VARIATION IN CRYPT SIZE AND ITS INFLUENCE ON
THE ANALYSIS OF EPITHELIAL CELL PROLIFERATION

IN THE INTESTINAL CRYPT

JOoHN TOTAFURNO, MATTHEW BJERKNES, AND HAZEL CHENG
Department of Anatomy, Medical Sciences Building, University of Toronto, Toronto, Ontario, Canada
M5S 148

ABSTRACT The standard model of epithelial cell renewal in the intestine proposes a gradual transition between the
region of the crypt containing actively proliferating cells and that containing solely terminally differentiating cells
(Cairnie, Lamerton and Steel, 19654, b). The experimental justification for this conclusion was the gradual decrease
towards the crypt top of the measured labeling and mitotic indices. Recently, however, we have proposed that intestinal
crypts normally undergo a replicative cycle so that at any time in any region of the intestine, crypts will be found to have
a wide range of sizes. We show here that if this intrinsic size variation is taken into account, then a sharp transition
between the proliferative and nonproliferative compartments of individual intestinal crypts is consistent with the
labeling and mitotic index distributions of mouse and rat jejunal crypts. Thus there is no need to invoke the region of
gradual transition from proliferating to nonproliferating cells as is done in the standard model. The position of this sharp
transition is estimated for both the mouse and rat. Experiments to further test our model are suggested and the

significance of the results discussed.

I. INTRODUCTION

The standard model of cell proliferation in the epithelium
of intestinal crypts is currently the slow cut-off model of
Cairnie et al. (1965a, b) in which a gradual transition from
proliferating to nonproliferating cells occurs over a wide
range of cell positions within the crypt. In their study of rat
intestinal crypts, Cairnie et al. rejected a sharp spatial
transition (their sharp cut-off model) between the prolifer-
ative and nonproliferative states because of the apparently
slow decrease up the crypt that they observed in the mitotic
index.

Implicit in the line of reasoning leading to the rejection
of the sharp cut-off model is the assumption that the
experimentally determined labeling and mitotic index dis-
tributions are representative of the kinetics of individual
crypts even though they are obtained by averaging over
many crypts. From this point of view, any inhomogeneity
in the crypt population is attributable to biological noise.
The measurement process is assumed to average over such
noise, producing distributions that correspond to those of
some idealized average crypt. Recently, however, we have
attempted to demonstrate that inhomogeneity in the crypt
population has a dynamic basis in the cycling of crypts
(Totafurno et al., 1987). We have argued that individual
crypts in the adult cycle through stages of growth and
division. This leads to a population of crypts with widely
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varying sizes. Such intrinsic nonrandom variation in the
crypt population suggests that the population averaged
distributions which are usually obtained are not equivalent
to those that apply to individual crypts.

Suppose that the mitotic index at a given cell position
varies with crypt size. Averaging over the crypt population
could then itself be the reason that the population averaged
mitotic index distribution decreases more gradually than
expected on the basis of the sharp cut-off model alone.!
Although Cairnie et al. (1965a) are careful to record the
variation in crypt length, they do not incorporate its effects
explicitly into their model. Later authors (Cairnie and
Bentley, 1967; Wright et al., 1972) have dealt with the size
variation by introducing an ad hoc normalizing scheme in
their data collection. Here we derive a quantitative model
of the population averaged distributions that assumes the
validity of the sharp cut-off model as applied to individual
crypts but permits the cell position of the cut-off to vary
with crypt size. The model’s predictions for both the mouse
and rat are found to be consistent with the data. As a result

'To illustrate, imagine crypts came in only three sizes: 20, 30, and 40 cell
positions tall, respectively. Now consider the mitotic index at cell position
20. For the shortest crypts the mitotic index at cell position 20 would be
expected to be 0%; in the mid-sized crypts it might be ~3%; and in the
tallest crypts the mitotic index in position 20 might be perhaps 5%. Let us
suppose further that 50% of crypts are small, 30% are mid-sized, and the
remaining 20% are tall. Then a random sampling of cells from position 20
would produce an average mitotic index with the intermediate value of

([0.51[0] + [0.3][0.03] + [0.2)[0.05]) x 100 = 1.9%.
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FIGURE 1 Schematic repre-
dh sentation of an idealized crypt of
length L with a hemispherical
dV base of radius R. The x coordi-
nate is shown with origin at the
L bottom of the crypt. The dashed
A line indicates the location of the
cut-off at a distance x = D above
A the bottom of the crypt. The
D definitions of the widths d, and
X d, are illustrated by the rectangle
representing the basal projection
R of a crypt cell from the cylindri-
cal portion of the crypt.

we conclude that a relatively sharp transition between
proliferating and nonproliferating cells in the crypt
remains a tenable alternative to the gradual transition
proposed by the standard model.

I1. The Model?

(a) Index Distributions. The labeling index,
mitotic index, and growth fraction are measures of cell
proliferation which vary both within the crypt and, as we
have suggested in the Introduction, between crypts. For
convenience we refer to the distributions of these measures
within the crypt collectively as index distributions. The
index distributions are taken to be continuous functions of
the distance along the crypt axis measured from the
bottom of the crypt. When this distance is expressed in
terms of some physical length unit such as microns (um),
we denote it by x (see Fig. 1). Alternatively, this distance is
denoted by p when it is expressed in terms of number of cell
positions. As used here, p is effectively a measure of arc
length along the crypt perimeter. Because of the hemi-
spherical shape of the crypt base, the transformation
between x and p (see Section II[e]) does not correspond
simply to a change in units thus necessitating for clarity the
use of distinct symbols. Unless explicitly indicated, vari-
ables representing lengths in the model will refer to
quantities measured in some physical length unit.

Variation between crypts of the index distributions will
be assumed for simplicity to depend only upon crypt size
and in particular crypt volume, ». Thus we assume that a
given position x (or p) is equivalent as regards the index
distributions in all crypts with the same volume v. Because
average cell volume probably does not vary much between
crypts and because crypt length scales as v'? (see below),
crypt volume should be roughly interchangeable in charac-

2For convenience, the symbols used here together with a brief definition
are listed in Appendix A.
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terizing crypt size with the number of cells in the crypt or
with crypt length. We conclude then that the labeling
index, mitotic index and growth fraction are functions both
of x (or p) and » and denote them by A(x; v), u(x; v), and
¥(x; v), respectively. For convenience, the function ®(x; v)
is used to refer collectively to the index distributions.

The functions ®(x;v) or ®(p;v) describe the index
distributions of individual crypts. As discussed in the
Introduction, these index distributions must be distin-
guished from the experimentally measured curves which
correspond to averages over all of the different sized crypts
in the crypt population. We represent the population
averages of these distribution by (®)(x) or (®)(p).

(b) Crypt Population Averaging. The popula-
tion averaged index distribution (®)(p) (or (®)(x)) is
obtained from ®(p; v) (or ®(x; v)) by averaging over the
ensemble of crypt volumes. If f(v) is the probability density
of a crypt having volume v, then

(8)(p) = ["+av 8(p; ) f (v) do, (1)

Vo

where crypt volumes range from ¥, to V, + AV. As defined
here, (®)(p) is the expected number of labeled, mitotic or
cycling cells at position p divided by the total number of
crypts sampled (see Section V[b]). The form of f(v) has
been shown to be (Totafurno et al., 1987)

2In2 In2
f(v)=—A'7°Xp[— ﬁ(v- V) )
(V,=<v =<V, + AV), with expected value
— 1
U—V0+AV(in—2-—l). A3

(c) Sharp Cut-off Model. The sharp cut-off
model of Cairnie et al. (1965b) is assumed to describe the
kinetics of individual crypts of volume ». In this model,
there is a point along the crypt, x = D, above which only
nonproliferating cells are produced as proliferating cells
migrate past D and complete their last cell cycle. Our
derivation of the index distributions follows that of Cairnie
et al. (1965b) which should be consulted for a fuller
justification of the steps involved. Unlike their work,
however, parameters such as the sharp cut-off, D, are
understood to be dependent on crypt volume and the top of
the proliferative zone is no longer assumed to be neces-
sarily at the position x = 2D.

