Colouring Eulerian Triangulations

$Ioan H$ utchinson $¹$ </sup>

Department of Mathematics and Computer Science, Macalester College, St. Paul, Minnesota 55105-1899

R. Bruce Richter²

School of Mathematics and Statistics, Carleton University, Ottawa, Ontario, Canada K1S 5B6

and

Paul Seymour³

[Department of Mathematics, Princeton University, Princeton, New Jersey 08544](https://core.ac.uk/display/82800681?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1) View metadata, citation and similar papers at core.ac.uk

Received April 14, 1999

We show that for every orientable surface Σ there is a number c so that every Eulerian triangulation of Σ with representativeness $\geq c$ is 4-colourable. © 2002 Elsevier Science (USA)

1. INTRODUCTION

Collins and Hutchinson [3] conjectured that every Eulerian triangulation of an orientable surface is 4-colourable if its representativeness is sufficiently high, and obtained some partial results for the torus. (The *representativeness* of a graph drawn in a surface is the minimum number of times a non-null-homotopic closed curve must hit the drawing.) It is easy to see that Eulerian triangulations of the torus need not be 3-colourable, because for instance their duals need not be bipartite, and so the number 4 is best possible in Collins and Hutchinson's conjecture. It follows from [10] that all these graphs can be 5-coloured.

¹ Research supported in part by NSA Grant MDA-904-99-1-0069.

² Research supported by NSERC.

³ Research supported by ONR Grant N00014-97-1-0512.

Our objective is to prove that conjecture; we shall show that the result holds for every orientable surface, but not for the projective plane. More precisely:

(1.1) *For every orientable surface* Σ *of genus* ≥ 1 *there is a number* $c(\Sigma)$ *so that every Eulerian triangulation of* Σ *with representativeness* $\geqslant c(\Sigma)$ *is 4-colourable.*

(1.2) *For the projective plane* Σ *there is no* $c(\Sigma)$ *as in* (1.1)*.*

We prove (1.1) in Section 4, after some preliminary lemmas in Sections 2 and 3; and prove (1.2) in Section 5.

Since for $i \ge 1$, K_{12i+3} can be embedded as an Eulerian triangulation in the orientable surface of genus $i(12i-1)$, the condition about representativeness cannot be omitted from (1.1). (On the other hand, we do not know whether $c(\Sigma)$ must depend on Σ —it seems possible that (1.1) is true with $c(\Sigma) = 100$, for all Σ .) Also, examples of Ballantine [2] and of Fisk [4] show that (1.1) does not hold when a triangulation contains two odd-degree vertices.

Incidentally, an application of our main lemma (2.5)(i) gives an alternative proof of the main result of [6], that every quadrangulation of an orient able surface can be 3-coloured provided its representativeness is sufficiently high.

2. A HOMOTOPY LEMMA

Let us make some terms more precise. A *surface* means a compact, connected 2-manifold without boundary. We need to define homotopy for several different kinds of objects in a surface. First, a *closed curve* in a surface *Σ* means a continuous map ϕ : $[0, 1] \rightarrow \Sigma$ such that $\phi(0) = \phi(1)$, and its *basepoint* is $\phi(0)$. We speak of (fixed basepoint) homotopy of closed curves with a given basepoint in the usual way. The equivalence class of curves homotopic to a given curve ϕ is denoted by $\langle \phi \rangle$ and called the *homotopy type* of ϕ . The natural product on homotopy types (defined by concatenation) yields a group, the *fundamental group of* Σ (with the given basepoint, *v* say), which we denote by $\pi_1(\Sigma, v)$.

Second, we need *free homotopy* of closed curves; closed curves ϕ , ψ : $[0, 1] \rightarrow \Sigma$ are *freely homotopic* if there is a continuous map *w*: $[0, 1] \times [0, 1]$ $\rightarrow \Sigma$ such that

In particular, ϕ and ψ need not have the same basepoint to be freely homotopic.

Third, an *O-arc* in Σ means a subset of Σ homeomorphic to a circle. A closed curve ϕ : $[0, 1] \rightarrow \Sigma$ is said to *trace* an *O*-arc *F* if

(a)
$$
\phi(x) \in F \ (0 \leq x \leq 1)
$$

(b) for each $v \in F$ there is a unique $x \in [0, 1)$ with $\phi(x) = v$.

We say two *O*-arcs are *homotopic* if there are closed curves tracing them that are freely homotopic; and similarly an *O*-arc *F* is *homotopic* to a closed curve ψ if there is a closed curve ϕ tracing F freely homotopic to ψ .

Fourth and fifth, given a drawing G in Σ (defined below), if W is a closed walk in *G* then we may speak of a closed curve ''tracing'' *W* with the natural meaning, and this enables us to speak of homotopy of walks (free homotopy, or with fixed basepoint).

A *drawing G* in a surface Σ is a pair $(U(G), V(G))$, where $U(G) \subseteq \Sigma$ is closed, $V(G) \subseteq U(G)$, $|V(G)|$ is finite, $U(G) - V(G)$ has only finitely many connected components, and for every connected component *e* of *U(G) − V(G)*, its closure \bar{e} contains precisely two elements $u, v \in V(G)$, and \bar{e} is homeomorphic to *[0, 1]*. We regard drawings as graphs in the usual way. Thus we permit multiple edges, but not loops.

