of notation, λ(1i,j ) will also be denoted by 1i,j (in general,
these projections are not mutually orthogonal).

3. Strongly matricially free products

Of special importance is the subspace of the matricially free Fock space, called the ‘strongly
matricially free Fock space’, in which the diagonal Hilbert spaces appear only at the end of tensor
products. The main reason is that it is related to both free and monotone Fock spaces. We also
study the associated product states which can be viewed as direct generalizations of both free
and monotone products of states.

Definition 3.1. By the strongly matricially free Fock space over Ĥ := (Hi,j ) we understand the
subspace of M(Ĥ) of the form

R(Ĥ) = CΩ ⊕
∞⊕

m=1

⊕
i1 	=···	=im

n1,...,nm∈N

H⊗n1
i1,i2

⊗ H⊗n2
i2,i3

⊗ · · · ⊗ H⊗nm

im,im
,

with the canonical inner product.

A justification for the word ‘strong’ is that in this case the words i1i2 . . . im which label the
tensor products in the above definition satisfy i1 	= i2 	= · · · 	= im.

Example 3.1. The simplest space of this type is associated with a two-dimensional square ar-
ray Ĥ. Then

R(Ĥ) =
∞⊕

R(m)(Ĥ),
m=0
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where the first few summands are of the form

R(0)(Ĥ) = CΩ,

R(1)(Ĥ) = H1,1 ⊕ H2,2,

R(2)(Ĥ) = H⊗2
1,1 ⊕ H⊗2

2,2 ⊕ (H1,2 ⊗ H2,2) ⊕ (H2,1 ⊗ H1,1),

R(3)(Ĥ) = H⊗3
1,1 ⊕ H⊗3

2,2 ⊕ (
H2,1 ⊗ H⊗2

1,1

) ⊕ (
H1,2 ⊗ H⊗2

2,2

) ⊕ (
H⊗2

2,1 ⊗ H1,1
)

⊕ (
H⊗2

1,2 ⊗ H2,2
) ⊕ (H1,2 ⊗ H2,1 ⊗ H1,1) ⊕ (H2,1 ⊗ H1,2 ⊗ H2,2),

etc. In contrast to M(Ĥ), we do not have tensor products like H2,2 ⊗ H2,1 ⊗ H1,1 and H1,1 ⊗
H1,2 ⊗ H2,2 in the summand of the third order.

Remark 3.1. For a given array of Hilbert spaces Ĥ = (Hi,j ), we have inclusions

R(Ĥ) ⊆ M(Ĥ) ⊆ F
(⊕

i,j

Hi,j

)

which, in most cases, are proper. Moreover, if we have a square array and Hi,j
∼= Hi for any

i, j ∈ I , where (Hi )i∈I is a family of Hilbert spaces, then there is a natural isomorphism

R(Ĥ) ∼= F
(⊕

i∈I

Hi

)

since H⊗n1
i1,i2

⊗ H⊗n2
i2,i3

⊗ · · · ⊗ H⊗nm

im,im
∼= H⊗n1

i1
⊗ H⊗n2

i2
⊗ · · · ⊗ H⊗nm

im
for any i1, i2, . . . , im ∈ I ,

n1, . . . , nm, m ∈ N. Similarly, if we have a lower-triangular array and Hi,j
∼= Hi for any i � j ,

then R(Ĥ) is isomorphic to the monotone Fock space.

Moreover, as expected, there is a product of Hilbert spaces related to the strongly matricially
free Fock space, and an analog of Proposition 2.1 holds.

Definition 3.2. By the strongly matricially free product of (Hi,j , ξi,j ) we understand the pair
(G, ξ), where G is the subspace of H of the form

G = Cξ ⊕
∞⊕

m=1

⊕
i1 	=···	=im

H0
i1,i2

⊗ H0
i2,i3

⊗ · · · ⊗ H0
im,im

.

We denote it (G, ξ) = ∗S
i,j (Hi,j , ξi,j ).

If we consider a family of unital C∗-algebras (Ai )i∈I , each equipped with a family of states
(ϕi,j )j∈I , then we can look at this product space as follows. If (Hi,j , πi,j , ξi,j ) is the GNS triple
associated with the pair (Ai , ϕi,j ), then the Hilbert space Hi,j (as well as the corresponding state
and representation) taken as the representation space for the algebra Ai at some given tensor site
depends on the algebra Aj represented at the following tensor site on the space Hj,k for some k.
It is worth noting that in this framework we can assume that for fixed i ∈ I all vectors ξi,j ,
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j ∈ I , are identified since we can take the tensor product of Hilbert spaces
⊗

j Hi,j and set
ξi = ⊗

j∈I ξi,j for each i ∈ I . It is not hard to see that in this framework our model is related to
freeness with infinitely many states [8,9].

The construction of the product state is similar to that of the matricially free product. The only
difference in all definitions is that the sets Λn are replaced by

Γn = {(
(i1, i2), (i2, i3), . . . , (in, in+1)

)
: i1 	= i2 	= · · · 	= in

}
and their union Λ by Γ = ⋃∞

n=1 Γn. Note that the conditions which define Γn’s are stronger than
those which define Λn’s and therefore all objects constructed in the strong case are obtained from
the standard ones by a projection-type operation.

The partial isometries in the strong case, denoted by Wi,j ’s, remind Vi,j ’s except that they
refer to G rather than H. In particular, the diagonal partial isometries Wj,j : Hj,j ⊗ G(j, j) → G
are given by

ξj,j ⊗ ξ → ξ and H0
j,j ⊗ ξ → H0

j,j ,

where G(j, j) = Cξ for any j , whereas the off-diagonal partial isometries Wi,j and the associated
subspaces G(i, j) are similar to those in the standard case.

Definition 3.3. Let ρi,j be the ∗-representation of Ai,j on G given by the formula

ρi,j (a) = Wi,j

(
πi,j (a) ⊗ IG(i,j)

)
W ∗

i,j where a ∈ Ai,j ,

for any (i, j) ∈ J . The corresponding strongly matricially free product representation πS =
∗S

i,jπi,j and strongly matricially free product of states ∗S
i,j ϕi,j are defined in terms of the ρi,j

as in the matricially free case.

Using appropriate direct sums of these representations, we can reproduce products of C∗-
probability spaces in free probability of Voiculescu and in monotone probability of Muraki. If
(Hi , ξi) is a family of Hilbert spaces with distinguished unit vectors, then in the decomposition
theorem given below, ∗i∈I (Hi , ξi), �i∈I (Hi , ξi) and �i∈I (Hi , ξi), respectively, stand for free,
monotone and boolean products of Hilbert spaces.

Theorem 3.1 (Decomposition theorem). Let (Ai,j , ϕi,j ) = (Ai , ϕi) for any i, j and let
(πi, Hi , ξi) be the GNS triple associated with (Ai , ϕi) for any i ∈ I .

1. If (Ai,j , ϕi,j ) is a square array, then (G, ξ) ∼= ∗i∈I (Hi , ξi) and each λi = ⊕
j∈I ρi,j is the

canonical ∗-representation of Ai on ∗i∈I (Hi , ξi).
2. If (Ai,j , ϕi,j ) is a lower-triangular array, then (G, ξ) ∼= �i∈I (Hi , ξi) and each τi =⊕

i�j ρi,j is the canonical ∗-representation of Ai on �i∈I (Hi , ξi).
3. If (Ai,j , ϕi,j ) is a diagonal array, then (G, ξ) ∼= �i∈I (Hi , ξi) and each ρi,i is the canonical

∗-representation of Ai on �i∈I (Hi , ξi).

Proof. First, let us remark that the representations λi and τi are well defined since the corre-
sponding direct sums of operators

⊕
ρi,j (a) are convergent in the strong-operator topology on
j
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B(G) for any a ∈ Ai and i ∈ I . Now, since Hi,j
∼= Hi for any i, j , we have a natural isomorphism

H0
i1,i2

⊗ H0
i2,i3

⊗ · · · ⊗ H0
im,im

∼= H0
i1

⊗ H0
i2

⊗ · · · ⊗ H0
im

for any i1 	= i2 	= · · · 	= im or any i1 > i2 > · · · > im, in the case of square or lower-triangular
arrays, respectively, which leads to the corresponding isomorphisms

(G, ξ) ∼= ∗i∈I (Hi , ξi) or (G, ξ) ∼= �i∈I (Hi , ξi)

(recall our tacit assumption that I is linearly ordered when dealing with triangular arrays). Then
partial isometries which lie in the same row of the array (Wi,j ) are orthogonal in the sense
that Wi,jWi,k = δj,kWi,j for any i, j , k (in the monotone case the array of partial isometries
is lower-triangular and we have here i > j > k). Therefore, we have an orthogonal direct sum
decomposition ⊕

j∈I

Wi,j = Vi, i ∈ I,

of the unitaries Vi used in the definition of the free product representation [21,24], and an analo-
gous decomposition in the monotone case. The direct sum decompositions of λi(a) and τi(a) in
terms of ρi,j (a)’s, where a ∈ Ai , follow then immediately from Definition 3.3, which completes
the proof of (1) and (2). In particular, it follows that each λi is unital, but τi are, in general,
non-unital. Since the case of a diagonal array is rather elementary, the proof is completed. �

Consequently, if A is the C∗-algebra generated by the family {λi(Ai )} of subalgebras of B(G)

and ϕ(.) = 〈.ξ, ξ 〉, then (A, ϕ) is the free product of C∗-probability spaces. Similar statements
hold for the monotone and boolean products of C∗-probability spaces, except that the identity
I ∈ B(G) has to be added to the generators. In the natural way this leads to properties (A), (B)
and (C) of the introduction, of which the first two can be viewed as decompositions of free and
monotone independent random variables in terms of strongly matricially free ones.

The above theorem allows us to view the strongly matricially free product of states as a defor-
mation of the free product of states, obtained by a natural direct sum decomposition of the free
product of Hilbert spaces. The matricially free product of states is then obtained from its strong
counterpart by an extension to a slightly larger Hilbert space which includes all products which
arise naturally in matrix multiplication. It is clear that basic results on the strongly matricially
free product of states are similar to those for the matricially free product and therefore we state
them in an abbreviated form without a proof.

Proposition 3.1. Let ϕ be the strongly matricially free product of states (ϕi,j ) and let ϕj , j ∈ I ,
be the associated conditions. Then the statements of Propositions 2.2–2.3 remain true, with Λ

replaced by Γ .

As we have mentioned earlier, one of the advantages of using the strong structures is that
they are straightforward generalizations of those in free probability (in the case of square arrays)
and monotone probability (in the case of lower-triangular arrays). However, it is the matricial
freeness which gives a connection with random matrices.
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Remark 3.2. Slightly more general is the case when the diagonal and off-diagonal states differ,
but the latter stay the same within each row, namely

(Ai,i , ϕi,i ) = (Ai , ϕi) and (Ai,j , ϕi,j ) = (Ai ,ψi) for i 	= j,

where each Ai is equipped with two states, ϕi and ψi , respectively. Similar reasoning to that
in the free case leads then to the conditionally free product of states (for square arrays) and
conditionally monotone products of states (for lower-triangular arrays).

4. Matricial freeness

Guided by the notion of the matricially free product of states, we shall introduce now the
associated concept of independence called ‘matricial freeness’, and closely related to it, ‘strong
matricial freeness’. They involve arrays of noncommutative probability spaces and to some extent
they remind models with many states [6,8,9], but they cannot be reduced in a natural way to
any of these (freeness with infinitely many states has some non-empty intersection with ‘strong
matricial freeness’ and conditional freeness is its special case). Moreover, we will study discrete
(strong) matricially free Fock spaces.