The crypt is assumed to be in an approximate steady
state (crypt growth is slow; see Totafurno et al., 1987) with
cells at a given cell position migrating to positions higher in
the crypt at a velocity prescribed by the cumulative cell
production below that cell position. Let the phase of a cell
in the cell cycle be denoted by ¢ = ¢/ T, where ¢ is the age of
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the cell and T is the cell cycle time which, for simplicity, is
assumed uniform throughout the crypt. Thus 0 <o < 1. At
cell positions just below the cut-off point, D(v), the distri-
bution of cycling cells through the cell cycle is taken to be
that of an expanding population with growth fraction 7,
The probability of a cell at D being a cycling cell with
phase ¢ is therefore given by

P(c)do = 2v,In 2 exp (-0 In 2) do. 4)

As the cells at the cut-off D move to higher positions in
the crypt, additional noncycling cells are produced. It is
assumed that at positions between the cut-off and the top
of the proliferative zone, the phase distribution P(c) of
these additional noncycling cells (each of which has an age
less than or equal to T) and the remaining cycling cells is
still given by Eq. (4) with ¢ for these noncycling cells being
interpreted as their age divided by T (see Cairnie et al.,
1965b). Let the top of the proliferative zone be at position
x = pD. The cycling cells at a position x between D and pD
have phases ¢ = o,,(x) where o,,,(x) is the minimum
phase of the cycling cells at x and equals the time ¢ it takes
for cells at D to migrate to position x divided by the cell
cycle time T. To obtain o, as a function of x, we assume
for convenience, as did Cairnie et al. (1965b), that cell
velocity is roughly proportional to x.> Then

x = D(v) exp (% In ,,) - D) exp (Gmalnp),  (5)

3This approximation gives a cell velocity at any given x in D < x < pD that
is only slightly greater, for the range of parameters of interest here (i.c.,
p~2, 7, ~ 1), than that expected on the basis of our assumption of a
steady state.

We may derive the dependence of cell velocity on x from the steady
state assumption as follows. Consider the cylindrical portion of a crypt.
Let us assume that all cells at a given position x move up the crypt with
the same average speed s(x). Also let 7(x) be the number density of cells
at x. By the steady state assumption, both s(x) and n(x) have no explicit
time dependence. The rate at which cells move past a point x is given by
n(x)s(x). If the crypt is in a steady state, we have the balance equation
(assuming that cell death is negligible in the cylindrical portion of the

crypt)

n(x)s(x) = n(x)s(x,) + £ " G(y)dy,

where x,and x (x, < x) are points in the cylindrical part of the crypt, and
G(x) is the rate of cell production at x. In the cylindrical portion of the
crypt, the number of cells per unit length, n, is independent of x.
Differentiating the balance equation with respect to x therefore gives

ds(x) 1
dx -;G(x).

Between D and pD, the rate of cell production, G(x), as implied by Eq. (4)
is also independent of x and equal to (v, 7 In 2) /T so that

ds(x) ~v,In2
dx T ’

TOTAFURNO ET AL. Sharp Cut-Off Model Revisited

where p(v) is defined so that x = pD is the top of the
proliferation zone.

The growth fraction just below D(v) is assumed uniform
and of value v,. Between D and pD, the growth fraction
decreases as cycling cells complete their last cell cycle (see
above). The proportion of cells still cycling at a positon x in
this region is given by the area under the phase distribution
curve between ¢ = o, and o = 1 so that

1) = [ Po) do. ©)
With increasing x, the growth fraction v decreases until it
reaches O at the top of the proliferation zone. Thus the
growth fraction distribution can be seen as having three
regions: a region below the cut-off D(v) where the growth
fraction is v,; a region between D(v) and pD(v) where the
growth fraction decreases as given by Eq. (6); and a region
above pD(v) where the growth fraction is 0 (see Eq. (7)
below).

The labeling and mitotic index distributions also have
three regions. At positions near D(v) the labeling and
mitotic indices have their maximum value which we denote
by A, and g, respectively. At positions near pD(v), these
distributions have the value 0. The intermediate regions
(throughout which A(x) and u(x) are decreasing) begin at
a position x where the phase of the youngest cycling cells
onin corresponds to the beginning of S phase or the
beginning of the mitotic phase of the cell cycle, respec-
tively, and end where ¢, corresponds to the end of S phase
or the end of the mitotic phase (i.e., o, = 1), respectively.
Within these regions, A(x) and u(x) are given by Eq. (6)
with the limits of integration changed accordingly. To
obtain the labeling index, mitotic index and growth frac-
tion distributions as functions of x, the equations for these
distributions (cf., Eq. [6]) were evaluated with the help of
Eq. (5). Defining 7, to be the duration of the S-phase of the

where D < x < pD. By solving this equation we therefore find that cell
velocity is related to x as

Y, In2

s(x) T

(x — D) + sp,

where s, is the cell velocity at D.
Consider now the position x of a single cell as it moves up the crypt. The
speed of this cell, dx/dt, equals s(x). Therefore

dx +v,In2
dt T

(x — D) + sp.
If we solve this equation subject to the constraints thatat f = 0, x = D, and

at¢ = T, x = pD, then t/ T can be identified as g,,, and the solution is

. D(e™""? - p)
(ey,,lnz - 1) .

(- 1D

e‘yqln 20min
(e?-1)

X(0min) =

When vy, = 1 and p = 2, which as it turns out are the values we have used
(see Section IV [a]), this equation for x(s,,,) is identical to Eq. (5).
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cell cycle, we find that the index distributions of a crypt of
volume v are given by

(

A x =<
2] D al
®(x: v) = { 2v((D/x)"/™ — B, @, =< % <8,
X
0, 5= B0 0]

\

where A, B, a,, and 8, are as listed in Table I and D is a
function of volume. Here, Da, and DB, correspond to the
points x between D and pD at which o, equals the initial
and final phases o, respectively, relevant to the given index
distribution (e.g., the phase at the beginning and end,
respectively, of .S). For given T,/ T, A, must have a value in
the range

—yn[cxp (-? In 2) - l] =A< 27,,[1 — exp (— %ln 2)] 8¥)

depending upon the duration of the G, phase.

(d) Volume Dependence of Crypt Parame-
ters. We assume for simplicity that the linear dimensions
of the crypt, the height of the cut-off (D) and the height of
the top of the proliferative zone (pD) increase uniformly
with crypt size. Thus crypt length L is related to volume v
by the relation

L=av'’, %)

where a is a measured constant. It also follows that

D(v) = D, (5)"3 -D, (Lf) , (10)

o

where D, V,, and L, are the cut-off height, volume and
length, respectively, of the smallest crypts in the popula-
tion. A direct check of Eq. (9) reported later in the paper

TABLE 1
DEFINITION OF QUANTITIES IN THE EXPRESSION FOR
THE THREE SHARP CUT-OFF INDEX DISTRIBUTIONS*

A " Y

A A, Ko Yo

-1
)\o[exp(% In 2)— 1] Yo Yo
2y, T, lap o _lnp
L — {1 —exp|——=In 2| [tn2 p|=+1] In2 1

T,
8. exp (?’ In p) a, P p

]

*See Eq. (7); for definition of parameters see Section II.
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shows that it is consistent with measurements of crypt
length and volume. Furthermore, the assumption that pD
increases uniformly with crypt size is consistent with the
nature of the growth of the proliferative compartment after
30% resection in the mouse (Bjerknes and Cheng, 19815,
p. 94).