Let *G* be a drawing in a surface Σ , not the sphere. We say *G* has *representativeness* $\geq k$ if $|F \cap U(G)| \geq k$ for every non-null-homotopic *O*-arc *F*.

Let *G* be a drawing in Σ and $k \ge 0$ an integer. A closed curve ϕ is said to be *k*-*wide* in *G* if ϕ is not null-homotopic, and there are circuits $C_1, ..., C_k$ of G , pairwise vertex-disjoint and each homotopic to ϕ . (*Circuits* by definition have no ''repeated'' vertices or edges.) A homotopy type is *k*-*wide* if its members are *k*-wide. An *O*-arc is *k*-*wide* if some closed curve tracing it is *k*-*wide*.

The main result of this section is the following.

(2.1) *For every orientable surface* Σ *of genus* ≥ 1 *and every integer* $k \geq 0$ *there exists c such that for every drawing G in* Σ *with representativeness* \geq *c*, *every* $v \in \Sigma$, and every homomorphism λ : $\pi_1(\Sigma, v) \to S_3$ (the group of permu*tations of three objects) there exists* $\delta \in \pi_1(\Sigma, v)$ *such that* $\lambda(\delta)$ *is the identity* $of S₃$ *and* δ *is* k *-wide in* G *.*

First we need the following lemma.

(2.2) *Let S³ be the group of permutations of a 3-element set, with identity 1 (say).*

(i) If $x, y \in S_3$ *belong to an abelian subgroup of* S_3 *then at least one of x, y, xy, xy −1 equals 1.*

(ii) If x, y, z $\in S_3$ then at least one of x, y, z, xy, xy⁻¹, yz, yz⁻¹, zx, *zx −1, xyz, zyx, xyxz equals 1.*

Proof. For (i) we may assume 1, *x*, *y* are all distinct. But they belong to an abelian subgroup of S_3 , and all such subgroups have ≤ 3 elements, and so $xy = 1$ as required.

For (ii), we may assume 1, *x*, *y*, *z* are all distinct. Hence each of *x*, *y*, *z* has order 2 or 3; say *k* of them have order 3. Then $0 \le k \le 2$ (since there are only two elements of order 3 in S_3), If $k=0$ then $xyxz=1$. If $k=1$ then one of xyz , $zyx = 1$; and if $k = 2$ then one of xy , yz , $zx = 1$. Q.E.D.

We need the following theorem of [9].

(2.3) For every surface Σ except the sphere, and every drawing H in Σ , *there is a number c with the following property. For every drawing* G *in* Σ *with representativeness* $\geq c$ *there is a drawing H' in* \geq *so that*

- (i) *H*Œ *can be obtained from a subdrawing of G by contracting edges*
- (ii) *there is a homeomorphism of* Σ *to itself taking* H *to* H' .

From (2.3) we deduce

(2.4) *For every surface* Σ *except the sphere, and every choice of finitely many O-arcs* $F_1, ..., F_n \subseteq \Sigma$, each non-null-homotopic and two-sided, and *every integer k>0, there exists c with the following property. For every drawing G in* Σ *with representativeness* $\ge c$, *there is a homeomorphism* θ *of* Σ *to itself such that* $\theta(F_i)$ *is k-wide in* G ($1 \le i \le n$)*.*

Proof. For $1 \le i \le n$, since F_i is simple and two-sided, there are *k* pairwise disjoint *O*-arcs in Σ each homotopic to F_i . Consequently there is a drawing *H* in *Z* such that for $1 \le i \le n$, F_i is *k*-wide in *H*. Choose *c* as in (2.3) (with the given Σ and H). Now let G be a drawing in Σ with representativeness $\geq c$. By (2.3), there is a drawing *H'* in *S* as in (2.3)(i) and a homeomorphism θ of Σ to itself taking *H* to *H'*. It follows that for $1 \le i \le n$, $\theta(F_i)$ is *k*-wide in *H'* and hence in *G*, as required. Q.E.D.

We use (2.4) to show the following.

(2.5) *For every orientable surface S except the sphere, and every integer* $k \geq 1$, there is a number *c* with the following property. For every drawing G in Σ *with representativeness* $\geq c$ *and every* $v \in \Sigma$

- (i) *there exist* α , $\beta \in \pi_1(\Sigma, v)$ *such that* α , β , $\alpha\beta$, $\alpha\beta^{-1}$ *are all k-wide*
- (ii) *if* Σ *is not a torus, there exist* α *,* β *,* $\gamma \in \pi_1(\Sigma, v)$ *such that*

$$
\alpha, \, \beta, \, \gamma, \, \alpha \beta, \, \alpha \beta^{-1}, \, \beta \gamma, \, \beta \gamma^{-1}, \, \gamma \alpha, \, \gamma \alpha^{-1}, \, \alpha \beta \gamma, \, \gamma \beta \alpha, \, \alpha \beta \alpha \gamma
$$

are all k-wide in G.