Let A be a unital algebra with an array (Ai,j ) of subalgebras of A. We will assume that each
Ai,j has an internal unit 1i,j which may be different from the unit of A, and we assume that the
unital subalgebra I generated by all internal units is commutative. Let ϕ be a distinguished state
on A and let {ϕj : j ∈ I } be a family of additional states on A, where by a state we understand
a normalized linear functional. If A is a unital ∗-algebra, then we assume that Ai,j ’s are ∗-
subalgebras and all states are positive functionals. Further,

Definition 4.1. States ϕj , j ∈ I , will be called conditions associated with ϕ if for any j ∈ I there
exist bj , cj ∈ Aj,j ∩ Ker(ϕ) such that ϕj (a) = ϕ(cjabj ) for any a ∈ A. The array of states on A
given by

ϕj,j = ϕ and ϕi,j = ϕj for any i 	= j

will be said to be defined by ϕ and the associated conditions ϕj . In addition, if A is a ∗-algebra,
we assume that cj = b∗

j for any j .

Throughout this paper we will assume the following normalization conditions:

ϕ(1i,j ) = δi,j and ϕj (1i,k) = δj,k

for any i, j , k. Although they are natural in view of the Hilbert space formulation presented be-
fore and will be assumed in this paper, we prefer to exclude them from the definition given below.
In particular, the normalization of each ϕj implies that if a ∈ Ai,k and j 	= k, then ϕj (a) = 0.
Moreover, it is equivalent to scaling the variables cj , bj according to ϕ(cj bj ) = 1.

Definition 4.2. Let (ϕi,j ) be the array defined by ϕ and the associated conditions ϕj . We say that
(1i,j ) is a matricially free array of units associated with (Ai,j ) and (ϕi,j ) if



4088 R. Lenczewski / Journal of Functional Analysis 258 (2010) 4075–4121
1. ϕ(u1au2) = ϕ(u1)ϕ(a)ϕ(u2) for any a ∈ A and u1, u2 ∈ I ,
2. for ak ∈ Aik,jk

∩ Kerϕik,jk
, where r < k � n,

ϕ(a1ir ,jr ar+1 . . . an) =
{

ϕ(aar+1 . . . an) if ((ir , jr ), . . . , (in, jn)) ∈ Λ,

0 otherwise,

where a ∈ A is arbitrary and (ir , jr ) 	= · · · 	= (in, jn).

The array (1i,j ) is called a strongly matricially free array of units if Λ is replaced by Γ .

The above definition enables us to define the concepts of matricial freeness and its strong
version called strong matricial freeness. They both bear some resemblance to freeness, but the
main difference is that the identified unit in the context of freeness is replaced by the (strongly)
matricially free array of units. In fact, as we have already remarked, it is the strong matricial
freeness which can be viewed as a direct generalization of freeness.

Definition 4.3. We say that (Ai,j ) is matricially free with respect to the array (ϕi,j ) defined by
ϕ and the associated conditions ϕj if

1. for any ak ∈ Kerϕik,jk
∩ Aik,jk

, where k ∈ [n] and (i1, j1) 	= · · · 	= (in, jn),

ϕ(a1a2 . . . an) = 0,

2. (1i,j ) is a matricially free array of units associated with (Ai,j ) and (ϕi,j ).

In an analogous manner we define strongly matricially free arrays of subalgebras.

Definition 4.4. The array of variables (ai,j ) in a unital algebra A will be called (strongly) matri-
cially free with respect to the array (ϕi,j ) of states on A if the array (C[ai,j ,1i,j ]) is (strongly)
matricially free with respect to (ϕi,j ) for some array of elements (1i,j ) of A which is a (strongly)
matricially free array of units. If A is a unital ∗-algebra, then, in addition, we require that the
functionals ϕi,j are positive, the Ai,j are ∗-subalgebras and the 1i,j are projections. Then an
array of variables (ai,j ) will be called ∗-(strongly) matricially free if the array of ∗-algebras
(C〈ai,j , a

∗
i,j ,1i,j 〉) is (strongly) matricially free.

Using the above definitions, we can uniquely express mixed moments under ϕ and thus under
ϕj ’s of arbitrary matricially free random variables in terms of marginal moments under ϕi,j ’s.
To see how this computation works, it is convenient to assume that neighboring variables come
from different algebras and use the recurrence given below.

Remark 4.1. Suppose that (Ai,j ) is matricially free with respect to the array (ϕi,j ) defined by ϕ

and the associated conditions ϕj . Writing ak = a0
k + ϕik,jk

(ak)1ik,jk
∈ Aik,jk

for any 1 � k � n,
we obtain the recurrence
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ϕ(a1 . . . an) =
∑

1�k�n

ϕik,jk
(ak)ϕ

(
a0

1 . . .1ik,jk
. . . a0

n

)
+

∑
1�k<l�n

ϕik,jk
(ak)ϕil ,jl

(al)ϕ
(
a0

1 . . .1ik,jk
. . .1il ,jl

. . . a0
n

)
+ · · ·
+ ϕi1,j1(a1) . . . ϕin,jn(an)ϕ(1i1,j1 . . .1in,jn).

If we assume that neighboring variables come from different algebras, we can reduce the mo-
ments under ϕ which appear on the RHS to sums of products of marginal moments (repeated
application of Definitions 4.1 and 4.2 is needed). Let us remark that the recurrence generalizes
that for free random variables [3] except that the units on the RHS are not equal to the unit of A.

The above recurrence can also be used even if neighboring variables belong to the same alge-
bra. In that case, with each product a = a1 . . . an we can associate a partition π = {π1, . . . , πs}
of the set {1, . . . , n} in a natural way. Namely, numbers k, r will belong to the same block of π

if and only if (ik, jk) = (ir , jr ). This allows us to derive basic properties of the mixed moments,
collected in the lemma given below (compare with the free case [22]).

Moreover, observe that in the definition of (strong) matricial freeness, the mixed moments
under ϕ and ϕj ’s are uniquely determined by marginal moments under ϕk|Ai,k for i 	= k

and those under ϕ|Ak,k for any k (cf. Proposition 2.3). Therefore, in order to determine ϕ

uniquely on
⊔

i,j Ai,j , it suffices to specify linear functionals ϕi,j on subalgebras Ai,j such
that ϕi,j (1i,j ) = 1, where i, j are arbitrary, and set ϕ(1) = 1. Then ϕj ’s are determined uniquely
on

⊔
i,j Ai,j , provided a pair cj , bj ∈ Aj,j ∩ Kerϕj,j , such that ϕj,j (cj bj ) = 1, is chosen for

any j .
We assume now that (Ai,j ) is an array of subalgebras of a unital algebra A, equipped with an

array of states (ϕi,j ) defined by ϕ and associated conditions ϕj , with respect to which (Ai,j ) is
matricially free. Without loss of generality, we assume in the lemma given below that neighbors
come from different algebras.

Lemma 4.1. Let a = a1 . . . an, where ak ∈ Aik,jk
for 1 � k � n and (i1, j1) 	= · · · 	= (in, jn), and

let π = {π1, . . . , πs} be the associated partition of the set {1, . . . , n}.

1. If there exists k such that (ir , jr ) 	= (ik, jk) for r 	= k, and ak ∈ Kerϕik,jk
, then ϕ(a) = 0.

2. If π is arbitrary, then ϕ(a) is a sum of products of at least s marginal moments.
3. If π is crossing, then ϕ(a) is a sum of products of more than s marginal moments.
4. If ik = jk for any k, then ϕ(a) = ϕ(a1) . . . ϕ(an).
5. If among i1, j1, . . . , im, jm there are more than s different indices, then ϕ(a) = 0.

Proof. The proof of (1) is similar to that of the recurrence of Remark 4.1. In fact, it is an easy
consequence of the equation

ϕ(a) = ϕik,jk
(ak)ϕ(a1 . . . ak−11ik,jk

ak+1 . . . an),

which, in turn, follows from

ϕ
(
a1 . . . ak−1a

0ak+1 . . . an

) = 0.
k
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To justify the latter, we assume (without loss of generality) that neighboring variables come from
different algebras. Then, decomposing ar = a0

r +ϕir ,jr (ar )1ir ,jr for any r 	= k, we repeatedly ap-
ply Definitions 4.2–4.3 to the above moment until we are left with a sum of products of moments
which do not contain units, have neighboring variables in the kernels of the corresponding states
and come from different algebras. However, this means that each of these products vanishes since
the variable a0

k does not participate in any reductions as it is the only one from Aik,jk
and that is

why a0
k appears in one of the factors. This proves (1). Next, (2) follows from a repeated applica-

tion of the recurrence of Remark 4.1 and Definitions 4.1–4.2. In order to prove (3), it suffices to
consider the case when π has no singletons since if π is crossing, the partition obtained from π

by removing singletons is still crossing (note that in the case when neighbors come from different
algebras, each non-crossing partition has a singleton). Then consider a summand from the RHS
of the same recurrence of the form

ϕik,jk
(ak) . . . ϕir ,jr (ar )ϕ(a1 . . .1ik,jk

. . .1ir ,jr . . . an).

There are two possibilities. If among (ik, jk), . . . , (ir , jr ) there are no repetitions, among the
remaining pairs there are still s different ones and further reduction of the above summand gives
products of more than s marginal moments in view of (2). In turn, if among (ik, jk), . . . , (ir , jr )

there is a repetition, then there must be at least s−(r −1) different remaining pairs, and therefore,
in view of (2), we obtain again a sum of products of more than s marginal moments, which
completes the proof of (3). Property (4) follows from the proof of (1). In order to prove (5),
it is enough to consider ak ∈ {a0

k ,1ik,jk
} for any k. It is obvious that the number of different

indices among i1, j1, . . . , in, jn is smaller or equal to 2s, where s is the number of blocks of π .
However, in order to obtain a non-vanishing moment, the last variable in the product a1 . . . an

which belongs to a given block πr , say ap , must have the second index equal to the first index of
one of the variables which follow ap and are associated with blocks different than πr (this is not
necessarily ap+1 if some variables which follow ap are units). In particular, in order that

ϕ
(
a1 . . . apap+1 . . . aq−1a

0
q . . . a0

n

) 	= 0,

where ap+1, . . . , aq−1 are units, we must have jq−1 = iq and thus, by Definition 4.2, jk = iq for
p < k < q − 1. In that case, the moment reduces to ϕ(a1 . . . apa0

q . . . a0
n), which implies that we

must have jp = iq . This shows how the indices associated with different blocks are tied together
if they are separated by units. Therefore, the number of different indices among i1, j1, . . . , in, jn

is reduced to a number smaller or equal to s (strictly smaller if among them there are diagonal
variables other than the last one), which completes the proof of (5). �

Let us note in this context that, in contrast to the free case, property (1) does not entail the
factorization of pyramidally ordered products (see the computation of ϕ(ab′a) in Example 4.1).

In general, strong matricial freeness generalizes freeness, monotone independence as well as
boolean independence. This fact is rather natural in view of Theorem 3.1, but we shall state it
below on the more abstract level of independence in the category of noncommutative probability
spaces rather than on the level of products of states. For that purpose, assume that (Ai,j ) is an
array of subalgebras of a unital algebra A which is strongly matricially free with respect to some
array (ϕi,j ) defined by a distinguished state ϕ and the associated conditions ϕj .
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Proposition 4.1. Let Ai,j be a replica of Ai,i with ai,j being a replica of ai,i ∈ Ai,i such that
ϕi,j -distribution of ai,j agrees with ϕ-distribution of ai,i for any i, j .

1. If (Ai,j ) is a finite square array, then the family {ai := ∑
j ai,j , i ∈ I } is free with respect

to ϕ.
2. If (Ai,j ) is a finite lower-triangular array, then the family {ai := ∑

j ai,j , i ∈ I } is monotone
independent with respect to ϕ.