As a convenient measure of crypt size variation, we
introduce

Loax (Vo + AV)'/3' an

=71 "\,

where L, is the maximum length of crypts in the popula-
tion and AV is the range of crypt volumes in the population.
From Eq. (10) we see that D ranges (depending upon the
size of the crypt) from D, to

D, = 0D, (12)

Since both pD(v) and D(v) are assumed proportional to
v'/3, p is a constant independent of crypt volume. p is such
that the number of cells between D(v) and pD(v) equals
the number of cycling cells below D(v). This may be seen
as follows.

Given steady state, the number of cells that move up
past D in one cell cycle time equals the number of cycling
cells below D. Over the same cell cycle time, all of the cells
between D and pD move out of this region given that all
cells above D move consistently towards the crypt top.
Thus for steady state to hold, the number of cells between
D and pD must equal the number of cycling cells below D
(cell loss over one cell cycle time is negligible for our
purposes [Bjerknes and Cheng, 19814, p. 59]).

In order to assist in estimating p for the population, we
now obtain p as a function of D/L. Let us suppose, as
shown in Fig. 1, that the shape of a crypt is roughly that of
a cylinder with a hemispherical base of radius R (Bjerknes
and Cheng, 1981a, p. 61). Consider a given crypt of length
L with K cell columns round the crypt and let C be the
number of cycling cells in the hemispherical base less the
number of noncycling cells between the top of the base and
D. As discussed above, we can equate the number of cells
between D and pD with the number of cycling cells below
D, so that

Ke-DD _KD-R)
d,  d,

C, (13)

where d, is the width parallel to the crypt axis of the basal
projection of the crypt cells in the cylindrical portion of the
crypt (see Fig. 1). Solving Eq. (13) for p gives

i dac
o4

—1
—2 n(%) , (14)
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where we have introduced

g -

which must be independent of v because p and D/L are
independent of v (see Eq. [10]). For convenience we write p
in terms of D, and L, as

p=2— "L°(ﬂ). (16)

d, \D,

v

(e} Relation Between the Distance x and Cell
Position p. The index distributions measured experimen-
tally are functions of cell position p and correspond to
(®)(p). Toobtain (®)(p) we need to transform the index
distribution ®(x; v) given in Eq. (7) into a function of p
denoted ® (p; v). This requires the mapping between x and
p. As noted before, the relationship between x and p does
not correspond simply to a change in units because of the
hemispherical shape of the crypt base.

For convenience we define cell position p to be a
continuous variable that specifies the number of complete
cells and fraction of a cell situated below p, e.g., below p =
5.5 are 51 cells. It should be noted that points between p =
Oand 1, p = 1 and 2, etc., correspond to what are usually
referred to as cell position 1, cell position 2, etc., respec-
tively. The crypt is again assumed cylindrical with a
hemispherical base of radius R (see Fig. 1). Assuming the
cut-off D is somewhere in the cylindrical region of the
crypt, it is sufficient for our purposes to determine the
mapping between x and p for x = R only. Let the cell
position p at x = R be p. Then for p = p,,

x=R+d,(p— pr) an
which implies that for x = R,

x R
- - — 1
p= {'+(PR d,)' (18)

where d, is the cell width shown in Fig. 1. For simplicity we
assume that d, is independent of crypt volume and that p,
and R scale as v'/. Then the required transformation has
the form

p—3{+60'/’, x=R (19)

v

or equivalently
x=d,(p—380"), p=py (20)
where é is a constant independent of crypt volume v and

R
50'/’=PR—7. @n

v

The inhomogeneous term in the transformation between
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x and p given by Eq. (19) is due to the hemispherical shape
of the crypt base. The presence of this term shifts the curve
for (®)(p) that would be obtained if = 0 by roughly two
cell positions in the direction of higher p in the rat (52'/* for
an average sized rat crypt is estimated to be 1.8; see
Section IV(a]). Ignoring the hemispherical shape of the
crypt base may therefore be the reason that the labeling
index distribution predicted by Cairnie et al. (1965b, p.
549) using their slow cut-off model was shifted about two
cell positions lower than the measured distribution. The
volume dependence of the transformation between x and p
means that a given position x corresponds to a range of cell
positions p in the crypt population. Thus averaging over the
crypt population at a fixed x to obtain (®)(x) is not
equivalent to averaging at a fixed p to obtain (&) (p).

(f) Population Averaged Index Distribu-
tions. We now may average over the ensemble of vol-
umes in the crypt population to obtain (®)(p) as pre-
scribed in Eq. (1). To do this we first obtain ®(p; v) by
rewriting Eq. (7), using Eqgs. (10) and (20), in the form

{
0, v»<(p/B)

A \n2/inp p —In2/Inp
@(p; v) = § . (5) (W - l) -5

(p/B,)’ <v<(p/a,)’

A, v>(p/a) (22)
\

where

A= (D,/VY), (23)

+39, (24)

BA
6})' d

v

+ 8, (25)

and p = pg. Let pg™** be the value of pg for the crypt of
largest size with v = V, + AV. Provided we restrict
ourselves to p= pg**, Eq. (22) holds for the entire range of
volumes from V, to V, + AV so that Eq. (1) can be
evaluated. The mathematical form of (®)(p) is given in
Appendix B.

The range of cell positions over which (®)(p) is
decreasing, 7, is given by

ro=DPs — D1

D, D, "
- Z(ﬁx —a)+ (0 - l)[}:ﬂ, + 5V.,’] (26)

using Egs. (B7) and (B10), where p, is the position where
®(p; V,) begins to decrease and p, is the position where
® (p; V, + AV) just reaches 0. If all crypts had the same
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volume, a situation corresponding to the original sharp
cut-off model of Cairnie et al. (1965b), 8 would equal 1 and
only the first term of Eq. (26) would remain. The extra
spread in the range of decrease of (®)(p) due to the
variability of crypt volume is therefore given by the second
term of Eq. (26). In the case of the mitotic index, Cairnie et
al. (1965b) concluded that what we call r, was much too
small if 8 = 1. For our model to be acceptable then, the
second term of our Eq. (26) must make the dominant
contribution to 7, when the a, and 8, are those for the
mitotic index. A quick check of this can be made by first
noting that §V)/% > 0 (see Section IV[a]) so that the second
term of Eq. (26) is greater than (6 — 1)pD,/d, which is
roughly (0.3) pD,/d, in the mouse and (0.6) pD,/d, in the
rat (see Section IV). On the other hand, the first term is
roughly (0.05) pD,/d, in both the mouse and rat (as will be
seen, v, ~ 1, p ~ 2, u, ~ 0.05). Thus the dominant contri-
bution to the range of cell positions over which the mitotic
index is decreasing results from the pooling of crypts of
different sizes.