Proof. We assume first that Σ has genus ≥ 2 . Let H_1 be the graph with four vertices v_0 , v_1 , v_2 , v_3 and six edges e_1 , f_2 , e_3 , f_1 , e_2 , f_3 where for $1 \le i \le 3$, e_i and f_i both have ends v_0 and v_i . Take a drawing of H_1 in Σ so that $e_1e_2e_3f_1f_2f_3$ occur in this cyclic order around v_0 . (This is possible since *Σ* has genus \ge 2.) Let the closed walks v_0, e_i, v_i, f_i, v_0 have homotopy type α _i ($i = 1, 2, 3$) (with basepoint v_0) and choose the drawing so that there is no non-trivial relation between α_1 , α_2 and α_3 .

In particular, none of

$$
\alpha_1, \alpha_2, \alpha_3, \alpha_1\alpha_2, \alpha_2\alpha_3, \alpha_3\alpha_1, \alpha_1\alpha_2^{-1}, \alpha_2\alpha_3^{-1}, \alpha_3\alpha_1^{-1}, \alpha_1a_2\alpha_3, \alpha_3\alpha_2\alpha_1, \alpha_1\alpha_2\alpha_1\alpha_3
$$

is the identity. But for each of these twelve homotopy types, δ say, there is an *O*-arc F_{δ} so that F_{δ} is homotopic to a member of δ . Each F_{δ} is twosided, since Σ is orientable, and each is non-null-homotopic by choice of α_1 , α_2 , α_3 . By (2.4) (with $n=12$) there is an integer *c* as in (2.4). We claim *c* satisfies (2.5)(ii). For let *G* be a drawing in Σ with representativeness $\geq c$. By (2.4) there is a homeomorphism θ of Σ to itself, such that $\theta(\delta)$ is *k*-wide in *G* for each δ .

Now if (2.5) is true (for given G , Σ) for some choice of *v*, then it is true for all *v*. To see this, let *v'* be some other choice of *v*, let ϕ be a curve from *v* to *v'*, and for each $\alpha \in \pi_1(S, v)$ define $f(\alpha) \in \pi_1(\Sigma, v')$ by choosing $\psi \in \alpha$, letting ψ' be the concatenation of ϕ^{-1} , ψ and ϕ , and letting $f(\alpha)$ be the member of $\pi_1(\Sigma, v')$ containing ψ' . This is well-defined, and f is an isomorphism from $\pi_1(\Sigma, v)$ to $\pi_1(\Sigma, v')$; and if α is *k*-wide then so is $f(\alpha)$. Thus for instance if α , β , γ , satisfy (2.5)(ii) for *v*, then $f(\alpha)$, $f(\beta)$, $f(\gamma)$ satisfy (2.5) (ii) for *v'*. This proves our claim.

Consequently it suffices to show that (2.5) holds for one particular value of *v*, so let us assume that $v = \theta(v_0)$. Since θ is a homeomorphism, θ induces an isomorphism from $\pi_1(\Sigma, v_0)$ to $\pi_1(\Sigma, v)$.

In particular, let $\alpha'_i = \theta(\alpha_i)$ (*i* = 1, 2, 3); then $\alpha'_1 \alpha'_2 = \theta(\alpha_1 \alpha_2)$, and so on for the other eight members of $\pi_1(\Sigma, v_0)$ of interest to us. But $\theta(\delta)$ is *k*-wide in *G*, for each δ , and so if we set $\alpha = \alpha'_1$, $\beta = \alpha'_2$, $\gamma = \alpha'_3$ then $(2.5)(ii)$ holds.

The proof of $(2.5)(i)$ is similar but easier, and we omit it. $Q.E.D.$

Proof of (2.1). Let Σ , k be as in (2.1), and let c be as in (2.5). We claim *c* satisfies (2.1). For let *G*, *v* and λ be as in (2.1). Then by (2.5), (2.5)(i) and (2.5) (ii) hold.

Suppose first that Σ is not a torus, and let α , β , γ be as in (2.5)(ii). By (2.2)(ii), $\lambda(\delta)$ is the identity of S_3 for some δ among the twelve listed in $(2.5)(ii)$. But δ is *k*-wide in *G*, and so satisfies (2.1).

Now suppose Σ is a torus, and let α , β be as in (2.5)(1). Then $\pi_1(\Sigma, v)$ is abelian, and so the range of λ is an abelian subgroup of S_3 . By (2.2)(i), $\lambda(\delta)$ is the identity for some

$$
\delta \in \{\alpha, \beta, \alpha\beta, \alpha\beta^{-1}\}.
$$

But δ is *k*-wide in *G*, and so satisfies (2.1). $Q.E.D.$

3. ANGLE PERMUTATIONS

A drawing G in Σ is said to be *closed* 2-*cell* if every region is homeomorphic to an open disc and has boundary $U(C)$ for some circuit C of G . For such a region, *r* say, bounded by a circuit *C*, we say a closed walk

$$
v_0, e_1, v_1, ..., e_k, v_k = v_0
$$

is a *perimeter walk* of *r* if $e_1, ..., e_k$ are all distinct and $E(C) = \{e_1, ..., e_k\}$. In general, a region has several perimeter walks, depending on the choice of basepoint and orientation.

An *angle* is a pair (v, r) where $v \in V(G)$ and *r* is a region incident with *v*. For a vertex *v*, we define

$$
\nabla(v) = \{(v, r): r \text{ is incident with } v\},\
$$

the set of all "angles at v ". Thus, in a closed 2-cell drawing, $|\nabla(v)|$ equals the degree of *v*.

A vertex is *cubic* if it has degree 3; in fact we shall only be concerned with $\nabla(v)$ when *v* is cubic.