3. If (Ai,j ) is a diagonal array, then the family {ai,i , i ∈ I } is boolean independent with respect
to ϕ.

Proof. Let us denote a0
i := ∑

j a0
i,j and 1i := ∑

j 1i,j for any i, where the summation runs over

those j ’s for which (i, j) ∈ J , with J denoting the index set of the array, and where a0
i,j = ai,j −

ϕ(ai,j )1i,j (in the case of lower-triangular arrays, the summation runs over j � i). Moreover,

ϕi,j (ai,j ) = ϕ(ai,i) = ϕ(ai) for any (i, j) ∈ J

by the assumption on identical distributions of replicas and by the normalization ϕ(1i,j ) = δi,j .
In the case of a square array, we obtain the implication

ϕ
(
a0
i1,j1

. . . a0
in,jn

) = 0 ⇒ ϕ
(
a0
i1

. . . a0
in

) = 0

for i1 	= · · · 	= in. Moreover, using the assumption about identical distributions of replicas once
again, we can write

ai = a0
i + ϕ(ai)1i

for any i, and thus it is enough to observe that for any r it holds that

ϕ
(
ai1,j1 . . .1ir a

0
ir+1,jr+1

. . . a0
in,jn

) = ϕ
(
ai1,j1 . . . a0

ir+1,jr+1
. . . a0

in,jn

)
for any r � n, which can be used repeatedly to conclude that the 1i ’s can be identified with
the unit of A in all mixed moments under ϕ which involve the ak’s. This completes the proof
for the free case. In the monotone case we have to slightly modify the approach since we have
triangular arrays and units do not become identified. Note that monotone independence of the
ai ’s essentially follows from the following two equations:

ϕ(w11i1j 1iw2) = ϕ(w11iw2) and ϕ
(
w11ia

0
j 1iw2

) = 0

for any i < j , where w1, w2 are products of ak’s. These equations are proved by induction with
repeated use of Definitions 4.2–4.3. In fact, it is enough to show that such equations hold if
w2 is an alternating product of a0

k,l’s and 1k,l’s, and that can be reduced to the proof for mixed
moments of the above type, in which w2 is an alternating product of variables from the kernels,
say b0

k,l ∈ Ak,l ∩ Kerϕi,j . To obtain the first equation, it then suffices to observe that in any such
mixed moment 1i1j can be identified with 1i since the latter acts as a projection onto products
w2 which begin with some b0

k,l for k � i, and therefore 1j maps 1iw2 onto itself. The same kind
of argument is used to prove the second equation, which completes the proof of (2). The proof
of (3) is omitted since it is straightforward. �
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We assumed above that sums
∑

j ai,j are finite since in the considered category we do not
have a topology. However, appropriately defined inductive limits of mixed moments of these
sums considered above can be shown to exist for arbitrary arrays since under ϕ all mixed mo-
ments of these sums reduce to finite sums of mixed moments of the ai,j ’s. This implies that in
the category of C∗-probability spaces these sums converge in the strong-operator topology on
some Hilbert space (isomorphic to the associated free product of Hilbert spaces).

By a straightforward modification of the free case in Proposition 4.1 we obtain conditional
freeness. We just need to take the array (ϕi,j ) defined by ϕ and associated conditions ϕj which are
assumed to agree with another state ψ on off-diagonal replicas (as in the free case, the conditions
remain different as states on A). Then the considered family of sums is conditionally free with
respect to (ϕ,ψ). Some simple examples of mixed moments are given below, where we can
also see that the factorization of mixed moments of (strongly) matricially free random variables
depends not only on the associated partition, but also on the algebras to which variables belong.
In particular, in contrast to the free case, a non-crossing partition associated with a given product
may give products of more marginal moments than the number of blocks.

Example 4.1. Consider a two-dimensional array of strongly matricially free subalgebras of A,
with variables and states(

a a′
b′ b

)
∈

(
A1,1 A1,2
A2,1 A2,2

)
and

(
ϕ ϕ2
ϕ1 ϕ

)
,

respectively. Using Remark 4.1 and Definitions 4.1–4.2, we obtain

ϕ(aba) = ϕ2(a)ϕ(b), ϕ
(
ab′a

) = (
ϕ
(
a2) − ϕ2(a)

)
ϕ1

(
b′).

Similar computations give higher-order mixed moments

ϕ
(
ab′ab

) = ϕ(b)ϕ1
(
b′)(ϕ(

a2) − ϕ2(a)
)
,

ϕ(abab) = ϕ2(a)ϕ2(b),

ϕ
(
aba′b

) = ϕ(a)ϕ2
(
a′)(ϕ(

b2) − ϕ2(b)
)
.

These are all non-vanishing moments that contribute to ϕ(ABA) and ϕ(ABAB), respectively,
where A = a + a′ and B = b + b′. However, the latter agree with the mixed moments of A and
B which are conditionally independent with respect to (ϕ,ψ), where ψ agrees with ϕ1 on C[B]
and with ϕ2 on C[A]. In turn, ϕ(aBa) and ϕ(aBaB), corresponding to the associated lower-
triangular array, agree with the mixed moments of a,B which are monotone independent with
respect to ϕ if ϕ agrees with ϕ1 on C[B].

Definition 4.5. By a discrete matricially free Fock space we understand M = M(Ĥ), where
Hi,j = Cei,j for any (i, j) ∈ N, and the array (ei,j ) forms an orthonormal basis of some Hilbert
space. In an analogous manner we define the discrete strongly matricially free Fock space R =
R(Ĥ).

Both M and R are subspaces of the discrete free Fock space F (
⊕

i,j Cei,j ) and thus allow
for the canonical action of free creation and annihilation operators. In order to specify the arrays
of units, let us distinguish two types of their subspaces.
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In the case of M these are

1. M(i, j), spanned by simple tensors which begin with ej,k for some k, where (j, k) 	= (i, j),
and, in addition, by Ω if i = j ,

2. K(i, j), spanned by vectors which begin with ei,j , where i, j are arbitrary,

and the direct sum K(i, j) ⊕ M(i, j) is the subspace of M onto which the ∗-algebra generated
by �(ei,j ) restricted to M acts non-trivially, where �(ei,j ) denotes the canonical free creation
operator associated with vector ei,j .

The canonical projections onto such direct sums are natural candidates for the matricially free
units 1i,j and therefore we set

1i,j := PK(i,j)⊕M(i,j) and �i,j = �(ei,j )1i,j

for any i, j . The adjoint of �i,j will be denoted by �∗
i,j . Note that the projection 1i,j is an internal

unit in the ∗-algebra Ai,j = C〈�i,j , �
∗
i,j 〉 and �∗

i,j �i,j = 1i,j for any i, j . However, in the algebra
C〈�i,j , �

∗
i,j : i, j ∈ N〉 there are more relations as the proposition given below demonstrates.

Proposition 4.2. In the algebra C〈�i,j , �
∗
i,j : i, j ∈ N〉 the following relations hold:

1. �∗
i,j �i,j = 1i,j for any i, j ,

2. �∗
i,j �k,l = 0 whenever (i, j) 	= (k, l),

3. �i,j �k,l = 0 and 1i,j �k,l = 0 whenever (i, j) 	= (k, l) and j 	= k,
4. 1i,j �j,k = �j,k for any i, j , k.

Proof. We omit the elementary proof. �
In the case of R, we proceed in a completely analogous fashion and distinguish the following

subspaces:

R(i, j) = M(i, j) ∩ R and L(i, j) = K(i, j) ∩ R

which lead to the definitions of the strongly matricially free array of units and of the creation
operators, respectively,

1i,j = PL(i,j)⊕R(i,j) and ki,j = �(ei,j )1i,j ,

where, slightly abusing notation, we use the same symbols for the units as before.
Finally, we specify the states: ϕ will denote the vacuum state associated with Ω , the ϕj will

be the states associated with the ej,j , j ∈ N, and (ϕi,j ) will be the array defined by ϕ and the ϕj .
Here, the same notation is used for states on B(M) and B(R).

Proposition 4.3. The array of ∗-subalgebras Ai,j = C〈�i,j , �
∗
i,j 〉 of B(M), where i, j ∈ N, is

matricially free with respect to (ϕi,j ). The array of ∗-subalgebras Bi,j = C〈ki,j , k
∗
i,j 〉 of B(R),

where i, j ∈ N, is strongly matricially free with respect to (ϕi,j ).
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Proof. The proof is similar to that of Voiculescu for the discrete free Fock space given in [27].
We shall look at the case of (Ai,j ) since the case of (Bi,j ) is analogous. Each algebra Ai,j is
spanned by operators of the form

�
q
i,j �

∗p
i,j , where p + q > 0,

and the projection 1i,j . However, the corresponding moments vanish:

ϕi,j

(
�
q
i,j �

∗p
i,j

) = 0

for any i, j since p + q > 0. Moreover, ϕi,j (1i,j ) = 1 for any i, j . Therefore, in order to show
that condition (1) of Definition 4.2 holds, it is enough to show that

ϕ
(
�
q1
i1,j1

�
∗p1
i1,j1

. . . �
qn

in,jn
�
∗pn

in,jn

) = 0

whenever (i1, j1) 	= · · · 	= (in, jn) and p1 + q1 > 0, . . . , pn + qn > 0. The same argument as in
[27] allows us to reduce the proof to the case when q1 = · · · = qn = 0, which implies that p1 >

0, . . . , pn > 0. But then the moment clearly vanishes. This proves condition (1) of Definition 4.2.
Condition (2) follows easily from the definition of the projections 1i,j in view of the relations
given in Proposition 4.1. This completes the proof. �
Example 4.2. For i, j ∈ I , let Gi,j

∼= F(1) be the free group on one generator gi,j with unit εi,j .
Consider the subspace l2

M of l2(∗i,jGi,j ) spanned by vectors of the form δ(g), where g is either
the unit e of the free product ∗i,jGi,j , or a product of the form g1g2 . . . gm, where gk ∈ G0

ik,ik+1
:=

Gikik+1 \{εik,ik+1} for each k, with (i1, i2) 	= · · · 	= (im, im+1) and im+1 = im. The space l2
M , which

is a simple example of the matricially free Fock space, can be viewed as the space of square
integrable functions on the ‘matricially free product of groups’ (which is not a group). Let 1i,j

denote the projection from l2(∗i,jGi,j ) onto the subspace of l2
M spanned by vectors δ(g), where

g begins with an element from G0
i,j or G0

j,k for some k or, in the case of i = j , also g = e. We
can now define

λ̃i,j (g) = λi,j (g)1i,j

for g ∈ Gi,j , where by λi,j we denote the left regular representation of Gi,j on l2(∗i,jGi,j ).
Then the array (Ai,j ), where Ai,j is the ∗-subalgebra of B(l2(∗i,jGi,j )) generated by λ̃i,j (gi,j )

and 1i,j , with the standard involution, is matricially free with respect to the array (ϕi,j ),
where the diagonal states coincide with ϕ(.) = 〈.δ(e), δ(e)〉 and the associated conditions are
ϕj (.) = 〈.δ(gj,j ), δ(gj,j )〉, where j ∈ I . In a similar way we proceed in the case of functions on
the ‘strongly matricially free product of groups’. For classical results on random walks on free
groups, see [13].

Example 4.3. To be more concrete, we consider a two-dimensional square array of free groups
on one generator. Then our Hilbert space is

l2 = span
{
δ(e), δ(g): g ∈ H1 ∪ H2

}
,
M
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where

H1 := {
gk

1,1, g
k
1,2g

l
2,2, g

k
1,1g

l
1,2g

m
2,2, g

k
1,2g

l
2,1g

m
1,1, . . . : k, l,m ∈ Z0

}
and

H2 := {
gk

2,2, g
k
2,1g

l
1,1, g

k
2,2g

l
2,1g

m
1,1, g

k
2,1g

l
1,2g

m
2,2, . . . : k, l,m ∈ Z0

}
,

respectively, with Z0 denoting the set of non-zero integers. The diagonal units 11,1 and 12,2 are
projections onto subspaces spanned by δ(e) and δ(g), where g ∈ H1 and g ∈ H2, respectively.
The off-diagonal units 11,2 and 12,1 are defined in a similar way, so that we have decompositions
11,1 + 11,2 = 12,1 + 12,2 = 1 of the unit 1 on l2

M .