(g) Model Parameters. Looking at Egs. (B1)
through (B13) and Table I, we see that the predicted index
distributions, (®)(p), depend upon 9 parameters: v,, A,,
te T,/ T, p,8,D,/d,, 5V} and p*. From Eq. (16) we see
that p may in turn be specified in terms of nL,/d, and the
already mentioned D,/d,. In defining these parameters we
have assumed, where applicable, that distances are mea-
sured in some physical length unit such as microns. It is
convenient, however, to express the height of the cut-off in
the smallest crypts in terms of the number of cell postitions
which we denote by P,. This parameter may then be used
in place of D,/d, since from Eq. (20)

D,fd, =P, — sV}, 27

In what follows, the validity of our generalized sharp
cut-off model was tested by comparing the predicted
(®)(p) with measured labeling and mitotic index distribu-
tions from the mouse and rat. The parameters P,, \,, u, for
the mouse and P, A,, u,, and 9 for the rat were obtained by
fitting (®)(p) to the data. The remaining parameters of
the model were held fixed at values estimated using data
from the literature (see Sections III[6] and IV{a]).

III. MATERIALS AND METHODS

(a) Labeling and Mitotic Index Distributions

Distal jejunum from eight Swiss albino mice was processed for autoradi-
ography and light microscopy as described in Cheng and Leblond (1974).
The animals were raised under similar conditions and were approximately
the same age and weight (26 to 35g). The animals were killed between 10
and 11 A.M. For each of 104 crypts, all the cells of a single cell column
from an optimally oriented section were scored as being labeled or
unlabeled and mitotic or not mitotic. A few cells were both labeled and
mitotic. These were included in the determination of both the labeling and
mitotic indices. Because of the range of crypt lengths (see Fig. 2 a), the
total number of cells obtained at the higher cell positions decreases (we
had a range of from 1 to 104 cells per position).
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FIGURE 2 Distribution of observed jejunal crypt lengths (expressed in
terms of cell positions). (a) Total of 104 crypts from mouse. (b) Total of
150 crypts from rat (data from Cairnie et al., 1965a).

For the rat, we used the published labeling and mitotic index distribu-
tions of Cairnie et al. (19654, b). These measurements were for 150
crypts from the proximal jejunum of 8-wk old-male rats of the August
strain (100 to 200 g). Reading the data points from the original figures
was facilitated by the use of a digitizing tablet. The number of cells
observed at a given position by Cairnie et al. (1965a) equals the number
of crypts they considered of a height equal to or less than that given
position. Their reported frequency of crypts as a function of height was
therefore digitized (see Fig. 2 b) and the observed number of cells at a
given height determined (from 101 to 150 cells per position for the
labeling index data and from 60 to 150 cells per position for the mitotic
index data).

(b) Parameter Estimation

To test the validity of Eq. (9) and determine the constant a, the lengths
and volumes of crypts from mouse proximal jejunum were measured. The
two lots (A and B) of five male Swiss albino CD-1 mice described in
Totafurno et al. (1987, Section III[e]) were again used (28.5-29.5 g for
group A and 32.0-33.7 g for group B). In Totafurno et al. (1987), a
method for estimating the volumes of crypts from longitudinal outlines is
described and the volume of 342 crypts in group A and 291 crypts in
group B reported. We used the same volume data here. In addition, the
length of the symmetry axis selected by the computer algorithm for each
of these crypts was determined.

The parameters vy, and 7,/T for both the mouse and rat and the
parameter 6 for the mouse were taken from the literature (see Section
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IV[a]). No published value of # for the rat was available so it was
determined in the fit of the model to the rat index distribution data
described below.

To determine the parameter nL,/d, (see Section II{g]), we first note
that under the assumption of a hemispherical crypt base, the radius

r-X4 (28)
2x

where K, as before, is the number of cell columns and d, is the width
perpendicular to d, of the basal projection of crypt cells in the cylindrical
portion of the crypt (see Fig. 1). Using Egs. (15) and (28) we obtain

oL, (L\Kd, C

d, Ll|2xd, K}’
where we have explicitly written the average crypt length L because the
quantities in square brackets in Eq. (29) are presumed to be representa-

tive of a crypt of average length. It can be shown on the basis of Egs. (9),
(3), and (11) that

L\ (v.\\~ 1 -
oo

where v is the average crypt volume. Thus L,/d, can be estimated given
0,K,d,/d, and C.

It has already been assumed (see derivation of Eq. [19]) that pg and R
scale as v'/? so that

_(v.+av\vs _ [y )\
o (2 (2" an

1/3
Vi - (ﬁk - ;ﬁ) (%) , 32)

(see Eq. [21]) where the bar indicates the value of the quantity for a crypt
of average volume. Now Rand (V,/v)'" are given by Eqgs. (28) and (30),
respectively. Thus p** and 8¥'}/* can be estimated given 0, X, d,/d,, and
C.

The remaining parameters B, A,, and g, for the mouse and B, A,, 4.,
and @ for the rat were obtained using a maximum likelihood fit of the
model (Egs. [B1] to [B13]) to the measured labeling and mitotic index
distributions. The fit was restricted to positions p = 10 in the mouse and
p = 17 in the rat.* The likelihood function and the manner in which the
data were binned are reported in Section I1I(c). Both the best values for
these index distributions individually and the overall best value were
computed using the minimization routine MINUIT (C.E.R.N.).

(29)

and

(¢) Comparison of Fitted Model to the Data

In comparing our fitted model to the data, we used the likelihood ratio test
as follows (see Kalbfleisch, 1985, Section 12.4 and Mood et al., 1974,

‘Here we are concerned with predicting the decrease in the index
distributions that occurs above the cut-off. These predictions are depen-
dent in only a coarse-grained way upon the index distributions below the
cut-off through the parameter C, the total number of cycling cells in the
hemispherical base less the number of noncycling cells between the top of
the base and the cut-off (sec Eqs. [14] and [15]). We could therefore
ignore the observed decrease in the index distributions that occurs
towards the bottom of the crypt for reasons beyond the scope of our
model. In comparing the model to the data we restricted ourselves to
positions above a point where the index distributions appeared to level
off.
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Section IX 5.1). Let & and &, be the observed and predicted value,
respectively, of the index distributions at cell position i. Here

&~ ['(2)(p) dp, (33)

where (®)(p) is given by the model. Also let n, be the number of cells
sampled at cell position i. Then #, = n®, and 7, = n®, are the number of
labeled (or mitotic) cells observed and predicted, respectively, at cell
position i. We assume that the number of labeled (or mitotic) cells
observed, 7, is binomially distributed with probability &, that a single cell
selected from position i is labeled (or mitotic). We also assume that the 7,
for different cell positions i are statistically independent (this is not
strictly true for our data because all cells in a given column are included in
the determination of the index distribution thus rendering the sampling
process nonrandom). The likelihood function is then

i r;

n;
L{,,‘;,'}((l’,-lwo. Aos Ko 0) = H (. )(}:t(l - <1>')m~h_ (34)

The test statistic we used was the negative log likelihood ratio statistic
defined as

D= —2In[L(&)/L(®=d)] (35)

It can be shown (Fraser, 1976) that D is approximately x* distributed
with the number of degrees of freedom equal to the number of &, less the
number of parameters fitted to the index distribution data. To ensure that
D is x? distributed, we chose to pool the data at the higher cell positions
(where data is sparse) into a single bin j with Pyn,—F,r,and n, — r;all
greater than or equal to 2. It was convenient in evaluating the likelihood
function to also pool the data in this way (see Section V[e]). The
comparison of the model to the data was restricted to positions p > 10 in
the mouse and p = 7 in the rat.