Let *G* be a closed 2-cell drawing, and let $e \in E(G)$ with ends v_1 , v_2 , both cubic. Let r_1 , r_2 be the two regions incident with *e*, and for $i = 1, 2$ let s_i be the third region incident with v_i . Thus

$$
\nabla(v_i) = \{(v_i, r_1), (v_i, r_2), (v_i, s_i)\}\qquad (i = 1, 2).
$$

We define $\pi_{v_1ev_2}$ to be the bijection from $\nabla(v_1)$ to $\nabla(v_2)$ mapping (v_1, r_1) , $(v_1, r_2), (v_1, s_1)$ to $(v_2, r_1), (v_2, r_2), (v_2, s_2)$ respectively.

If *W* is a walk $v_0, e_1, v_1, e_2, ..., e_n, v_n$ of *G*, such that $v_0, ..., v_n$ are all cubic (a so-called *cubic* walk), we define π_W to be the product of the $\pi_{n_{\text{max}}}$ for $1 \le i \le n$; thus, for $x \in \nabla(v_0)$,

$$
\pi_W(x) = \pi_{v_{n-1}e_n v_n}(\cdots(\pi_{v_1e_2v_2}(\pi_{v_0e_1v_1}(x))))\cdots).
$$

We observe that, obviously,

(3.1) (i) If W_1 *is a cubic walk from a to b, and* W_2 *is a cubic walk from b to c, and W³ is their concatenation, then*

$$
\pi_{W_3}(x) = \pi_{W_2}(\pi_{W_1}(x)) \qquad (x \in \nabla(a)).
$$

(ii) If *W* is a cubic walk u, e, v, e, u then π_W is the identity.

A closed cubic walk *W* is *balanced* in *G* if π_w is the identity. Let *W* be

$$
v_0, e_1, v_1, e_2, ..., e_n, v_n = v_0;
$$

if *W* is balanced, then so is

$$
v_i, e_{i+1}, v_{i+1}, ..., e_n, v_n, e_1, v_1, ..., e_i, v_i
$$

for any *i* $(1 \le i \le n-1)$, and also the reverse of *W* is balanced. Thus, we may speak of a circuit *C* of *G* being balanced without ambiguity (meaning that some, and hence every, closed walk

$$
v_0, e_1, v_1, ..., e_n, v_n
$$

with $e_1, ..., e_n$ all distinct and $E(C) = \{e_1, ..., e_n\}$ is balanced).

We are basically concerned with cubic drawings in Σ , but for inductive purposes we need to permit a few, widely-separated non-cubic vertices. Let us say an *arrangement* in Σ is a pair (G, X) such that

(i) *G* is a closed 2-cell drawing in Σ

(ii) $X \subseteq V(G)$, and $G \setminus X$ is closed 2-cell $(G \setminus X$ denotes the drawing obtained from *G* by deleting the vertices in *X* and all incident edges)

- (iii) no region of *G* is incident with more than one member of *X*
- (iv) every vertex of *G* not in *X* is cubic.

An arrangement (G, X) is *even* if for every region of $G \setminus X$, the circuit bounding it is balanced (in *G*).

(3.2) *If* (G, X) *is an even arrangement in* Σ *, then every null-homotopic closed walk in* $G \backslash X$ *is balanced in* G *.*

Proof. This follows easily from $(3.1)(i)$ and $(3.1)(ii)$, since (G, X) is even. Q.E.D.

Let *G* be a drawing in a surface *S*. Let $T \subseteq \Sigma$ be homeomorphic to

$$
\{(x, y) \in \mathbf{R}^2 : 1 \le x^2 + y^2 \le 2\}.
$$

Then the boundary of *T* consists of two disjoint *O*-arcs *A, B* say. If in addition $k \geq 2$ is an integer and

(a) *A*, *B* are non-null-homotopic in Σ

(b) *A*, $B \subseteq U(G)$, and hence there are circuits C_1 , C_k of *G* with $U(C_1) = A$ and $U(C_k) = B$

(c) there are circuits $C_2, ..., C_{k-1}$ of *G* with $U(C_1 \cup \cdots \cup C_k) \subseteq T$, so that C_1 , ..., C_k are pairwise disjoint and pairwise homotopic

then we call *T* a *k*-wide handle of *G* (in Σ), and we call C_1, C_k the end*circuits* of *T*.

(3.3) If *G* is a drawing in Σ and $v \in \Sigma$, and $\delta \in \pi_1(\Sigma, v)$ is *k*-wide in *G* where $k \geq 2$, then there is a *k*-wide handle in *G* with end-circuits homotopic to δ .

(In case (3.3) presents any difficulty to the reader, let us mention an alternative approach—define $\delta \in \pi_1(\Sigma, v)$ to be "*k*-wide" only when there is a handle *T* as in (3.3); then the proofs of the previous section still work, and we bypass the need for (3.3).)

The main result of this section is the following:

(3.4) For any orientable surface Σ of genus ≥ 1 , and every pair of integers $k \ge 2$ and $n \ge 0$, there exists $c \ge 0$ with the following property. If (G, X) is an even arrangement in Σ with $|X| \leq n$ and *G* has representativeness $\geq c$, then there is a *k*-wide handle *T* in *G* with $T \cap X = \emptyset$ and with balanced end-circuits.