Example 4.4. In the case of square integrable functions on the ‘strongly matricially free product
of groups’, the Hilbert space is smaller, namely

l2
S = span

{
δ(e), δ(g): g ∈ K1 ∪ K2

}
,

where

K1 := {
gk

1,1, g
k
1,2g

l
2,2, g

k
1,2g

l
2,1g

m
1,1, . . . : k, l,m ∈ Z0

}
and

K2 := {
gk

2,2, g
k
2,1g

l
1,1, g

k
2,1g

l
1,2g

m
2,2, . . . : k, l,m ∈ Z0

}
,

which reflects the fact that the diagonal generators act non-trivially only on δ(e). Internal units
are reduced accordingly. Note that in this case l2

S
∼= l2(F (2)), which conforms with Theorem 3.1

and the resulting decomposition of the left regular representation.

Example 4.5. In the case of an n-dimensional square array of copies of F(1), we form a tree
(a subtree of the homogeneous tree H2n2 ) which corresponds to the ‘matricially free product
of n2 free groups’. Suppose the root e corresponds to the ‘father’. We distinguish ‘sons’ and
‘daughters’ in each ‘generation’ which correspond to the left action of gj,j or g−1

j,j , and gi,j

or g−1
i,j , respectively, where i 	= j . The rules of drawing the tree follow from matricial freeness

and are the following: each ‘son’ has 1 ‘son’ and 2n − 2 ‘daughters’, whereas each ‘daughter’
has 2 ‘sons’ and 2n − 1 ‘daughters’. Therefore, ‘sons’ and ‘daughters’ correspond to vertices
of valencies 2n and 2n + 2, respectively. In Fig. 1 we draw such a tree for n = 2 (black and
empty circles are assigned to ‘sons’ and ‘daughters’, respectively). If we make an additional
assumption, for instance that ‘daughters’ cannot have ‘sons’ (this fact corresponds to strong
matricial freeness, where diagonal generators kill words beginning with the off-diagonal ones),
we recover H2n of free probability.

Example 4.6. Let R(Ĥ) be the discrete strongly matricially free Fock space and let R(Ĥ) ∼=
F (

⊕
j Cej ) be the natural isomorphism of Remark 3.1, where {ej : j ∈ N} is an orthonormal

basis of some Hilbert space. If (wi,j ) is an infinite matrix with non-negative parameters p and q
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Fig. 1. Matricially free analog of H4.

above and below the main diagonal, respectively, and 1’s on the diagonal, then it is easy to see that
the (p, q)-creation operators studied in [18] can be identified (with the use of this isomorphism)
with the strongly convergent sums

Ai =
∑
j

wi,j ki,j ,

where i ∈ N and the (p, q)-annihilation operators are their adjoints. A similar approach can be
applied to square arrays of arbitrary Hilbert spaces and ∗-representations, which leads to some
notion of ‘(p, q)-independence’. Moreover, it can be carried out for more general matrices (wi,j )

within the framework of the strong matricial freeness, which generalizes notions of independence
of this type.

5. Traces

In this section we introduce some real-valued functions on the set of non-crossing pair-
partitions. These functions are obtained by computing traces of a square real-valued matrix. We
will assume later that this matrix has non-negative entries which represent variances of probabil-
ity measures on the real line MR and we will demonstrate that the functions introduced in this
section describe the asymptotics of matricially free random variables in central limit theorems.

Let N Cm denote the set of non-crossing partitions of the set [m], i.e. if π = {π1,π2, . . . , πk} ∈
N Cm, then there are no numbers i < p < j < q such that i, j ∈ πr and p,q ∈ πs for r 	= s. The
block πr is inner with respect to πs if p < i < q for any i ∈ πr and p,q ∈ πs (then πs is outer
with respect to πr ). It is clear that if πr has outer blocks, then there exists a unique block among
them, say πs , which is nearest to πr , i.e. if another block, say πt , is outer with respect to πr , then
we must have a < p < b for any a, b ∈ πt and p ∈ πs . In that case we shall write πs = o(πr)

and call the pair (πr , o(πr)) the nearest inner–outer pair of blocks. If πi does not have an outer
block, it is called a covering block. It is convenient to extend each partition π ∈ N C 2

m to the
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partition π̂ obtained from π by adding one block, say π0 = {0,m + 1}, called the imaginary
block.

If B(π) is the set of blocks of π , we shall denote by Fr(π) the set of all mappings
f : B(π) → [r] called colorings of the blocks of π by the set [r] := {1,2, . . . , r}. Then the
pair (π,f ) plays the role of a colored partition.

Let N C Cm denote the set of non-crossing covered partitions of [m], by which we understand
the subset of N Cm consisting of those partitions in which 1 and m belong to the same block (if
m = 1, we understand that the partition consists of one block). In terms of diagrams, all blocks of
π ∈ N C Cm, where m > 1, are covered by the block containing 1 and m. We denote by N C 2

m and
N C C 2

m the sets of non-crossing pair-partitions of [m] and non-crossing covered pair-partitions
of [m], respectively, and we set N C 2 = ⋃∞

m=1 N C 2
m and N C C 2 = ⋃∞

m=1 N C C 2
m.

It is easy to see that each π ∈ N Cm can be decomposed as

π = π(1) ∪ π(2) ∪ · · · ∪ π(p), (5.1)

where π(1), . . . , π(p) are non-crossing covered partitions of subintervals I1, I2, . . . , Ip of [m]
whose union gives [m]. By a partition of a set I consisting of r elements we understand the
corresponding partition of [r].

On the other hand, each π ∈ N C Cm can be decomposed as

π = π(0) ∪ π(1) ∪ · · · ∪ π(r), (5.2)

where π(0) is the block containing 1 and m and π(1), π(2), . . . , π(r) are non-crossing covered
partitions of subintervals I1, I2, . . . , Ir of [m] \ π0.

Consider now a square real-valued matrix V = (vi,j ) ∈ Mn(R), where n ∈ N. The usual trace
and the normalized trace will be denoted

Tr(V ) =
n∑

j=1

vj,j and tr(V ) = 1

n

n∑
j=1

vj,j ,

respectively. For each n, we define the ‘diagonalization mapping’

τ : Mn(R) → Dn(R), τ (V ) = diag

(∑
j

vj,1, . . . ,
∑
j

vj,n

)
,

where Dn(R) is the set of square diagonal real-valued matrices of dimension n (by abuse of
notation, the same symbol τ is used for all n). In other words, τ computes the sum of all elements
of V in each column separately and puts this value on the diagonal.

Using the above trace operations, we shall define two real-valued functions on the set N C 2,
denoted v and v0, associated with given V ∈ Mn(R). Although there is a close similarity be-
tween these functions when restricted to N C C 2 (in particular, they are defined as traces of certain
matrix-valued quasi-multiplicative functions), note that they are extended to N C 2 in two different
ways.

Definition 5.1. For a given matrix V ∈ Mn(R), we define a mapping from N C 2 to Dn(R) by
assigning to each π ∈ N C 2 the matrix V (π) by the following recursion:
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Fig. 2. Colored partitions with imaginary blocks.

1. if π consists of one block, we set V (π) = τ(V ),
2. if π ∈ N C C 2 consists of more than one block, then

V (π) = τ
(
V

(
π(1)

)
. . . V

(
π(r)

)
V

)
(5.3)

according to the decomposition (5.2),
3. if π ∈ N C 2, then

V (π) = V
(
π(1)

)
V

(
π(2)

)
. . . V

(
π(p)

)
(5.4)

according to the decomposition (5.1).

Let v : N C 2 → R be the function defined by v(π) = tr(V (π)).

Example 5.1. For some V ∈ Mn(R), consider three partitions given in Fig. 2. Color each block
by a number from the set [n]. Computation of the corresponding values of the function v gives

v(π) = tr
(
τ
(
τ(V )V

)) = 1

n

∑
i,j,k

vi,j vj,k,

v(η) = tr
(
τ
(
τ(V )V

)
τ(V )

) = 1

n

∑
i,j,k,l

vi,j vj,lvk,l,

v(ζ ) = tr
(
τ
(
τ(V )τ(V )V

)) = 1

n

∑
i,j,k,l

vi,kvj,kvk,l .

One can see that to each nearest inner–outer pair of blocks (πr ,πs) we assign the matrix ele-
ment vp,q , where p and q are the colors of πr and πs respectively. Moreover, if a block does
not have any outer blocks and is colored by q , then we assign to it the matrix element vq,t ,
where t is assumed to be the same for all such blocks (one can imagine that we have an addi-
tional ‘imaginary block’ colored by t which covers all other blocks). At the end we sum over all
colorings.

The function v0 is defined on the set N C C 2 in a very similar manner, except that we replace
the right multiplier V in (5.3) by its main diagonal

V0 := diag(v1,1, . . . , vn,n),
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which corresponds to changing only the contribution of the covering block. Then we extend v0
to all of N C 2 by multiplicativity of v0.

Definition 5.2. For a given matrix V0 ∈ Mn(R), we define a mapping from N C C 2 to Dn(R) by
assigning to each π ∈ N C C 2 the matrix V0(π) by the following recursion:

1. if π consists of one block, we set V0(π) = V0,
2. if π ∈ N C C 2 consists of more than one block, then

V0(π) = τ
(
V

(
π(1)

)
. . . V

(
π(r)

)
V0

)
(5.5)

according to the decomposition (5.2).

Let v0 : N C 2 → R be the function defined by v0(π) = Tr(V0(π)) for π ∈ N C C 2, extended to
N C 2 by multiplicativity v0(π) = v0(π

(1)) . . . v0(π
(p)) according to the decomposition (5.1).

Example 5.2. Let us compute the values of v0 corresponding to the partitions in Fig. 2. We have

v0(π) = Tr
(
τ(V )V0

) =
∑
i,j

vi,j vj,j ,

v0(η) = Tr
(
τ(V )V0

)
Tr(V0) =

∑
i,j,k

vi,j vj,j vk,k,

v0(ζ ) = Tr
(
τ
(
τ(V )τ(V )V0

)) =
∑
i,j,k

vi,kvj,kvk,k.

Note that the main difference (apart from normalization) between v0(π) and v(π) concerns the
blocks which do not have outer blocks. Here, if such a block is colored by q , we assign to it the
matrix element vq,q and we do not use ‘imaginary blocks’.

Below we shall prove a lemma which gives explicit combinatorial formulas for v(π) and
v0(π). For that purpose, to the blocks

B(π,f ) = {
(π1, f ), (π2, f ), . . . , (πk, f )

}
of each colored non-crossing partition (π,f ), where f ∈ Fr(π), we assign entries of a given
real-valued matrix V ∈ Mr(R) according to the definition given below. If the imaginary block is
used, it is convenient to assume that it is also colored by a number from the set [r].

Definition 5.3. Let (π,f ) be a colored non-crossing partition with blocks as above, where f ∈
Fr(π) and let V ∈ Mr(R) be given. For any 0 � j � r we define

vj (π,f ) = vj (π1, f )vj (π2, f ) . . . vj (πk, f ),

where the functions vj : B(π,f ) → R are given by the following rules:
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1. vj (πi, f ) = vp,q if f (πi) = p and f (o(πi)) = q , where 0 � j � r ,
2. vj (πi, f ) = vp,j if f (πi) = p and πi does not have outer blocks, where 1 � j � r ,
3. v0(πi, f ) = vp,p if f (πi) = p and πi does not have outer blocks.

We are ready to prove purely combinatorial formulas for vj (π) for any 0 � j � n and any π ∈
N C 2. In particular, if V is a square n-dimensional matrix with all entries equal to 1/n and f runs
over Fn(π), then v0(π) = 1 and vj (π) = 1/n for any π . In that case we get

∑
π∈N C 2

2m
v0(π) =∑n

j=1
∑

π∈N C 2
2m

vj (π) = cm, the m-th Catalan number. Limit theorems studied in Section 6 will
give matricial deformations of Catalan numbers induced by the formulas given by the lemma
proven below.

Lemma 5.1. For any V ∈ Mn(R), where n ∈ N, and π ∈ N C 2, it holds that

v0(π) =
∑

f ∈Fn(π)

v0(π,f ) and v(π) = 1

n

∑
f ∈Fn(π)

∑
j∈[n]

vj (π,f ),

where the summation over j corresponds to all colorings of the imaginary block.