IV. RESULTS

(a) Parameters Determined Independently
of Index Distributions

The equation L = av®, where L is crypt length, v is crypt
volume, and a and b are fitted constants, was found to fit
the data with a correlation coefficient of 0.507 (P < 0.001,
dF = 340) for the mice of group A and 0.530 (P < 0.001,
dF = 289) for the mice of group B. The 95% confidence
limits on b were 0.229 to 0.330 for group A and 0.256 to
0.372 for group B. The value b = 1; as used in Eq. (9)
therefore lies well within the 95% confidence limits on b for
group B and only slightly outside of the comparable limits
for group A suggesting that b = 14 is not an unreasonable
approximation. Fitting L = av'/® to both sets of data yields
a=~2.5.

Since the average growth fraction distribution appears
to reach a peak value of ~1 for both the mouse and rat
(Fig. 17.8 of Wright and Alison, 1984), v, was taken to be
1. As representative values of 7,/ T for the mouse and rat,
we used 0.59 (Table 18.3 of Wright and Alison, 1984) and
0.62 (Table II of Cairnie et al., 1965a), respectively. An
average value of § = 1.32 was obtained for the mouse from
Totafurno et al. (1987, Table 1V).

The value of d,/d, used for the mouse was 0.95
(Bjerknes and Cheng, 1981a). Due to a lack of data, the
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same value of d,/d, was used for the rat. The column count
K we used was 18.7 for the mouse (Bjerknes and Cheng,
1981a) and 24.5 for the rat (Wimber and Lamerton,
1963). Direct measurements of p, and C were not avail-
able. However, estimates of p; and C (see Bjerknes and
Cheng, 1981a; Cairnie, 1970) indicate that 5L,/d, (as
determined by Eqs. [29] and [30]) is small enough that p is
roughly 2 in both the mouse and rat for the expected ranges
of P, and 6 (see Eqgs. [16] and [27]). For simplicity we
therefore set p = 2 in both the mouse and rat. In evaluating
PR and 6V} (see Eqgs. [31] and [32]), the value of pg
used was 4 in the mouse and 5.5 in the rat. These values
yield pg** = 4.5 and 8V}/* = 1.0 for the mouse and p** ~
(5.5) 8(V,/)'? and sV = (1.8) (V,/v)"? for the rat,
where (V,/v)'/ is given by Eq. (30) (as reported below, we
found @ = 1.64 in the rat so that p* = 6.6 and 8V} =
1.3). For a crypt of average volume 7, the inhomogeneous
term in the transformation between x and p given by 60"/
(see Eq. [19]) has the value 1.2 in the mouse and 1.8 in the
rat (see Eq. [32]).

(b) Fitting the Model to the Index
Distribution Data

We begin with the maximum likelihood estimates found
for P,, A, and g, in the mouse (each estimate is followed in
brackets by a range of values indicating the 95% confi-
dence interval). The best fit of the model was obtained for
the labeling index data alone, the mitotic index data alone,
and for both sets of data simultaneously (we refer to this
last fit as the combined fit). We found that for the labeling
index fit B, = 13.4 (12.5 to 14.2) and A, = 0.55 (0.51 to
0.59); for the mitotic index fit P, = 12.0 (11.4 to 12.8) and
Ko = 0.055 (0.041 to 0.071); and for the combined fit P, =
12.7 (12.3 to 13.5), A, = 0.51 (0.505 to 0.55), and u, =
0.050 (0.037 to 0.067). The estimated values of A\, were
consistent with the values of 7,/T and v, used (for
T,/T =0.59 and v, = 1, 0.505 < A\, < 0.671; see Eq. [8]).
In each of these cases, there was no significant difference
between the model and the data at the 5% level. Fig. 3
shows the predicted distributions for the combined fit
together with the data points.

For the rat, we obtained the maximum likelihood esti-
mates for P, A,, u,, and 0. For simplicity, 8 was estimated
first using a combined fit to the labeling and mitotic index
distributions and found to be § = 1.64 with 95% confidence
limits of 1.39 to 1.92. Then with 8 held fixed at this value,
estimates of P, A, and u, were made as was done for the
mouse. We found that for the labeling fit P, = 11.9 (11.4
to 12.3) and A, = 0.63 (0.60 to 0.66); for the mitotic index
fit B, = 10.4 (9.9 to 11.1) and g, = 0.061 (0.049 to 0.073);
and for the combined fit P, = 11.5 (11.0 to 12.0), A, = 0.61
(0.58 to 0.64) and u, = 0.053 (0.042 to 0.066). Again the
estimated values of A, were consistent with the values of
T,/T and v, used (for T,/T = 0.62 and v, =1, 0.537 <
A, = 0.699; see Eq. [8]). For each of these fits, there was no
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FIGURE 3 Average labeling and mitotic index distributions (defined as
the number of labeled or mitotic cells, respectively, at a given position
divided by the number of crypts sampled) as a function of cell position (p)
for the mouse. The observed values are indicated by the points; error bars
correspond to the 95% confidence limits on these frequencies assuming
binomial sampling error (see Section 4.7 of Lloyd, 1984). The solid curves
indicate the predictions of the model as given by Eqgs. (B1) through (B6)
using the maximum likelihood estimates of the 3 parameters B, A,, and u,
obtained in the simultaneous fit of the model to both the labeling and
mitotic index distribution data. The parameter valuesare v, = 1, 7,/7T =
0.59, p = 2,0 = 1.32, 5V = 1.0, p* = 4.5, \, = 0.51, g, = 0.050, and
P, = 12.7. (a) Average labeling index. The positions given by Eqs. (B7)
through (B10) are p, = 16.3, p, = 24.0, p; = 21.5, and p, = 31.6. (b)
Average mitotic index. Here p, = 23.2, p, = 244, p, = 30.7, and
Pa=322.

significant difference between the model and the data at
the 5% level. Fig. 4 shows the predicted distributions for
the combined fit with § = 1.64 together with the measured
data points.

As § — 1, variation of crypt size in the model is
suppressed and our model corresponds to the sharp cut-off
model of Cairnie et al. (1965b). We repeated the above
anlaysis for both the mouse and rat with = 1.01. Because
of the large error bars on the mitotic index data (see Figs. 3
and 4), when the model with § = 1.01 was compared with
the mitotic index data alone, no statistically significant
difference was obtained at the 5% level for both the mouse
and rat. In contrast, when the model with 8 = 1.01 was
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FIGURE 4 Average labeling and mitotic index distributions as a func-
tion of cell position (p) as in Fig. 3 except now for the rat. The index
distribution data are taken from Cairnie et al. (1965a, ). The maximum
likelihood estimates for the 4 parameters 6, B,, A, and g, obtained in the
simultaneous fit of the model to both the labeling and mitotic index
distribution data are used. The parameter valuesare y, = 1, 7,/T = 0.62,
p=2,0=164,8V/ =13, p= = 6.6,\, = 0.6, u, = 0.053, and P, =
11.5. (a) Average labeling index. The positions given by Eqs. (B7)
through (B10) are p, = 13.0, p, = 19.3, p, = 21.3, and p, = 31.6. (b)
Average mitotic index. Here p, = 20.6, p, = 21.7, p; = 33.9, and p, =
35.5.

compared with the labeling index data alone or with the
labeling and mitotic index data simultaneously, there was a
significant difference in both mouse and rat. Thus the
sharp cut-off model is unacceptable if the variation in crypt
size is neglected. Since the essential effect of letting 6§ — 1
in our model is to suppress variation in the height of the
cut-off, these results also indicate the unacceptability of a
model in which the height of the cut-off is in some way
fixed irrespective of crypt size.