Proof. Let $k' = k(n+1)$, and choose *c'* so that (2.1) holds (with *c, k* replaced by c', k'). Let $c = n+c'$; we shall show that *c* satisfies (3.4). For let (G, X) be an even arrangement in Σ with $|X| \le n$ such that *G* has representativeness $\ge c$. Then *G* \setminus *X* has representativeness $\ge c - n = c'$.

Choose $v \in V(G) - X$. For each $\alpha \in \pi_1(\Sigma, v)$, define $\lambda(\alpha)$ as follows: choose a closed walk *W* in $G\ Y$ with basepoint *v* and homotopy type α (this is possible since $G \setminus X$ is 2-cell) and let $\lambda(\alpha) = \pi_w$. (By (3.2), this does not depend on the choice of W.) From $(3.1)(i)$, λ is a homomorphism from $\pi_1(\Sigma, v)$ into $S_3(v)$, the group of permutations of $\nabla(v)$. By (2.1) applied to $G \setminus X$, *c'* and *k'*, there exists $\delta \in \pi_1(\Sigma, v)$ such that $\lambda(\delta)$ is the identity of $S_3(v)$ and δ is *k*'-wide in $G \setminus X$. By (3.3) applied to $G \setminus X$, there is a *k*'-wide handle *T'* of $G \ X$ in Σ , with end-circuits balanced in *G*. Let us choose *k'* circuits of $G, C_1, ..., C_k$ say, pairwise disjoint and pairwise homotopic, with $U(C_1 \cup \cdots \cup C_k) \subseteq T'$, where C_1 and C_k are the end-circuits of T' ; and let us number $C_1, ..., C_k$ in order on T' . For $1 \leq i \leq j \leq k'$, let T_i , $\subseteq T'$ be the handle with end-circuits C_i and C_j .

Since $|X| \le n$ and $k' = k(n+1)$, there exists *i* with $1 \le i \le k' - k$ such that $X \cap T_{i,i+k-1} = \emptyset$; let $T = T_{i,i+k-1}$. Then *T* is a *k*-wide handle of *G*, and $T \cap X = \emptyset$, and its end-circuits *C_i*, C_{i+k-1} are balanced since they have homotopy type δ . Q.E.D.

4. THE MAIN PROOF

Let (G, X) be an arrangement in Σ . A 4-*colouring* of (G, X) means a 4-colouring of the regions of *G*, so that

(i) as usual, any two regions that share an edge receive different colours

(ii) no region incident with a vertex in *X* receives colour 4

(iii) no region incident with a vertex in *X* shares an edge with any region that receives colour 4.

The main result of the paper is the following:

(4.1) For every orientable surface Σ except the sphere, and for every $n \ge 0$, there exists $c \ge 0$ such that every even arrangement *(G, X)* in Σ has a 4-colouring provided that $|X| \le n$ and G has representativeness $\ge c$.

If *T* is an Eulerian triangulation in Σ , and T^* is its geometric dual in Σ , then (T^*, \emptyset) is an even arrangement, and since *T* and T^* have the same representativeness, we see that (1.1) follows from (4.1) taking $n=0$. We permit $n>0$ in (4.1) for inductive purposes. To prove (4.1) we need the following lemma; with $X = \emptyset$ this result is due to Heawood [5].

(4.2) If (G, X) is an even arrangement in a sphere Σ then G is 3-regioncolourable.

Proof. Choose $z \in V(G) - X$.

(1) *If* (v, r) *is an angle of G with* $v \notin X$ *, and* W_1 *,* W_2 *are walks of* $G \setminus X$ *from v to z, then*

$$
\pi_{W_1}(v,r) = \pi_{W_2}(v,r).
$$

Subproof. This follows from (3.2) since Σ is a sphere and (G, X) is even.

Let us define $f(v, r)$ to be the common value of $\pi_w(v, r)$ over all walks *W* of $G \setminus X$ from *v* to *z*.

(2) *If r is a region of G and* $v_1, v_2 \in V(G) - X$ *are both incident with r*, *then* $f(v_1, r) = f(v_2, r)$.

Subproof. Let *C* be the circuit of *G* bounding *r*. By condition (iii) in the definition of "arrangement", at most one vertex of C is in X , and consequently to prove (2) in general it suffices to prove it when some edge *e* of *C* has ends v_1, v_2 . Let W_2 be a walk of $G \setminus X$ from v_2 to z , let W_0 be the walk v_1, e, v_2 , and let W_1 be formed by concatenating W_0 and W_2 . Then

$$
f(v_1, r) = \pi_{W_1}(v_1, r) = \pi_{W_2}(\pi_{W_0}(v_1, r))
$$

by (3.1). But $\pi_{W_0}(v_1, r) = (v_2, r)$ by definition of π_{W_0} , and so

$$
f(v_1, r) = \pi_{W_2}(\pi_{W_0}(v_1, r)) = \pi_{W_2}(v_2, r) = f(v_2, r).
$$

This proves (2).

For each region r of G , let us define $f(r)$ to be the common value of *f(v, r)* over all vertices $v \in V(G) - X$ incident with *r*. (There is such a vertex since all circuits have length ≥ 2 , by definition of a drawing.)