Proof. We provide an induction proof for the function v (the proof for v0 is similar). The main
induction step will be carried out on the level of the (diagonal) matrices V (π). We claim that its
diagonal entries are of the form

(
V (π)

)
q,q

=
∑

f ∈Fn(π)

vq(π,f )

for any π ∈ N C C 2 and q ∈ [n]. In view of (5.4), the required formula for v(π) is then a straight-
forward consequence of the claim. Of course, if π consists of one block, then

(
V (π)

)
q,q

=
∑
j

vj,q

and thus our assertion easily follows. Assume now that π has k � 2 blocks and suppose the
assertion holds for non-crossing covered partitions which have less than k blocks. Since π has
a decomposition of type (5.2), the assertion holds for π(1), π(2), . . . , π(r) in this decomposition.
We know that the matrix assigned to π has the form (5.3) and therefore the product of (diagonal)
matrices corresponding to these subpartitions has (diagonal) matrix elements of the form

(
V (π)

)
q,q

= (
τ(WV )

)
q,q

=
∑
j

Wj,j vj,q

where q is the color of the imaginary block of π and

Wj,j =
∑

(1)

vj

(
π(1), f1

)
. . .

∑
(r)

vj

(
π(r), fr

)
,

f1∈Fn(π ) fr∈Fn(π )
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by the inductive assumption. Now, since the blocks of π(1), . . . , π(r) are colored independently,
we have

vj

(
π(1), f1

)
. . . vj

(
π(r), fr

)
vj,q = vq(π,f )

for a uniquely determined coloring f of the blocks of π in which j can be interpreted as the
color of π(0) since π(0) covers π(1), . . . , π(r) and q can be viewed as the color of the imaginary
block of π . This and the above formula for Wj,j gives the desired formula

V (π)q,q =
∑

f ∈Fn(π)

vq(π,f ),

which proves our claim and thus completes the proof of the theorem. �
Under suitable assumptions on V , there is a simple connection between functions v and v0 if

V0 = aIn/n, where In is a unit matrix and a is a positive number. We shall express this relation
in terms of the corresponding formal Laurent series, which turn out to be Cauchy transforms
of (compactly supported) probability measures on the real line associated with appropriately
constructed random variables.

Proposition 5.1. Let V ∈ Mn(R) be such that V0 = aIn/n, where a > 0. If G(z) =∑∞
k=0 a2kz

−2k−2 and G0(z) = ∑∞
k=0 b2kz

−2k−2 are formal Laurent series, where

a2k =
∑

π∈N C 2
2k

v(π) and b2k =
∑

π∈N C 2
2k

v0(π),

and both v(π) and v0(π) are associated with V , then G0(z) = 1/(z − aG(z)).

Proof. Observe that in the case when vj,j = a/n for all j ∈ [n], we have

v(π) = v0(π
′)

a

for any π ∈ N C 2
m, where the partition π ′ ∈ N C C 2

m+2 is obtained from π by adding to π the
block that covers all blocks of π , say {0,m + 1}. This leads to

A(z) :=
∞∑

m=0

a2mz2m = 1 +
∞∑

m=1

∑
π∈N C 2

2m

v(π)z2m

= 1 + 1

a

∞∑
m=1

∑
π∈N C C 2

v0(π)z2m = C(z) − 1

az2
,

2m+2
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where C(z) = ∑∞
m=0 c2mz2m and c2m = ∑

π∈N C C 2
2m

v0(π). Now, using the multiplicativity of v0,
we obtain

B(z) :=
∞∑

m=0

b2mz2m = 1 +
∞∑

m=1

(
C(z) − 1

)m = 1

2 − C(z)
,

which leads to

A(z) = 1

az2

(
1 − 1

B(z)

)
and G0(z) = 1

z − aG(z)
,

where

G(z) = 1

z
A

(
1

z

)
and G0(z) = 1

z
B

(
1

z

)
,

which completes the proof. �
6. Random pseudomatrices

In this section we will study the asymptotic behavior of random pseudomatrices for two se-
quences of states: the sequence of distinguished states, with respect to which our variables will
be matricially free, and the sequence of traces which are normalized sums of conditions in the
definition of matricial freeness. Under suitable assumptions, we will later obtain two types of
limit theorems: the ‘standard’ central limit theorem as well as the ‘tracial’ central limit theorem
for matricially free random variables, the latter being related to random matrix models.

Suppose we have a sequence (A(n)) of unital ∗-algebras, each equipped with a distinguished
state φ(n) and associated conditions {φj (n): 1 � j � n}. For each n, let (Xi,j (n))1�i,j�n be an
array of self-adjoint random variables in A(n). We are going to study the asymptotic behavior of
random pseudomatrices

S(n) =
n∑

i,j=1

Xi,j (n), (6.1)

where we assume that each array (Xi,j (n)) is matricially free with respect to the array (φi,j (n))

defined by φ(n) and φj (n)’s. In the first setting we shall compute the asymptotic moments of
random pseudomatrices with respect to φ(n). This corresponds to the ‘standard CLT’ reminding
the CLT for free (or, monotone) random variables [24].

In the second setting, we shall compute the asymptotic moments of random pseudomatrices
with respect to the convex linear combinations of conditions

ψ(n) := 1

n

n∑
j=1

φj (n) (6.2)

which play the role of traces in the context of random pseudomatrices, with φj (n) corresponding
the classical expectation E composed with the state associated with vector ei of the canonical
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orthonormal basis (ei)1�i�n in C
n. This will lead to the ‘tracial CLT’ for matricially free random

variables reminding the limit theorem for random matrices [25]. Thanks to the properties of
the matricially free product of states which essentially boil down to properties (P1) and (P3)
of Section 2, the normalization of square root type works in both cases since the number of
summands in S(n) which give a non-zero contribution to the limits is in both cases of order n.

We partition the set [n] := {1,2, . . . , n} into disjoint non-empty intervals,

[n] = N1 ∪ N2 ∪ · · · ∪ Nr,

where r ∈ N, such that their relative sizes nj/n → dj as n → ∞, where nj is the cardinality
of Nj for any j ∈ [r]. Then the numbers dj form a diagonal matrix D of trace one called the
dimension matrix.

Our results will involve the following assumptions:

(A1) (Xi,j (n)) is matricially free with respect to (φi,j (n)) for any n ∈ N,
(A2) the variables have zero expectations,

φi,j (n)
(
Xi,j (n)

) = 0

for all i, j ∈ [n] and n ∈ N,
(A3) their moments are uniformly bounded, i.e. ∀m ∃Mm � 0 such that

∣∣φi,j (n)
(
Xm

i,j (n)
)∣∣ � Mm

nm/2

for all i, j ∈ [n] and n ∈ N,
(A4) their variances are block-identical and are of order 1/n, namely

φi,j (n)
(
X2

i,j (n)
) = up,q

n

for any i ∈ Np , j ∈ Nq , where each up,q is a non-negative real number.

Of course, the uniform boundedness assumption is satisfied if we take variables of type Xi,j (n) =
Xi,j /

√
n, where (Xi,j ) is an infinite array of random variables whose distributions in the states

φi,j (n), respectively, are identical and do not depend on n. Although it is convenient to think of
the Xi,j (n) as if they were of this form, we want to study similar variables, whose variances are
of order 1/n and stay the same within blocks whose sizes become infinite as n → ∞.

If the tuple ((i1, j1), . . . , (im, jm)) ∈ (I × I )m, where I is an index set, defines a partition
π = {π1, . . . , πk} of the set [m], i.e. (ip, jp) = (iq , jq) if and only if there exists r such that
p,q ∈ πr , we will write

P
(
(i1, j1), . . . , (im, jm)

) = π.

Of course, if π is a non-crossing pair-partition, then each πr is a two-element set. By a k-block
we will understand a block consisting of k elements. In particular, a 1-block will be called a
singleton. We will also adopt the convention that if m is odd, then N C 2

m = ∅ and the summation
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over π ∈ N C 2
m gives zero. This allows us to state results for moments of the S(n) of all orders

without distinguishing even and odd moments.

Lemma 6.1. Let (A(n),ψ(n)) be a sequence of noncommutative probability spaces, each with
an array (φi,j (n)) defined by φ(n) and φj (n)’s, for which (A1)–(A3) hold, where ψ(n) is given
by (6.2). Then

ψ(n)
(
Sm(n)

) =
∑

π∈N C2
m

v(π,n) + O

(
1√
n

)
,

where v(π,n) = tr(V (π,n)) is given by Definition 5.1 and corresponds to the variance matrix
V (n) = (vi,j (n)), where vi,j (n) = φ(n)(X2

i,j (n)).

Proof. We have

ψ(n)
(
Sm(n)

) =
∑

i1,j1,...,im,jm

ψ(n)
(
Xi1,j1(n) . . .Xim,jm(n)

)
=

∑
π∈Pm

∑
i1,j1,...,im,jm

P ((i1,j1),...,(im,jm))=π

ψ(n)
(
Xi1,j1(n) . . .Xim,jm(n)

)
,

where Pm denotes the set of all partitions of [m]. Arguments presented below allow us to con-
clude that for large n only non-crossing pair-partitions give relevant contributions.

1. If π has a singleton associated with some (ik, jk) 	= (j, j), then the moment

φj (n)
(
Xi1,j1(n) . . .Xim,jm(n)

)
vanishes by Lemma 4.1 since in that case the variable Xik,jk

is the only variable from
Aik,jk

in the corresponding moment under φ(n), by which we mean φ(n)(b∗
j abj ), where

a = Xi1,j1(n) . . .Xim,jm(n) and bj ∈ C[Xj,j (n),1j,j ] ∩ Kerφ(n). For that reason, in the re-
maining cases we can assume that there are no such singletons.

2. If π has exactly one singleton associated with some (ik, jk) = (j, j), then the extended
partition π̂ associated to b∗

j abj does not have singletons and has at least one 3-block (this
is the imaginary block colored with j ). Therefore, π̂ has the same number of blocks as π

and s � (m + 1)/2. Since with each block we can associate at most one independent index
to sum over (by Lemma 4.1), the sum of the above moments over i1, j1, . . . , im, jm and j for
the given π (with the 1/n normalization coming from ψ(n)) is O(1/

√
n ) by (A3).

3. If π has no singletons and is not a pair-partition, then the number of blocks of π̂ is either s

(if (j, j) is present among (i1, j1), . . . , (im, jm)) or s + 1 (in the opposite case). In both
cases, we have that s � (m + 1)/2 and the summation of the considered moments over
i1, j1, . . . , im, jm and j for the given π is O(1/

√
n ).

4. If π is a crossing pair-partition, then the associated π̂ is a crossing partition for any j . It
suffices to consider the case when π̂ is a pair-partition since otherwise it has a 4-block and
a similar argument to that in (3) works. In turn, if π̂ is a pair-partition for some j , then by
Lemma 4.1 and the mean zero assumption, the corresponding moment under φj (n) vanishes,
which implies that the corresponding moment under ψ(n) also vanishes.
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The above arguments imply that only non-crossing pair-partitions contribute to the limit and we
can write

ψ(n)
(
Sm(n)

) =
∑

π∈N C2
m

∑
i1,j1,...,im,jm

P ((i1,j1),...,(im,jm))=π

ψ(n)
(
Xi1,j1(n) . . .Xim,jm(n)

) + O

(
1√
n

)
.