V. DISCUSSION

(a) Crypt Population Inhomogeneity and a
Reassessment of the Standard Model
The observed labeling and mitotic index distributions of
intestinal crypts are interpreted by the standard slow
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cut-off model (Cairnie et al,, 1965b) as indicating a
gradual cessation of proliferation at higher positions within
individual crypts. Here, we have considered an alternative
interpretation that explicitly incorporates crypt size varia-
tion. For crypts of a given size, the index distributions are
computed assuming that the transition between the prolif-
erative and nonproliferative compartments occurs over as
few positions as is biologically tenable (the sharp cut-off
model of Cairnie et al., 1965b). Then the index distribu-
tions for the entire crypt population are obtained by
averaging over the ensemble of crypt volumes. We have
shown in a quantitative fashion that the predictions of this
model are consistent with existing data. Our conclusion is
therefore that a sharp transition in the proliferative state of
cells within the crypt cannot be ruled out at present.

(b) Population Averaged Index Distributions

Variation in crypt size (see Fig. 2) makes the definition of
the average index distributions somewhat subtle because at
higher positions the number of cells sampled is smaller
than the number of crypts sampled. In the usual sampling
process, the index distribution is defined relative to the
number of cells actually sampled at a given position;
however, as shown below, the use of this definition requires
that the model include an additional parameter. We have
therefore found it convenient to redefine the average index
distribution at a given position to be the number of labeled
(or mitotic or cycling) cells expected at that position
divided by the total number of crypts sampled. Eq. (1)
conforms to this definition because 1 — (®)(p) is the
probability that a sampled crypt has either an unlabeled,
(or nonmitotic or noncycling) cell at p, or no cell at all at p.
These two definitions for the average indices become
identical for positions below the length of the shortest
crypts, L,, because at these positions the number of cells
sampled equals the number of crypts sampled. The values
of A\, u, and v, are therefore the same using either
definition.

The average index distributions using either definition
are the same for positions below x = L, (as mentioned
above) and for positions above x = L ,, (where they are
identically 0). Between x = L and x = L, = 8 L, (see Eq.
[11]), the two definitions give different distributions that
can be transformed, however, into one another as follows.
Let the volume of a crypt whose length is p be v,. A crypt
will have a cell at position p if its volume v > v, The usual
definition of the index distribution at a given position p is
really the conditional probability of finding a labeled (or
mitotic or cycling) cell at that position given that the
selected crypt has v = v,. On the other hand, the average
index distribution (®)(p) used here is actually the joint
probability that a selected crypt has a labeled cell at p and
has v = v, (the presence of a labeled cell at p automatically
implies » > »,). By the definition of conditional probability
we therefore may obtain index distributions conforming to
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the usual definition by dividing (®)(p) by the probability
distribution function F(v,), given by (see Eq. [2])

Flo) = [ fw) dv, (36)

where V, < v, < V, + AV (or equivalently, L, < x < 6L,).
From Eqgs. (9) and (20) we find that

3
v, -p’/(g- + a) . 37

Let the length in cell positions corresponding to the length
x=L,be

Lt =L./d, + 8V)? (38)

(see Eq. [19]). Then evaluating Eq. (36) using Eqgs. (2),
(9), and (11) gives F as a function of p

3
R R

where L? < p < 0 L?. Thus the probability of obtaining a
labeled, mitotic, or cycling cell at p expressed relative to
the number of cells samples at p is

(2)(p), ifp <L}
(®2)(p)/F(p), ifL}<p<0L: (40)
0, ifp= L2

where L§ and F(p) are given by Eqgs. (38) and (39),
respectively.

The expression Eq. (40) involves the additional parame-
ter L2 (or equivalently L /d,; see Eq. [38]). Rather than
including this additional parameter in the model, we have
chosen to introduce the new method of presenting the
results described above. Another difference between the
new and old methods of defining the average index distri-
butions is that the binomial sampling error at the higher
positions is reduced under the new definition used here.
This is because under our definition the relevant number of
samples at a given position is the total number of crypts
selected, while under the old scheme the relevant number
of samples is the number of crypts with a cell in that
position.

(¢) Mitotic Index Distribution and
Sampling Error

it has not generally been recognized in the literature that
the relative binomial sampling error in the measurement of
a low frequency such as the mitotic index can be large
unless sufficient numbers of crypts are sampled (see
confidence limit table for the binomial parameter in Pear-
son and Hartley, 1966). In fact little confidence can be
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placed in the detailed form of published mitotic index
distributions. As shown in Figs. 3 and 4, the 95% confi-
dence limits on the measured mitotic index at any given
position is roughly of the order of the index itself. To obtain
relative errors of a size similar to that of the labeling index
measurements will require increasing the number of crypts
sampled to ~500 (Pearson and Hartley, 1966). Such
improvement in the precision of the mitotic index measure-
ments would permit a much more stringent test of our
generalized sharp cut-off model.

(d) Parameter Estimates

The model we have proposed involves 9 parameters as
listed in Section IV(a). In predicting the form of the
labeling and mitotic index distributions in the mouse,
however, only three of these parameters were determined
by fitting to the labeling and mitotic index distributions
themselves. The other parameters were estimated indepen-
dently of the index distributions using data from the
literature. In particular, an independent measurement of
the degree of variability in crypt size, specified by the
parameter 8 in the model, was used for the mouse. Unfor-
tunately, for the rat, no such estimate of § was available in
the literature. Since there was significantly greater varia-
bility in the observed distribution of crypt lengths for the
rat than for the mouse (see Fig. 2), the value of 4 estimated
from the rat index distribution data was probably not
unduly large.

From Eq. (11) we see that crypts vary in length from a
minimum length L = L, in crypts with volume ¥, to a
maximum length L = 0L, in crypts of volume V, + AV.
Accordingly, the cut-off position P(v) varies from P, in the
smallest crypts to 6P, in the largest crypts (from Egs. [11],
[12], and [20]). For the mouse, P(v) was estimated to vary
from P(V,) = P, = 12.7 (12.3 to 13.5; 95% confidence
limits) to P(¥, + AV) = 16.7. Similarly for the rat, we
found that P(v) varied from B(V,) = B, = 11.5 (11.0 to
12.0; 95% confidence limits) to B(V, + AV) = 18.9.
Expressing these results in terms of cell position, we have
found that with increasing crypt size from smallest to
largest, the location of the cut-off in mouse jejunal crypts
ranges from the thirteenth to the seventeenth cell position
and in rat jejunal crypts from the twelfth to the nineteenth
cell position.

A check of the consistency of these estimates for P, can
be made as follows. Assuming that the region between the
cut-off D and the top of the proliferative zone pD is
cylindrical and that the number of cell columns is K, then
the total number of cycling cells in the crypt is given by

K@ - 1)D

K ro
it L v(x) dx, (41)

where the first term is taken from Eq. (13) and y(x) is
given by Eq. (7). Since p ~ 2 and v, ~ 1, we find that the
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total number of cycling cells in a crypt of average volume is
approximately equal to

D D, [v\\/3
2K—=2In2K="|—
2In a, n dv(VO)

z\1/3

=2In2K(®, — 6V (7) (42)
where we have used Eqgs. (10) and (20) to express this
estimate in terms of P,. Evaluating this expression using
the parameters in Section IV and Eq. (30), we find that for
the mouse the total number of cycling cells in an average
sized crypt is ~353 cells which compares well with the
measured average of 310 cycling cells per crypt (Table II
of Cheng and Bjerknes, 1983). Thus P, = 12.7 implies that
the average number of cells in a crypt, assuming an overall
growth fraction for the mouse crypt of between 0.51 and
0.6 (Wright and Alison, 1984; Table II of Cheng and
Bjerknes, 1983), is roughly 600 to 700 cells. This is
consistent with the measured average number of cells per
crypt of 609 + 50.5 cells (Table I of Cheng and Bjerknes,
1983). Similarly for the rat, P, = 11.5 implies that the
average number of cells per crypt is roughly 785 cells (the
overall growth fraction was taken to be 0.6 for the rat
crypt; Wright and Alison, 1984) which is probably consis-
tent with the somewhat larger value of 849 cells obtained
by Wimber and Lamerton (1963) since, as they suggest,
their measurement included some surface epithelium.