(3) *For any edge e of G, let* r_1, r_2 *be the regions of G incident with e; then* $f(r_1) \neq f(r_2)$ *.*

Subproof. Let *v* be an end of *e* not in *X*, and let *W* be a walk in $G \setminus X$ from *v* to *z*. Then

$$
f(r_1) = f(v, r_1) = \pi_W(v, r_1) \neq \pi_W(v, r_2) = f(v, r_2) = f(r_2).
$$

This proves (3).

Since $f(r) \in \nabla(z)$ for every region *r* of *G*, and $|\nabla(z)| = 3$, it follows from (3) that *f* is a 3-region-colouring of *G*. Q.E.D.

Proof of (4.1). We proceed by induction on the genus of Σ . For every orientable surface Σ' (not a sphere) of genus smaller than that of Σ , and every integer *n'*, let $c(\Sigma', n')$ be such that (4.1) holds with Σ , *n*, *c* replaced by Σ' , n' , $c(\Sigma', n')$.

Let *t* be the maximum of $c(\Sigma', n+2)$ over all such Σ' . Let $k = 2t+4$, and choose *c* so that (3.4) holds (with Σ , k, n unchanged). We may assume (by increasing *c*) that $c \ge t$ and $c \ge 2$. We claim that *c* satisfies (4.1). For let (G, X) be an even arrangement in Σ , such that $|X| \leq n$ and G has representativeness $\geq c$. We must show that *(G, X)* has a 4-colouring.

By (3.4) and the choice of *c*, there is a *k*-wide handle *T* in *G* with $T \cap X = \emptyset$ and with balanced end-circuits. Let $C_1, ..., C_k$ be circuits as in the definition of "*k*-wide handle". By choosing C_t as close to C_{t+1} as possible, we may assume that every region of *G* between C_t and C_{t+1} incident with a vertex of C_t is also incident with a vertex of C_{t+1} (let us call this the *bridge property*). Similarly, choose C_{k-t+1} as close to C_{k-t} as possible.

Let Σ' be obtained from Σ as follows; we delete from Σ the part strictly between $U(C_{t+1})$ and $U(C_{k-t})$, and paste new discs onto the *O*-arcs $U(C_{t+1})$, $U(C_{t+4})$ respectively. Then Σ' is a 2-manifold, but it might not be connected. If it is not connected then it has exactly two components, both with genus ≥ 1 and strictly less than the genus of Σ , and the argument below can easily be adapted (working with these two components separately) to cover this case. However, we shall assume for simplicity that \mathcal{Z}' remains connected.

Let Δ_1 be the disc in Σ' bounded by $U(C_t)$ containing $U(C_{t+1})$, and let Δ_2 be the disc in *S*^{\prime} bounded by $U(C_{t+5})$ containing $U(C_{t+4})$. Let *G*^{\prime} be a drawing in Σ' obtained from G as follows. First we delete all vertices and edges of *G* strictly between $U(C_{t+1})$ and $U(C_{t+4})$, forming G_1 say, which we may regard as a drawing in Σ' . Now contract all edges of G_1 that have both ends strictly inside Δ_1 , and similarly for Δ_2 . The result is a drawing *G'* in Σ' with precisely one vertex (say x_i) in the interior of A_i ($i = 1, 2$), because of the bridge property. There is a natural 1-1 correspondence between the regions of *G*^{*'*} inside Δ_1 and the regions of *G* between $U(C_t)$ and $U(C_{t+1})$ incident with an edge of *Ct*.

(1) G' *is closed* 2-*cell in* Σ' *, and if* Σ' *is not a sphere then* G' *has representativeness* $\geq t$ *.*

Subproof. For the first, it suffices to check that \bar{r} is bounded by a circuit of *G*^{\prime} for every region *r* of *G*^{\prime} incident with x_1 . But all neighbours of x_1 belong to C_t , and there are at least two such neighbours since G is closed 2-cell, so G' is closed 2-cell. For its representativeness, let F be an O -arc with $|F \cap U(G')| < t$. If no point of *F* is in the interior of Δ_1 or Δ_2 , then *F* is an *O*-arc in Σ with $|F \cap U(G)| < t \leq c$, and so *F* is null-homotopic in Σ and hence in Σ' as required. We may assume then that some point of *F* is in the interior of Δ_1 , say. Let $\Delta_0 \subseteq \Sigma'$ be the closed disc bounded by $U(C_1)$ that includes Δ_1 . Since $|F \cap U(G')| < t$, *F* does not meet all of $U(C_1)$, ..., $U(C_t)$, and in particular $F \subseteq \Delta_0$, and consequently *F* is null-homotopic in Σ' as required. This proves (1).

Let $X' = X \cup \{x_1, x_2\}$; then (G', X') is an even arrangement in Σ' , since *C*_t and *C*_{*k*-*t*+1} are balanced (in *S* and hence in *S*^{\prime}).

 (2) (G', X') has a 4-colouring.

Subproof. If Σ' is a sphere this follows from (4.2). If Σ' has genus > 0 then $t \geq c(\Sigma', n+2)$ and the claim follows from (1) and the definition of $c(\Sigma', n+2)$. This proves (2).