Now, suppose that m is even, π ∈ N C 2
m and the sequence of pairs ((i1, j1), . . . , (im, jm)) is

compatible with the matricial multiplication, i.e. such that if (ik, jk) and (ir , jr ) label an inner–
outer pair of blocks, then jk = ir . If πj = {r, r + 1} is the last block which has no inner blocks,
then we can pull out the variance corresponding to that block, namely:

ψ(n)
(
Xi1,j1(n) . . .Xim,jm(n)

)
= vir ,jr ψ(n)

(
Xi1,j1(n) . . .Xir−1,jr−1(n)Xir+2,jr+2(n) . . .Xim,jm(n)

)
,

where we use the proof of Lemma 4.1. Continuing this procedure with other blocks which
have no inner blocks, and summing over indices i1, j1, . . . , im, jm, for which it holds that
P((i1, j1), . . . , (im, jm)) = π , we arrive at

1

n

∑
k0,k1...,km

vk1,ko(1)
(n) . . . vkm,ko(m)

(n) + O

(
1√
n

)
,

where o(r) = 0 if πr has no outer blocks (k0 labels the imaginary block) and o(r) = j if the
nearest outer block of πr is labelled by kj . Let us observe that we included in the above sum all
possible labellings of the blocks of π . This is done for convenience since it enables us to express
the final result in terms of v(π). More explicitly, we allow k0, k1, . . . , km to assume arbitrary
values from the set [m] (in particular, they can all be equal), which produces certain terms which
cannot be obtained from the summation over all ((i1, j1), . . . , (im, jm)) which define π . For ex-
ample, no nearest inner–outer pair of blocks can contribute vj,j vj,j , which appears in the above
sum. However, all such terms are of order 1/

√
n due to insufficient number of different summa-

tion indices (there are fewer than m/2 independent indices) and therefore they can be included
in the sum without changing the asymptotics. Using Lemma 5.1, we obtain our assertion. �
Lemma 6.2. Let (A(n),φ(n)) be a sequence noncommutative probability spaces, each with an
array (φi,j (n)) of states defined by φ(n) and conditions φj (n), for which (A1)–(A3) hold. Then

φ(n)
(
Sm(n)

) =
∑

π∈N C2
m

v0(π,n) + O

(
1√
n

)
,

where v0(π,n) = Tr(V0(π,n)) is given by Definition 5.2 and corresponds to the variance matrix
V (n) = (vi,j (n)).

Proof. The proof is similar to that of Lemma 6.1 (in fact, it is simpler since we only need to
compute the moments under φ(n) and thus the complications involving moments under φj (n)’s
do not appear). �
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In order to ensure existence of the limits of v(π,n) and v0(π,n) as n → ∞, we need to specify
the sequence of matrices (V (n))n∈N more closely. We shall assume that (A4) holds. Assuming
that the variance matrices V (n) are of this form, we can now state the standard and tracial central
limit theorems, with limit distributions described in terms of traces of Section 5.

Theorem 6.1 (Tracial central limit theorem). Under the assumptions of Lemma 6.1, if V (n) is of
the block form (A4) for each n ∈ N, then

lim
n→∞ψ(n)

(
Sm(n)

) =
∑

π∈N C2
m

b(π), (6.3)

for any m ∈ N, where b(π) = Tr(B(π)D) and B(π) is the diagonal matrix of Definition 5.1
corresponding to π and the matrix B = DU .

Proof. Clearly, if m is odd, we get zeros on both sides of the above formula (we use our
convention that in this case N C 2

m = ∅). The proof for m = 2k, where k ∈ N, is based on
Lemmas 5.1 and 6.1. If, in the combinatorial expression for v(π,n), we substitute for the ma-
trix elements of V (n) the assumed block form, then, using the partition of the set of colors
[n] = N1 ∪ N2 ∪ · · · ∪ Nr , we can perform summations over the colorings which belong to each
interval Nj separately. Thus, the contributions of various [n]-colorings of π to the limit laws
reduce to those corresponding to [r]-colorings and are described in terms of numbers uj (πi, f ),
where i ∈ [k], j ∈ [r] and f ∈ Fr(π) (the number j is the color of the imaginary block). We have

lim
n→∞v(π,n) = lim

n→∞

(
1

nk+1

∑
j∈[r]

nj

∑
f ∈Fr (π)

nf (1)uj (π1, f ) . . . nf (k)uj (πk, f )

)
=

∑
j∈[r]

dj

∑
f ∈Fr (π)

df (1)uj (π1, f ) . . . df (k)uj (πk, f ) = Tr
(
B(π)D

)
,

where π → B(π) is the matrix-valued function which corresponds to the matrix B = DU in
accordance with Definition 5.1. In terms of matrix multiplication, the expression on the right-
hand side is obtained from that of Lemma 5.1 corresponding to matrix U by multiplying U from
the left by the dimension matrix D and multiplying the whole product of matrices from the right
by D. This proves our assertion. �
Theorem 6.2 (Central limit theorem). Under the assumptions of Lemma 6.2, if V (n) is of the
block form (A4) for each n ∈ N, then

lim
n→∞φ(n)

(
Sm(n)

) =
∑

π∈N C2
m

b0(π), (6.4)

for any m ∈ N, where π → b0(π) is the real-valued function of Definition 5.2 corresponding to
the matrix B = DU .

Proof. The proof is similar to that of Theorem 6.1 and is based on Lemmas 5.1 and 6.2. The
only difference is that we do not use imaginary blocks to describe the colorings of all blocks
of π . Thus, the contributions of various [n]-colorings of π to the limit laws reduce to those
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corresponding to [r]-colorings and are described in terms of numbers u0(πi, f ), where i ∈ [k]
and f ∈ Fr(π). Namely, we have

lim
n→∞v0(π,n) = lim

n→∞

(
1

nk

∑
f ∈Fr (π)

nf (1)u0(π1, f ) . . . nf (k)u0(πk, f )

)
=

∑
f ∈Fr (π)

df (1)u0(π1, f ) . . . df (k)u0(πk, f ) = Tr
(
B0(π)

)
as n → ∞, where π → B0(π) is the function defined by Definition 5.2, which proves our asser-
tion. �
7. Matricial semicircle distributions

The results of Section 6 lead to combinatorial formulas for the asymptotic moments in the
corresponding central limit theorems. In this section we are going to express the limits in terms
of their Cauchy transforms represented in the form of continued fractions. They play the role of
the (standard and tracial) ‘matricial semicircle distributions’.

For that purpose let us recall definitions of certain convolutions of distributions, or more gen-
erally, of probability measures. If Fμ is the reciprocal Cauchy transform of some probability
measure μ ∈ MR, then the K-transform of μ is given by Kμ(z) = z − Fμ(z). The boolean addi-
tive convolution μ � ν can be defined by the equation

Kμ�ν(z) = Kμ(z) + Kν(z),

where μ,ν ∈ MR and z ∈ C
+, respectively. In fact, this equation shows that the K-transform is

the boolean analog of the logarithm of the Fourier transform [23].
We will also need another convolution, which reminds the monotone convolution [20], called

the orthogonal additive convolution and defined by the equation

Kμ�ν(z) = Kμ

(
Fν(z)

)
,

where μ,ν ∈ MR and z ∈ C
+. It was introduced in [14], where we showed that the above for-

mula defines a unique probability measure on the real line. Moreover, if μ and ν are compactly
supported, both μ � ν and μ � ν are compactly supported.

Using these convolutions, we will now define certain important continued fractions (or,
‘continued multifractions’) which converge uniformly on the compact subsets of C

+ to the K-
transforms of some probability measures μi,j ∈ MR.

Lemma 7.1. For given B ∈ Mr(R) with non-negative entries, continued fractions of the form

Ki,j (z) = bi,j

z − ∑
k

bk,i

z − ∑
p

bp,k

z − · · ·

,

where i, j ∈ [r], converge uniformly on the compact subsets of C
+ to the K-transforms of some

μi,j ∈ MR with compact supports.
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Proof. Let us define a sequence of functions which approximate the Ki,j . Namely, set K
(0)
i,j (z) =

bi,j /z for any i, j ∈ [r], which are the K-transforms of probability measures on R for any i, j

(Bernoulli measures if bi,j > 0 and δ0 if bi,j = 0). In order to use an inductive argument, let us
establish the recurrence

K
(m)
i,j (z) = bi,j

z − ∑
k K

(m−1)
k,i (z)

for m � 1. If the K
(m−1)
k,i are the K-transforms of some μ

(m−1)
k,i ∈ MR for any i and k, respec-

tively, then the sums
∑

k K
(m−1)
k,i are the K-transforms of their boolean convolution

μ
(m−1)
i := μ

(m−1)
1,i � μ

(m−1)
2,i � · · · � μ

(m−1)
r,i ∈ MR,

and next, each K
(m)
i,j is the K-transform of the orthogonal convolution

μ
(m)
i,j := κi,j � μ

(m−1)
i ∈ MR,

where the κi,j ’s are the Bernoulli measures with K-transforms Ki,j (z) = bi,j /z, respectively. It
is easy to see that all these measures are compactly supported. Moreover, the properties of the
orthogonal additive convolution (Corollary 5.3 in [14]) say that the moments of μ

(n)
i,j of orders

� 2m agree with the corresponding moments of μ
(m)
i,j for any n > m and any given i, j . More

precisely, in the formal Laurent series expansion

K
(m)
i,j (z) =

∞∑
n=0

c−2n−1z
−2n−1,

the coefficients c−1, . . . , c−2m−1 are uniquely determined by the constants which appear in the
continued fraction of the corresponding Cauchy transform G

(m)
i,j at depths � 2m, and these de-

termine the moments of μ
(m)
i,j of orders � 2m. The recurrence for the K-transform given above is

such that the corresponding Cauchy transforms G
(m)
i,j and G

(m−1)
i,j agree down to depth m − 1 for

any given i, j , which proves our assertion. Therefore, we have weak convergence

w − lim
m→∞μ

(m)
i,j = μi,j

to some μi,j ∈ MR for any i, j . These measures are also compactly supported since supi,j bi,j

is finite. In turn, this implies that the corresponding Cauchy transforms (and thus K-transforms)
converge uniformly to the Cauchy transform (K-transforms) of μi,j on compact subsets of C

+.
This completes the proof. �

We are ready to state a theorem, which is another version of the tracial central limit theorem
for matricially free random variables.
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Theorem 7.1. Under the assumptions of Theorem 6.1, the ψ(n)-distributions of Sn converge
weakly to the distribution given by the convex linear combination

μ =
r∑

j=1

djμj ,

where μj = μ1,j � μ2,j � · · · � μr,j for each j = 1, . . . , r and μi,j is the distribution defined by
Ki,j for any i, j .

Proof. By Theorem 6.1, we have combinatorial formulas for the moments Mm of the limit law
in the tracial central limit theorem. The associated distribution extends to a unique compactly
supported probability measure μ on the real line since its moments are bounded by the moments
of the Wigner semicircle distribution σa with variance a = supi,j bi,j . Using the multiplicative
formula (5.4) for B(π), we can formally write the Cauchy transform of μ in the form

Gμ(z) =
∞∑

k=0

M2kz
−2k−1

= 1

z
+

∞∑
k=1

( ∑
π∈N C 2

2k

Tr
(
B(π)D

))
z−2k−1

= Tr
((

z − K(z)
)−1

D
)
,

which can be called the ‘trace formula’ for Gμ, where

K(z) =
∞∑

k=1

∑
π∈N C C 2

2k

B(π)z−2k+1 (7.1)

is a diagonal-matrix-valued formal power series. Moreover, we will show below that each func-
tion Kj on its diagonal is, in fact, the K-transform of some μj ∈ MR. Then, the formal power
series given by the trace formula is the Cauchy transform of μ as a convex linear combination of
Cauchy transforms of probability measures. In fact, using the definition of B(π) and (5.3), we
obtain the equation

K(z) = τ
((

z − K(z)
)−1

B
)
, (7.2)

where K(z) = diag(K1(z), . . . ,Kr(z)). By analogy with the scalar-valued case, we can find its
solution in the form of a continued fraction. Namely, observe that each Kj(z) has the form of a
formal Laurent series

Kj(z) =
∞∑

c−2n−1z
−2n−1
n=0
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for some c−1, c−3, . . . , and therefore the above vector equation can be solved by successive
approximations. Namely, we set μj to be the (compactly supported) probability measure asso-
ciated with the K-transform Kj(z) = ∑

i Ki,j (z) for each j ∈ [r], where the Ki,j are given by
Lemma 7.1 for B = DU . These K-transforms solve (7.2). This, together with the trace formula
for Gμ, gives

Gμ =
r∑

j=1

djGμj
,

where Gμj
(z) = 1/(z − Kj(z)) is the Cauchy transform of μj for j = 1, . . . , r . That completes

the proof. �
Remark 7.1. The Cauchy transform of each μj can be written as a continued fraction of the
form

Gμj
(z) = 1

z − ∑
i

bi,j

z − ∑
k

bk,i

z − ∑
p

bp,k

z − · · ·
which converges on the compact subsets of C

+.