The labeling and mitotic index data were sufficient to
determine the position of the cut-off P, to within a couple
of cell positions as shown by the 95% confidence limits
quoted above. However these confidence limits are pre-
sumably underestimates since they do not incorporate any
uncertainty in the value of the independently determined
parameters listed in Section IV(a). Furthermore, no
attempt has been made in the measurement of the labeling
and mitotic indices to correct for selection artifacts such as
those related to crypt size variability or that corrected by
means of Tannock’s factor (Wright and Alison, 1984).
Therefore the estimated values of A, and g, should not be
taken as the absolute frequencies for the crypt. Because the
model is not strictly linear in A, and u,, a uniform rescaling
of the labeling index distribution and of the mitotic index
distribution in an attempt to obtain absolute frequencies
may alter the estimated value of P,. We expect the effect
of P, to be slight, however.

(e) Further Testing of the Model

Confidence in the estimated values of P, and in the model
generally would be enhanced by improving the precision of
the mitotic index measurements, as discussed in Section
¥V{(c) above. Nonetheless, the model was consistent at the
5% level with the relatively stringent labeling index data
alone. We have yet to test how well the model predicts the
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growth fraction distribution. If the model predictions
involving four fitted parameters (v, A, K, and P,) were
simultaneously consistent with the labeling index, mitotic
index, and growth fraction distributions, confidence in the
model would be significantly increased, provided of course
that the method of measuring the growth fraction distribu-
tion was independent of the labelling and mitotic index
distributions.

The goodness of fit between the model and the data is
expected to improve if the following two items ignored here
were taken into account by the model. First, the labeling
index at any given position was determined 1 h after
administration of the radioisotope. In this time, cells
initially labeled at one position have moved to higher cell
positions by an amount which varies up the crypt reaching
displacements of roughly one cell position (Cairnie et al.,
1965a). Thus as pointed out by Cairnie et al. (1965b), the
experimentally determined labeling index distribution is
stretched somewhat to higher positions as compared with
the distribution predicted by the model. In contrast, the
mitotic index distribution data does not suffer such a
measurement artifact. This may explain why the value of
P, estimated by a fit to the labeling index distribution data
alone was larger, in both the mouse and rat, than the value
of P, estimated by a fit to the mitotic index distribution
data alone. Secondly, we have included only binomial
sampling error in the model and neglected other possible
sources of error. In particular, we have neglected any error
in the assignment of cell position. Such errors are cumula-
tive with height so that their effect on the measured index
distributions is most pronounced at just those positions
where these curves are going to zero. This, we expect, is the
reason for the measured curves having extended tails as
compared with the predicted curves. In the maximum
likelihood parameter estimation discussed in Section
ITI(b), we avoided this discrepancy between the model and
the data by combining the data in the tail of the distribu-
tion into a single bin.

We have identified the variation of crypt volume or
equivalently crypt length within the crypt population as a
major contributor to the apparent gradualness of the
decrease in the labeling index, mitotic index, and growth
fraction distributions. The corresponding distributions for
crypts of a fixed length would therefore be expected to
conform to the predicted distributions of the sharp cut-off
model given by Eq. (22). This is in contrast to the slow
cut-off model which would still predict that the index
distributions for crypts of a given length decrease gradually
with cell position. We did not attempt this direct test of the
sharp cut-off model using our data for the mouse because
the number of crypts obtained at any given length was
small (<20) thus making the precision of estimates of the
labeling or mitotic index distributions for a crypt of fixed
length poor. To get enough crypts of a single length to
obtain a degree of precision comparable to that of the
labeling index distribution reported here (see Fig. 3) will
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require sampling roughly 500 crypts for the labeling index
distribution and 2,500 crypts for the mitotic index distribu-
tion.

The sharp cut-off index distributions given by Eq. (22)
are identical for crypts of different size (see Eqs. [9] and
[19]) when expressed as functions of position divided by
length (i.e., as functions of x/L(v) or p divided by length in
cell positions). Thus averaging over the crypt population
should in principle still yield the sharp cut-off model index
distributions provided position is specified relative to crypt
length. Our model therefore gives some justification for the
normalizing scheme mentioned in the Introduction (Cair-
nie and Bentley, 1967; Wright et al., 1972). However, their
procedure has the difficulty that upon normalization,
positions from crypts of different lengths overlap. The
pooling of the data into arbitrarily defined cell positions
that is therefore required is done without justifying the
implicit weighting used for the data from different sized
crypts (a weighting which is inappropriate if our model is
correct) and without analyzing the implications of this
procedure upon the error estimates for the pooled data
points. Furthermore, their technique is particularly sensi-
tive to error in the cell position based length measurement
which, as already explained, is expected to be relatively
large.

(f) Biological Significance

This paper raises the spectre that much of our current
understanding of the detailed kinetic organization of indi-
vidual intestinal crypts is incorrect or at least without
adequate justification. For example, the labeling and
mitotic index distributions of intestinal crypts have been
interpreted as indicating a slow spatial cut-off in the
cessation of proliferation within the crypt (Cairnie et al.,
1965b). We have shown, however, that these distributions
can equally be explained by combining the simpler sharp
spatial cut-off of proliferation within individual crypts with
the effects of averaging over an inhomogeneous crypt
population. In our view, current measurements would be
better interpreted as ensemble averages over populations of
inequivalent crypts varying widely in size (see Totafurno et
al., 1987).

If corroborated by further testing, our work has impor-
tant implications for models of crypt cell kinetics and the
search for the underlying biological control mechanisms. It
suggests that the signal to stop proliferation within an
individual crypt occurs over a narrow range of positions
within the crypt. This band of cell positions at D may also
be where the maturation phase of crypt epithelial cell
development is triggered. Although perhaps only coinci-
dental, we have previously found in mouse duodenal crypts
a narrow band of alkaline phosphatase activity at about the
same point as the cut-off estimated here (Bjerknes and
Cheng, 1981c¢).
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VI. CONCLUSIONS

(a) Extant cell kinetic data is consistent with a sharp
spatial transition between the proliferative and nonproli-
ferative compartments of intestinal crypts. In contrast to
the standard model of Cairnie et al. (1965b), we have
proposed a generalized sharp cut-off model that explicitly
incorporates the variation of crypt size in the crypt popula-
tion. (b) Detailed models of intestinal epithelial cell
renewal must incorporate the averaging over the ensemble
of crypt volumes implicit in many measurements. (c) Little
confidence can be placed in the details of the currently
available mitotic index distributions. New measurements
are needed along the lines proposed in Section V(c). (d)
The sharp cut-off point in the jejunal crypts of the animals
considered here ranges, depending upon crypt size, from
roughly the thirteenth to the seventeenth cell position in
mouse and from roughly the twelfth to the nineteenth cell
position in rat. (e) Ignoring the geometry of the crypt base
erroneously shifts the predicted labeling index, mitotic
index, and growth fraction distributions towards higher
cell positions by a significant amount (roughly two cell
positions in the case of the rat) (see Section Il[e]). Given
the nature of the model, the necessity of incorporating the
geometry of the crypt base could be avoided by measuring
the index distributions with respect to absolute distance
from the crypt base (i.e., x) rather than with respect to cell
position (i.e., p). Besides decreasing the number of param-
eters in the model by 2, a further advantage of measuring
the index distributions with respect to x rather than p is
that x can be measured with greater precision than p
especially at higher positions within the crypt where the
index distributions are decreasing (see Section V[e]). The
index distributions expressed as functions of x do not have
the same form as those expressed as functions of p (see
Section IIfe]).