Let κ_1 be a 4-colouring of (G', X') . For $i = 1, ..., 5$, let B_i be the part of *S* (non-strictly) between $U(C_{t-1+i})$ and $U(C_{t+i})$, and let \mathcal{R}_i be the set of regions of *G* included in B_i . Let \mathcal{S}_1 be the set of regions of *G* incident with an edge of $U(C_t)$, and \mathcal{G}_2 the regions incident with an edge of $U(C_{t+5})$. Thus, $\mathcal{S}_1 \nsubseteq \mathcal{R}_1$ but $\mathcal{S}_1 \cap \mathcal{R}_1 \neq \emptyset$. From the definition of 4-colouring an arrangement, $\kappa_1(r) \in \{1, 2, 3\}$ for every $r \in \mathcal{S}_1 \cup \mathcal{S}_2$ (identifying the regions of *G*' incident with x_1 or x_2 with regions of *G* in the natural way.)

For any set $\mathcal R$ of the regions of G and any subset Y of $E(G)$, a *d*-colouring of \Re *relative to Y* means a map ϕ : $\Re \rightarrow \{1, ..., d\}$ such that $\phi(r_1) \neq \phi(r_2)$ for every edge $e \in Y$ such that r_1, r_2 are the regions on either side of *e* and $r_1, r_2 \in \mathcal{R}$. By adding to $B_1 \cup \cdots \cup B_5$ discs bounded by $U(C_t)$ and $U(C_{k-t+1})$, and drawing a new vertex in each disc adjacent to the vertices in the boundary of the disc which have degree 2 in $G|(B_1 \cup \cdots \cup B_5)$, and letting $X^{\prime\prime}$ be the set of the two new vertices, we obtain an even arrangement in a sphere, which consequently is 3-region-colourable by $(4.2).$

Let *Y* be the set of all edges of *G* with at least one end in $B_1 \cup \cdots \cup B_5$. It follows that there is a 3-colouring of $\mathscr{S}_1 \cup \mathscr{R}_1 \cup \mathscr{R}_2 \cup \cdots \cup \mathscr{R}_5 \cup \mathscr{S}_2$ relative to *Y*, say κ_2 .

Let *Z* be the set of edges of *G* with an end in C_t . The restrictions of both κ_1 and κ_2 to \mathcal{S}_1 yield 3-colourings of \mathcal{S}_1 relative to *Z*. But \mathcal{S}_1 is uniquely 3-colourable relative to *Z*, and so the restrictions of κ_1 and κ_2 to \mathcal{S}_1 are equal (up to permuting colours), and we may therefore choose κ_2 so that $\kappa_1(r) = \kappa_2(r)$ ($r \in \mathcal{S}_1$). By the same argument applied to \mathcal{S}_2 , we may choose a permutation π : {1, 2, 3} \rightarrow {1, 2, 3} so that $\kappa_1(r) = \pi(\kappa_2(r))$ ($r \in \mathcal{S}_2$). There are, up to symmetry, three possibilities for π , namely

> (i) $\pi(i) = i \quad (1 \le i \le 3)$ (ii) $\pi(1) = 2, \quad \pi(2) = 1, \quad \pi(3) = 3$ (iii) $\pi(1) = 3$, $\pi(2) = 1$, $\pi(3) = 2$.

We shall show that the result holds in each case.

In case (i), define $\kappa(r) = \kappa_1(r)$ $(r \not\subseteq B_1 \cup \cdots \cup B_5)$ and $\kappa(r) = \kappa_2(r)$ $(r \subseteq B_1 \cup \cdots \cup B_5)$; then *k* is a 4-colouring of (G, X) as required.

In case (ii), for each region *r* of *G*, define $\kappa(r)$ as follows. If $r \notin$ $\mathcal{R}_1 \cup \mathcal{R}_2 \cup \cdots \cup \mathcal{R}_5$ let $\kappa(r) = \kappa_1(r)$. If $r \in \mathcal{R}_1$, let $\kappa(r) = \kappa_2(r)$. If $r \in \mathcal{R}_2$ let
 $\kappa(r) = \begin{cases} 4 & \text{if } \kappa_2(r) = 1 \end{cases}$

$$
\kappa(r) = \begin{cases} 4 & \text{if } \kappa_2(r) = 1 \\ \kappa_2(r) & \text{otherwise.} \end{cases}
$$

If $r \in \mathcal{R}_3$ let

$$
\kappa(r) = \begin{cases} 4 & \text{if } \kappa_2(r) = 1 \\ 1 & \text{if } \kappa_2(r) = 2 \\ 3 & \text{if } \kappa_2(r) = 3. \end{cases}
$$

If $r \in \mathcal{R}_4 \cup \mathcal{R}_5$ let $\kappa(r) = \pi(\kappa_2(r))$. Then κ is a 4-colouring of (G, X) , as required.

In case (iii), for each region *r* of *G* we define $\kappa(r)$ as follows. If $r \notin \mathcal{R}_1 \cup \cdots \cup \mathcal{R}_5$ let $\kappa(r) = \kappa_1(r)$. If $r \in \mathcal{R}_1$ let $\kappa(r) = \kappa_2(r)$. If $r \in \mathcal{R}_2$ let

$$
\kappa(r) = \begin{cases} 4 & \text{if } \kappa_2(r) = 1\\ \kappa_2(r) & \text{otherwise.} \end{cases}
$$

If $r \in \mathcal{R}_3$ let

$$
\kappa(r) = \begin{cases} 4 & \text{if } \kappa_2(r) = 1 \\ 1 & \text{if } \kappa_2(r) = 2 \\ 3 & \text{if } \kappa_2(r) = 3. \end{cases}
$$

If $r \in \mathcal{R}_4$ let

$$
\kappa(r) = \begin{cases} 4 & \text{if } \kappa_2(r) = 1 \\ 1 & \text{if } \kappa_2(r) = 2 \\ 2 & \text{if } \kappa_2(r) = 3. \end{cases}
$$

If $r \in \mathcal{R}$ ₅ let $\kappa(r) = \pi(\kappa_2(r))$. Then again κ is a 4-colouring of *(G, X)*, as required. Q.E.D.