Next, we state a theorem, which is another version of the standard central limit theorem for
matricially free random variables.

Theorem 7.2. Under the assumptions of Theorem 6.2, the φ(n)-distributions of Sn converge
weakly to the distribution

μ0 = μ1,1 � μ2,2 � · · · � μr,r ,

where μj,j is the distribution defined by Kj,j for each j .

Proof. By Theorem 6.2, we have combinatorial expressions for the limit moments Mm. The
proof is similar to that of Theorem 7.1 and is based on the trace formula for the K-transform
of μ0

Kμ0(z) = Tr
((

z − K(z)
)−1

B0
)

derived from the definition of the function b0, which leads to the equation for the Cauchy trans-
form

Gμ0(z) = 1

z − ∑
j Kj,j (z)

,

which completes the proof. �
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Remark 7.2. The Cauchy transform Gμ0 can be written as a continued fraction of the form

Gμ0(z) = 1

z − ∑
j

bj,j

z − ∑
i

bi,j

z − ∑
k

bk,i
z − · · ·

which gives a matricial extension of the continued fraction of the Wigner semicircle distribution.

8. Decompositions in terms of subordinations

In the one-dimensional case, the limit distributions μ0 and μ are related by Proposition 5.1.
In particular, if each variance matrix V (n) has identical entries equal to one, both central limit
theorems (standard and tracial) give the Wigner semicircle distribution with variance 1 (of course,
the standard case also follows from free probability, whereas the tracial case is related to random
matrices).

In this section we will analyze in more detail the limit distributions for the two-dimensional
case, namely when each variance matrix V (n) consists of four blocks. They will be expressed in
terms of two-dimensional arrays of distributions. Finding simple analytic formulas for the corre-
sponding four-parameter Cauchy transforms and densities does not seem possible in the general
case. However, we shall derive decomposition formulas for those measures in terms of s-free
additive convolutions [14], which gives some insight into their structure (see also [21] for recent
results on the multivariate case). The s-free additive convolution refers to the subordination prop-
erty for free additive convolution, discovered by Voiculescu [26] and generalized by Biane [4].
As shown in [14] and [15], there is a notion of independence, called freeness with subordina-
tion, or simply s-freeness, associated with the s-free additive convolution and its multiplicative
counterpart.

Recall that the s-free additive convolution of μ,ν ∈ MR is the unique probability measure
μ ν ∈ MR defined by the subordination equation

ν � μ = ν � (μ ν),

where � denotes the monotone additive convolution [20]. Equivalently, the above subordination
property can be written in terms of Cauchy transforms or their reciprocals.

Using s-free additive convolutions and the boolean convolution, we obtain a decomposition
of the free additive convolution of the form

μ � ν = (μ ν) � (ν μ),

which allows us to interpret both s-free additive convolutions appearing here as (in general,
non-symmetric) halves of μ � ν. We find it interesting that the limit distributions in the two-
dimensional case will turn out to be deformations of the free additive convolution of semicircle
laws implemented by this decomposition. In other words, the subordination property and the
associated convolutions give a natural framework for studying matricial generalizations of the
semicircle law.

For simplicity, it will be convenient to use the indices-free notation for the two-dimensional
matrix of K-transforms:
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(
a(z) b(z)

c(z) d(z)

)
=

(
K1,1(z) K1,2(z)

K2,1(z) K2,2(z)

)
and

A =
(

α β

γ δ

)
=

(√
b1,1

√
b1,2√

b2,1
√

b2,2

)
= √

B

where the square root is interpreted entry-wise.
Moreover, we will distinguish two laws by special notations: we denote by σα the Wigner

semicircle distribution with the Cauchy transform

Gσα(z) = z − √
z2 − 4α2

2α2
,

where the branch of
√

z2 − 4α2 is chosen so that
√

z2 − 4α2 > 0 if z ∈ R and z ∈ (2α,∞), and
by κγ we denote the Bernoulli law with the Cauchy transform

Gκγ (z) = 1

z − γ 2/z
,

i.e. σγ = 1/2(δ−γ + δγ ).
Finally, we will also use the boolean compressions of μ ∈ MR, where t � 0, defined by

multiplying its K-transform by t , namely we define Ttμ to be the (unique) probability measure
on R, for which

KTtμ = tKμ.

These transformations were introduced and studied in [7] and called ‘t-transformations’ of μ.
We allow t = 0, in which case T0μ = δ0. In particular, we shall use two-parameter boolean
compressions of semicircle distributions, σα,β = Ttσα for t = (β/α)2, with

Gσα,β (z) = (2α2 − β2)z − β2
√

z2 − 4α2

(2α2 − 2β2)z2 + 2β4

being their Cauchy transforms, where the branch of the square root is the same as in the case
of Gσα .

Theorem 8.1. If α,β, γ, δ 	= 0, then the diagonal measures μj,j defined by Kj,j , where 1 �
j � 2, have the form

μ1,1 = T1/t (σα,β σδ,γ ),

μ2,2 = T1/s(σδ,γ σα,β),

with the off-diagonal measures given by μ1,2 = Ttμ1,1 and μ2,1 = Tsμ2,2, where t = (β/α)2 and
s = (γ /δ)2,
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Proof. It is easy to see that the following algebraic relations hold:

a(z) = α2

z − a(z) − c(z)
and d(z) = δ2

z − b(z) − d(z)
,

b(z) = β2

z − a(z) − c(z)
and c(z) = γ 2

z − b(z) − d(z)
.

Thus, b(z) = ta(z) and c(z) = sd(z), which gives μ1,2 = Ttμ1,1 and μ2,1 = Tsμ2,2. In turn,
from the equation for a(z), we get

a(z) = z − c(z) − √
(z − c(z))2 − 4α2

2
= Kσα

(
z − c(z)

)
and thus μ1,1 = σα � μ2,1. In a similar manner we obtain μ2,2 = σδ � μ1,2. Therefore, we arrive
at the equations

μ1,1 = σα � (Tsσδ � Ttμ1,1),

μ2,2 = σδ � (Ttσα � Tsμ2,2)

since Tt (μ � ν) = (Ttμ) � ν. In order to express the μj,j in terms of s-free additive convolutions,
we need to use the properties of the orthogonal convolution. We have shown in [14] that the
moment of order k of μ � ν depends on the moments of orders � k of μ and the moments of
orders � k − 2 of ν. This leads to the conclusion that for any compactly supported μ,ν ∈ MR

and the associated sequence of measures (μ �m ν), defined recursively by

μ �m ν = μ � (ν �m−1 μ) with μ �1 ν = μ � ν,

we have weak convergence w − limm→∞ μ �m ν = μ ν. If we take μ = Ttσα and ν = Tsσδ

(these measures are compactly supported), we get the desired formulas. �
Corollary 8.1. The measures μ0, μ1, μ2 can be decomposed as

μ0 = T1/t (σα,β σδ,γ ) � T1/s(σδ,γ σα,β),

μ1 = T1/t (σα,β σδ,γ ) � (σδ,γ σα,β),

μ2 = T1/s(σδ,γ σα,β) � (σα,β σδ,γ ),

where the assumptions and notations are the same as in Theorem 8.1.

Proof. These decompositions follow immediately from Theorems 7.1, 7.2 and 8.1. �
Remark 8.1. The formulas for the diagonal measures μj,j in the proof of Theorem 8.1 remind
those for two-periodic continued fractions if we take t = s = 1. The latter are of the same form,
except that the semicircle distributions are replaced by much simpler Bernoulli laws. Neverthe-
less, if t = s = 1, the formulas for the μj take a simple form

μj = σα � σδ,



4114 R. Lenczewski / Journal of Functional Analysis 258 (2010) 4075–4121
where j = 0,1,2. By Theorem 7.1 and Corollary 8.1, the same formula holds for μ. Therefore,
all measures μ0, μ1, μ2, μ can be viewed as deformations of the free additive convolution of
two semicircle distributions, implemented by means of boolean compressions.

Let us consider now the situation in which some of the numbers α, β , γ , δ vanish. Suitable
formulas can be derived algebraically, as we did in the proof of Theorem 8.1. However, one can
also obtain the same results by taking weak limits in the formulas for the measures μi,j , using
the fact that all measures involved have compact supports. For that purpose, let us state a few
useful facts about weak limits which will be of interest to us. Then, we consider eight cases, to
which the remaining cases are similar (for instance, α = β = 0 is similar to γ = δ = 0).

Proposition 8.1. Let t = β2/α2, where α,β > 0, and let μ ∈ MR be compactly supported.

1. If α → 0+, then
(a) w − limσα = δ0,
(b) w − lim(σα,β) = κβ ,
(c) w − lim(T1/t (σα,β μ)) = δ0.

2. If β → 0+, then
(a) w − limσα,β = δ0,
(b) w − lim(Ttμ) = δ0,
(c) w − lim(T1/t (σα,β μ)) = σα � μ.

Proof. If α → 0+, then Kσα(z) → 0, which proves 1(a). Here, as well as in the remaining cases,
convergence is uniform on compact subsets of C

+. Moreover, Kσα,β = β2/(z − α2Kσα) →
β2/z = Kκβ , which gives 1(b). In turn, if β → 0+, then Kσα,β (z) = β2/(z − Kσα(z)) → 0,
thus also w − limσα,β = δ0, which proves 2(a). If, in addition, t → 0+, then Ttμ → δ0 for
any μ ∈ MR, which proves 2(b). Finally,

T1/t (σα,β μ) = T1/t

(
Ttσα � (μ σα,β)

) = σα � (μ σα,β)

and thus the right-hand side tends weakly to δ0 as α → 0+, which gives 1(c), and tends weakly
to σα � (μ δ0) = σα � μ as β → 0+, which gives 2(c). This holds for any μ ∈ MR, and
we also use the right unit property of δ with respect to the s-free additive convolution, namely
μ δ0 = μ. �
Corollary 8.2. If some of the entries of the matrix A vanish, we can distinguish eight different
cases, for which the distributions μi,j are given by Table 1.

Proof. If ai,j = 0, then μi,j = δ0, which easily follows from the algebraic equations for the
corresponding K-transforms. An alternative proof can be given by taking weak limits of the
formulas of Theorem 8.1, as we proceed with the remaining measures. Thus, if δ → 0+, then

μ1,1 = w − limT1/t (σα,β σδ,γ ) = T1/t (σα,β κγ ),

μ1,2 = w − lim(σα,β σδ,γ ) = σα,β κγ ,

μ2,1 = w − lim(σδ,γ σα,β) = κγ σα,β,
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Table 1
Distributions μi,j in the case A has zero entries.

a1,1 a1,2 a2,1 a2,2 μ1,1 μ1,2 μ2,1 μ2,2

α β γ 0 T1/t (σα,β κγ ) σα,β κγ κγ σα,β δ0
0 β γ 0 δ0 κβ κγ κγ κβ δ0
α 0 γ δ σα � σδ,γ δ0 σδ,γ σδ

0 β 0 δ δ0 κβ δ0 σδ � κβ

0 0 γ δ δ0 δ0 σδ,γ σδ

α 0 0 δ σα δ0 δ0 σδ

α 0 0 0 σα δ0 δ0 δ0
0 β 0 0 δ0 κβ δ0 δ0

by 1(b) of Proposition 8.1, which proves the first case in Table 1. The remaining cases are proved
in a similar manner. �

In the case of arbitrary matrix A, finding the four-parameter densities of μ0 and μ is unwieldy.
Below we shall just consider two special cases, in which we can find nice formulas for these
measures for matrices A of arbitrary dimension. These two cases are of special interest since
they are associated with (asymptotic) freeness and (asymptotic) monotone independence.