APPENDIX A

List of Symbols

a SeeEq. (9).

A Sec Eq. (7) and Table 1.

a, SeeEq.(24).

See Eq. (7) and Table L.

Exponent in equation relating L to v (Section 1V[a]).

See Eq. (7) and Table 1.

8, SeeEq. (25).
B, SeeEq.(7) and Table 1.

C Number of cycling cells below R less the number of
noncycling cells between R and D for crypts of average
volume (Section II[d]).

dy,d, SeeFig. 1.

D Location of cut-off within crypt in absolute distance units.
Function of volume v (Section IIfc], Eq. [10]).

D,, P, Value of D for crypts of smallest volume ¥, in terms of
absolute distance units (Eq. [10]) and number of cell
positions (Section II[g]), respectively.

D Negative log likelihood ratio statistic (Eq. [35]).
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AV

6DI/3

14

P Ps
P4

Pr
Pro PR™

P(o)

()

Difference between the maximum and minimum crypt
volumes in the population (Section II[5]).
Inhomogeneous term in transformation between x and p
(Eq. [19]).

See Eq. (15).

Probability density of crypt having volume v (Eq. [2]).
Probability distribution function corresponding to f(v).
Function of v, or p (sce Egs. [36] and [37]).

Growth fraction. Function of (x;v) or (p;v) (Section
11{a]). v = v, at D(v) (Section Ik[c]).

Mid-crypt column count for crypt of average volume
(Section I1[d]).

See Eq. (B12).

See Eq. (B11).

Crypt length in absolute distance units. Function of
volume v (Eq. {9]).

Value of L for crypts of smallest volume ¥, in absolute
distance units (Eq. [9]) and in number of cell positions
(Eq. [38]), respectively.

L for crypts of average volume v (Section III(4)) and
largest volume V, + AV (Section II[d]), respectively.
Likelihood function as defined by Eq. (34).

Labeling index. Function of (x;v) or (p;v) (Section
II[a]). At D(v), A = X, (Section II [c]).

See Eq. (23).

Mitotic index. Function of (x; v) or (p; v) (Section II[a]).
At D(v), u = p, (Section Ii[c]).

Number of cells sampled at cell position i (Section
Ii[c]).

Position within crypt in number of cell positions as
defined in Section II(e).

Cell position given by Eq. (B7) at which index distribu-
tion begins to decrease.

Cell positions given by Eqs. (B8) and (B9), respectively.
Cell position given by Eq. (B10) at which index distribu-
tion has decreased to 0.

Cell position p corresponding to x = R at top of
hemispherical base of crypt. Function of volume v (Sec-
tion I[e]).

Pg for crypts of average volume v (Section III [b]) and
maximum volume (Eq. [31]), respectively.

Probability density for a cell at D being a cycling cell with
phase o (Eq. [4]).

Index distributions A, u, or vy. Functions of (x; ) or (p; v)
(Section II{a]).

Average of ® over the distribution of crypt volumes.
Defined at each position as the expected number of
labeled, mitotic or cycling cells at the given position
divided by the total number of crypts sampled (see
Section V[5]). Function of x or p; however, ($)(x) is not
equivalent to (®)(p) (Sections II[], [e]).

Predicted and observed values of index distribution,
respectively, for cell position i (Eq. [33]).

Predicted and observed number of labeled (or mitotic)
cells, respectively, for cell position i (Section III[c]).
Range of cell positions over which index distribution
decreases (Eq. [26]).

Radius of hemispherical base of crypt (Fig. 1). Function
of volume v. R = R for crypt of average volume 7 (Section
HI[5)).

Top of proliferative zone is at x = pD (Section II[c]).
Phase of cell cycle (Section II[c]).

Minimum phase of cells at a position x between D and pD
(Section II[c]). Function of x .

Time, or age of cell (Section II[c]).

Cell cycle time (Section II[c]).
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T, Duration of S-phase of the cell cycle (Section II{c]).

8 Ratio of maximum to minimum crypt length (Eq. [11]).

T SeeEq. (B13).

v Crypt volume (Section II[a]). v is average crypt volume

(Eq.(3]).
v, Volume of crypt with length p (Eq. [37]).

Ve Vo + AV Minimum and maximum crypt volumes, respectively, in

the population (Section I1[{b]).

x Position within crypt in absolute units such as microns

(Section II[a]).
APPENDIX B

Expressions for the Population Averaged

Index Distributions

As cxplained in Section II( /'), we obtain the population averaged index
distributions (% )(p) by evaluating Eq. (1) with &(p; v) given by Eq. (22)
for p = pp*. Depending upon the value of p, the three different forms of
&(p; v) given in Eq. (22) will be used to varying extents in integrating
over ¥,to V, + AV. For a given index distribution, let the positions in the
smallest crypts of volume ¥, where $(p; v) begins to decrease and where
&(p; v) just reaches 0 be denoted by p, and p,, respectively. Similarly, let
the positions in the largest crypts of volume V, + AV where &(p; v) begins
to decrease and where &(p; v) just reaches 0 be denoted by p, and p,,
respectively. Substituting Eqs. (22) and (2) into Eq. (1) and using Eqgs.
(23), (24), (25), and (11), the integration then yields one of the following

six distinct forms depending upon the value of p:
@) (2)p) =4, ifpR™<p<p,

(@) (®)(p) = HY (x. x(§)3) — (2B + A)

-]
+ 2(B + A)e*exp| —«x|—] |,
V4

1
if py <p <p,(when p, <p,)
orp, <p <p;(when p;<p)

© -l
3

- kZBe" exp [—x(f)

+ 2(B + A)e expl:—x(g)a] ,

ifp,<p; and p,<p<p;
(iv) (®)(p) = HY(x,0°c) — B,

+A

ifpy<p, and py<p<p,

® ey - ﬂr(x(i)’, o’x)
— 2Be cxp[—x(ﬁﬂ + B,

if p, < p < p,(when p, <py)
orp, <p < p,(when p;<p,)

(vi) (®)(p) =0, ifp>p,

(B1)

(B2)

(B3)

(B4)

(B5)
(B6)
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where
pr =22y sy, (B7)
D= ﬂ:j—lv)" + 8V, (B8)
py = 6p,, (B9)
Pa=0py, (B10)
K= 0—312_2—1 R (B11)

D \In2/1sp
H = by e (ﬁ) , (B12)
and

T(r,s) = [' [x-'ﬁ - (%)mg /e exp (—x) dx. (B13)

Note that for any given set of parameters and choice of index distribution,
either p, < p, or p; < p, so that the forms given by Eqs. (B3) and (B4) are
mutually exclusive. ($)(p) therefore takes on five distinct functional
forms over the range p > pg™: either (i), (ii), (iii), (v), and (vi), when p, <
ps; or (i), (ii), (iv), (v), and (vi), when p; < p, (see Eqgs. B1 to B6).
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