5. THE PROJECTIVE PLANE

Finally we show (1.2), that the analogue of (1.1) is false for the projective plane. The following result is implicit in Youngs [11], and we include a proof (essentially that of [11]) for completeness.

(5.1) *Let G be a drawing in the projective plane so that every region is bounded by a circuit of length 4. If G is not bipartite, then for every vertexcolouring (in any number of colours) there is a region r of G so that the four vertices incident with r receive four different colours.*

Proof. Let $\phi: V(G) \to \{1, ..., k\}$ be the vertex-colouring. Let us direct every edge of *G* with ends $\{u, v\}$ from *u* to *v* where $\phi(u) < \phi(v)$. Let *C* be an odd circuit of *G* (necessarily non-null-homotopic), and let *C* have length *t* say. Then (by cutting along $U(C)$) there is a drawing H in the plane, such that the infinite region of *H* is bounded by a circuit C_0 of length 2t, and every finite region by a circuit of length 4, such that if we number the vertices and edges of C_0 as

$$
v_0, e_1, v_1, ..., e_{2t}, v_{2t} = v_0
$$

in order, then *G* is obtained by identifying v_i and v_{t+i} ($1 \le i \le t$) and e_i with e_{t+i} ($1 \le i \le t$). Let us direct the edges of *H* in the same way that their images in *G* are directed. Now for each region *r* of *H*, let *a(r)* be the number of edges of the circuit $C(r)$ bounding r that are traversed in positive direction as $C(r)$ is traversed in clockwise direction; and $b(r)$ = $|E(C(r))| - a(r)$. If r_0 is the infinite region of *H*, then (by counting the contribution of each edge to each region) we see that

$$
a(r_0)-b(r_0)=\sum_{r\neq r_0}(a(r)-b(r)).
$$

Now for $1 \le i \le t$, e_i contributes to $a(r_0)$ if and only if e_{t+i} does so; and so $a(r_0)$ is even, and since $a(r_0) + b(r_0)$ is not divisible by 4, it follows that $a(r_0) - b(r_0) \neq 0$. Hence there is a finite region *r* of *H* with $a(r) - b(r) \neq 0$, by the equation above. The corresponding region of *G* satisfies the theorem. Q.E.D.

Proof of (1.2). Take *G* as in (5.1), with high representativeness and not bipartite (it is easy to see this is possible). Now add a new vertex of degree 4 in each region, forming an Eulerian triangulation. By (5.1) this is not 4-colourable. Q.E.D.

Since this article was submitted for publication, the non-orientable case has been completely analyzed. It is now known precisely when a highly representative quadrangulation and when a highly representative Eulerian triangulation of a non-orientable surface has chromatic number 2, 3, 4, or 5. In particular, for every non-orientable surface, there is a highly representative 5-chromatic Eulerian triangulation. See [1, 7, 8].

REFERENCES

- 1. D. Archdeacon, J. Hutchinson, A. Nakamoto, S. Negami, and K. Ota, Chromatic numbers of quadrangulations on closed surfaces, *J. Graph Theory*, to appear.
- 2. J. P. Ballantine, A postulational introduction to the four color problem, *Univ. Washington Publ. Math.* **2** (1930), 1–16.
- 3. K. L. Collins and J. P. Hutchinson, Four-coloring 6-regular graphs on the torus, *in* ''Graph Colouring and Applications'' (P. Hansen and O. Marcotte, Eds.), CRM Proceedings and Lecture Notes, Vol. 23, pp. 21–34, Amer. Math. Soc., Providence, RI, 1999.
- 4. S. Fisk, The non-existence of colorings, *J. Combin. Theory Ser. B* **24** (1978), 247–248.
- 5. P. J. Heawood, Map-colour theorem, *Quart. J. Pure Appl. Math.* **24** (1890), 332–338.
- 6. J. P. Hutchinson, Three-coloring graphs embedded on surfaces with all faces even-sided, *J. Combin. Theory Ser. B* **65** (1995), 139–155.
- 7. B. Mohar and P. D. Seymour, Colouring locally bipartite graphs on surfaces, preprint.
- 8. A. Nakamoto, S. Negami, and K. Ota, Chromatic numbers and cycle partitions of quadrangulations on nonorientable surfaces, preprint.
- 9. N. Robertson and P. D. Seymour, Graph Minors, VII. Disjoint paths on a surface, *J. Combin. Theory Ser. B* **45** (1988), 212–254.
- 10. C. Thomassen, Five-coloring maps on surfaces, *J. Combin. Theory Ser. B* **59** (1993), 89–105.
- 11. D. A. Youngs, 4-chromatic projective graphs, *J. Graph Theory* **21** (1996), 219–227.