Proposition 8.2. If A is a square r-dimensional matrix with identical positive entries αj in the
j -th row, then

μj = σα1 � σα2 � · · · � σαr

for each j ∈ [r], and the measures μj coincide with μ and μ0.

Proof. Since the columns of A are identical, the functions Ki,j are the same for all j ’s. Denote
them Li = Ki,j , where i, j ∈ [r]. Moreover,

Li(z) = bi

z − ∑r
j=1 Lj (z)

and
r∑

i=1

Li(z) =
∑r

i=1 bi

z − ∑r
j=1 Lj (z)

for any i ∈ [r]. Therefore,
∑r

i=1 Li(z) is the K-transform of the measure

σα1 � σα2 � · · · � σαr

and since Kμj
(z) = ∑r

i=1 Ki,j (z) = ∑r
i=1 Li(z), the proof for μj is completed. It is then easy

to see that we get the same result for μ and μ0. �
Proposition 8.3. If A is a lower-triangular r-dimensional matrix with identical positive entries
αj in the j -th row below and on the main diagonal, then

μj = σαj
� σαj+1 � · · · � σαr

for each j ∈ [r]. Moreover, μ0 = μ1 and μ is the convex linear combination of the measures μj

as in Theorem 7.1.



4116 R. Lenczewski / Journal of Functional Analysis 258 (2010) 4075–4121
Proof. As in the proof of Proposition 8.2, note that the measures μi,j do not depend on j and
thus we can set Li = Ki,j for any i � j . If i = r , we have

Lr(z) = br

z − Lr(z)
,

using the continued fraction for the Kr,j of Lemma 7.1. Therefore, μr,j = σαr for any j � r .
Next, we have

Lk(z) = bk

z − ∑r
i=k Li(z)

,

which leads to

Lk(z) = Kσαk

(
z −

r∑
i=k+1

Li(z)

)
,

giving the orthogonal decomposition of μk,j ,

μk,j = σαk
� (μk+1,j � · · · � μr,j )

for any j � k < r . Now, we claim that

μi,j � · · · � μr,j = σαi
� σαi+1 � · · · � σαr

for any 1 � j � i � r . Clearly, it holds for i = r and any j � r since we have already shown that
μr,j = σαr for any j � r . Suppose now that this formula holds for i > k and any j � i. We will
show that it holds for i = k and any j � k. Using the orthogonal decomposition of μk,j given
above and the inductive assumption, we obtain

μk,j = σαk
� (σαk+1 � · · · � σαr ).

However, for any μ,ν ∈ MR, we have a simple relation

(μ � ν) � ν = μ � ν,

which gives

μk,j � · · · � μr,j = σαk
� σαk+1 � · · · � σαr

and the desired expression for μj . In a similar manner we obtain μ0 and μ. �
Example 8.1. If α = δ 	= 0 and β = γ = 0, then we can use Table 1 to obtain μ0 = σα � σα ,
which is the arcsine law with Cauchy transform Gμ0(z) = 1/

√
z2 − α2 whereas μ is the Wigner

semicircle distribution σα . In turn, if α = δ = 0 and β = γ 	= 0, then μ0 = δ0, whereas μ = σβ .
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9. Weighted binary trees and Catalan paths

In this section we show how to express the limit distributions in terms of walks on weighted
binary trees, or equivalently, in terms of weighted Catalan paths. The binary tree serves here as
an example of the strongly matricially free Fock space.

The usual framework which gives a description of distributions in terms of walks on graphs
is the following. Let W(n) denote the set of root-to-root walks of length n on a rooted graph
(G, e) and let μ be the spectral distribution of (G, e), i.e. the distribution given by the moments
of the adjacency matrix A(G) in the state ϕ associated with the vector δe on the space of square
integrable functions on the set V (G) of the vertices of G . Then the n-th moment of A(G) in the
state ϕ is equal to the cardinality of the set W(n). In particular, it is well known that the moments
of the Wigner semicircle distribution of variance 1 can be expressed in terms of walks on the
half-line (T1, e) with the first vertex denoted by e and chosen as the root.

For many distributions we have to use a more general framework, in which the moments of
these distributions are expressed in terms of root-to-root (random or, more generally, weighted)
walks on some rooted graph, except that to each walk w on this graph we have to assign a real-
valued weight ξ(w). Then we can write

Mμ(n) =
∑

w∈W(n)

ξ(w)

for any n � 1, where μ is the considered distribution. In particular, we obtain the moments of σα

for any α > 0 by putting ξ(w) = αn, where n = |w| is the length of w.
In the cases which are of interest to us, the weight function ξ is first defined on the set of

edges E(G) of G and then is extended to W = ⋃
n�1 W(n) by multiplicativity. Namely, if we are

given a mapping ξ : E(G) → R, we set

ξ(w) = ξ(E1)ξ(E2) . . . ξ(En),

where w = (E1,E2, . . . ,En) and E1,E2, . . . ,En are the edges of w (we choose to describe
walks on graphs as sequences of edges). Such extension, by abuse of notation denoted also by ξ ,
will be called multiplicative.

For instance, it is easy to see that the moments of μ = σα � σδ can be expressed in this form.
It is enough to take the free product of two half-lines, which is the binary tree (T2, e) with root e.
Let us color this graph in the natural way, namely each edge which belongs to a copy of the first
half-line is colored by 1 and each edge which belongs to a copy of the second half-line is colored
by 2. Then the above formula holds for the moments of μ if we take ξ(E) = α whenever E is
colored by 1 and ξ(E) = δ whenever E is colored by 2.

We will demonstrate below that we can express our distributions μ0,μ1,μ2 in a similar form
(in particular, we can use the binary tree), except that the weight function ξ will depend on all
four parameters which appear in the matrix A. Before formulating the theorem, let us introduce
special weight functions related to matricial freeness.

Definition 9.1. Let Tr be an r-ary rooted tree with root e and let A ∈ Mr(R). The weight function
ξ : E(Tr ) → R which assigns the entries of A to the edges of Tr is called matricial if, for any
pair of edges E1,E2 ∈ E(Tr ), incident on the same vertex and such that E1 is the ‘father’ of E2,
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Fig. 3. Binary tree with a matricial weight function.

the following implication holds:

ξ(E1) = ai,j for some i, j ⇒ ξ(E2) = ak,i for some k.

The unique multiplicative extension of this weight function to the set of all walks on Tr will also
be called matricial.

We specialize to p = 2 and the binary tree. Note that any matricial weight function ξ on the
binary tree is uniquely determined (up to equivalence) by the set of those entries of the matrix
A which are assigned to the set {E1,E2} of two edges incident on the root of the tree, called the
initial weights. In order to establish a connection with our limit distributions, we will assume, as
in Section 8, that A is the ‘square root’ of B = DU of Section 6. Then, in particular, the binary
tree with the matricial weight function associated with A and the initial weights {α, δ}, shown in
Fig. 3, describes μ0 as we show below.

Finally, recall after [1,14] that if (G1, e1) and (G2, e2) are two locally finite simple graphs and
μ1 and μ2 are the associated spectral distributions, then the s-free product of G1 and G2 (in that
order) can be interpreted as this half of the free product G1 ∗ G2 which ‘begins’ (starting from the
root) with a copy G1. Moreover, the associated spectral distribution is given by μ1 μ2. Let us
add that a similar result holds in the multiplicative case: both the s-free multiplicative convolution
and the associated s-free loop product of graphs were introduced in [15].

Below we shall use the s-free product of half-lines, which are (left and right) halves of the
binary tree.

Theorem 9.1. Let ξ0, ξ1, ξ2 be the multiplicative matricial weight functions on the set of walks
on T2 associated with matrix A and the initial weights {α, δ}, {β, δ} and {α,γ }, respectively.
Then

Mμj
(n) =

∑
w∈W(n)

ξj (w) (9.1)

for j = 0,1,2 and any n ∈ N, where W(n) denotes the set of root-to-root walks on T2 of length n.

Proof. We need to translate the result of Corollary 8.1 to the language of graphs. It is well known
that the moments of σα can be interpreted in terms of walks on the half-line with the weight α
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assigned to each edge. The boolean compression Tt of σα changes only the weight assigned to
the edge incident on the root, namely it multiplies it by

√
t = β/α, which can be illustrated as

.

Now, the s-free additive convolutions of compressed semicircle distributions which appear in the
decompositions of Corollary 8.1, namely

σα,β σδ,γ and σδ,γ σα,β

are the spectral distributions of the s-free products of these half-lines (taken in two different
orders). These turn out to be the spectral distributions of the two halves of the binary tree T2 with
the weight function defined by the initial set {β,γ }. In order to obtain μ0, we still need to apply
T1/t and T1/s , respectively, to the left and right halves of the tree, which amounts to changing
the initial weights from β and γ , respectively, to α and δ. As a result, we obtain the weight
function associated with A and the initial set {α, δ}. This proves the statement concerning μ0
(the corresponding weight function on the binary tree is shown in Fig. 3). The cases of μ1 and
μ2 are very similar (at the end, a boolean compression is applied to only one half of the binary
tree). �

Another geometric interpretation of Corollary 8.1 can be given in terms of Catalan paths. In
order to define a Catalan path, we begin with a function f : [2n] → [n], such that f (0) = f (2n)

and |f (i) − f (i − 1)| = 1 for any 1 � i � 2n, and then we define a Catalan path as its unique
extension f : [0,2n] → [0, n] (by abuse of notation, denoted by the same symbol) obtained by
connecting each (i − 1, f (i − 1)) with (i, f (i)) with a segment, where 1 � i � 2n. Clearly, each
Catalan path consists of segments of two types: ‘rises’ R1,R2, . . . ,Rn, and ‘falls’ F1,F2, . . . ,Fn.
Moreover, to each ‘rise’ Rj there corresponds the closest ‘fall’ Fτ(j) lying to the right of Rj and
on the same (vertical) level.

There is a natural mapping from the set W(2n) of walks of length 2n on the binary tree and
the set C(n) of Catalan paths of length 2n. In order to rephrase Theorem 8.1 in terms of Catalan
paths, we need to take the sets of weighted Catalan paths, by which we understand pairs (f, ξ),
where f is a Catalan path and ξ is a real-valued weight function defined on the set of segments
of f . The multiplicative formula

ξ(f ) = ξ(R1) . . . ξ(Rn)ξ(F1) . . . ξ(Fn)

assigns the corresponding weight to f . Weighted Catalan paths of special type defined below
allow us to rephrase Theorem 8.1.

Definition 9.2. A weighted Catalan path (f, ξ) of length 2n is called matricially weighted if ξ

assigns entries of A ∈ Mp(R) to the segments of f in such a way that the following implications
hold:

ξ(R1) = ai,j for some i, j ⇒ ξ(R2) = ak,i for some k,

ξ(F1) = ai,j for some i, j ⇒ ξ(F2) = aj,k for some k,
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Fig. 4. A weighted Catalan path associated with A.

for any two consecutive ‘rises’ R1,R2 and two consecutive ‘falls’ F1,F2, and the same weights
are assigned to Ri and Fτ(i) for each i ∈ [n].

We will consider below the set of matricially weighted Catalan paths of length 2n associated
with the matrix A. In order to rephrase Theorem 9.1, using weighted Catalan paths, we need to
restrict the set of weights which can be assigned to the first segment of each path (by analogy
with trees, we call them initial weights). An example of a weighted Catalan path contributing to
μ0 is given in Fig. 4.

Corollary 9.1. Let C0(n), C1(n) and C2(n) be the sets of matricially weighted Catalan paths
associated with A, with the initial weights {α, δ}, {β, δ} and {γ,α}, respectively. Then

Mμj
(2n) =

∑
(f,ξ)∈Cj (n)

ξ(f )

for j = 0,1,2 and any n ∈ N.

Proof. This is an easy consequence of Theorem 9.1 since there is a natural bijection between
each Cj (n) and the pair (W(2n), ξj ) for any n. �
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