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1. INTRODUCTION 

In [4] it was conjectured that an analog for permanents of the Fischer 

theorem for determinants is true. In a paper appearing currently [1], 
E. Lieb settles this question. One of the results in the present paper is a 

strengthened version of the conjecture as well as several other variations 
and extensions of the classical Hadamard-Fischer types of theorems. 

Our first result will be a formulation of the Laplace expansion theorem 
for a very general class of matrix functions. This result is entirely combi- 

natorial in structure and will subsequently be used to prove our main 

results. In the latter part  of the paper we prove a general theorem on 

products of  generalized functions of principal submatrices that contains 

many of the classical theorems on determinants. The class of  generalized 
matrix functions includes, e.g., the permanent, the determinant, and the 
product of  the main diagonal entries, which are of substantial interest 
in proving inequalities of combinatorial significance (see, e.g., [6], [7], 

[81). 
Let G be a subgroup of S~, the symmetric group of degree n, and let Z 

be a complex valued character on G of degree 1, i.e., Z is a non-zero 
homomorphism of G into the complex numbers C. A generalized matrix 
function of the n-square matrix A is defined by 

* The research of both authors was supported by the U.S. Air Force Office of 
Scientific Research under Grant 698455. 
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146 M A R C U S  A N D  S O U L E S  

n 

dzG(A). ~ Z(~)II aid(i). ( l )  
creG ~: I 

F o r  example ,  if  G = S~ ,  7. ~ 1 then d f i  is the p e r m a n e n t  funct ion .  

Observe  t ha t  ifq~ and  r are  p e r m u t a t i o n s  in G and  B ..... (bij)  = (a,~{i),~(;)) 

then 

dz~(B) E Z(6) bib(i) 
~eG i=1 

= ~.~ Z(~y)  l : i  ( l q ( i ) , r c ~ ( i )  
q~G i=1 

n 

: ~-. Z((;) H ai,.:~(,-,(i) 
o e G  t = l  

;~(r 'q~) dzC(A).  

(2) 

In subsequen t  s t a t emen t s  we shall  have  occas ion  to use a sl ight  ex- 

t ens ion  o f  the def in i t ion  (1). Suppose  then  tha t  r i -  s - -  n, r , s  > 1, 

and  Gr is a s u b g r o u p  o f  G each m e m b e r  o f  which  ho lds  the in tegers  

r + 1 . . . .  , r + s = n i nd iv idua l ly  fixed. Also ,  let  Gs be a s u b g r o u p  o f  G 

each  m e m b e r  o f  which  ho lds  the in tegers  1, ..., r i nd iv idua l ly  fixed. 

T h e n  i f  A and  B are  respec t ive ly  r - square  and  s - square  ma t r i ces  define 

dz,(A ) = dOz,(A _L I j  = Z Z(a )  [ i  aio(i) , 
cse G r i=I  

(3) 

3 

dx"(B ) = d]~(I  r "~ B)  --: E Z(~)  H bi,o(~+i) r .  
c~eG s i=1 

(4) 

We nex t  define a genera l  n o t i o n  o f  subma t r ix .  Let  I 'm , ,  deno te  the to ta -  

l i ty  o f  n m sequences  (o - -  (~ol . . . . .  o0,~), 1 < oJi ~< n, i = 1 . . . . .  m. I f  A is 

any  n-square  m a t r i x  and  o) and  Y are in 1',~,,, then  A[~o ] y] is the m-squa re  

m a t r i x  whose  i, j en t ry  is a~,,iy j , i, j - 1 . . . .  , m.  N o t e  tha t  if  X is n - square  

and  B = X[r  + 1 . . . . .  n I r + 1 . . . . .  n] then  f r o m  (4) (since b u - -  x~ , i ,~ j )  

d~'~(B) E Z ( a ) | i  bi,~(,+i)-~ 
c~eG s i ~ 1  

8 

- E z(a) 1I Xr~i,,~lr~i) 
~ G  s i--1 

- E X(~) [I  x<o . ) .  
G~ i ~ r + l  

(5) 
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2. STATEMENT OF RESULTS 

Our first result is a generalization of  the classical Laplace expansion 
theorem. 

THEOREM 1. Let  A be an n-square matrix over an arbitrary fieM, 

G a subgroup o f  S,~ and Z a character o f  degree 1 on G. Suppose Gr (resp. G.O 

is a subgroup o f  G, r -- s -- n, which leaves the integers r § 1 .. . . .  n (resp. 

1, ..., r) elementwise f ixed.  Let  R be a system o f  left coset representatives 

o f  the direct product Gr • G~ in G, i.e., 

G = u ~(Gr • G~), 
cJ~R 

Then 

dz~ Z Z(a-i't:)dzr(A[a(1), ..-, ~(r )  ] T( I ) ,  T(r) ] )  
n ""' (6) 

• dxS(A[a(r § 1) .. . . .  a(n)]  T(r .-t- 1), ...,T(n)]). 

The summation can be either over all ~r e R with ~ f i x ed  in G or over all 

~ R with ~ f i x e d  in G. 

Using (6) we prove the following analog of  the Fischer inequality 

for determinants (see (14)). 

THEOREM 2. I f  A is an n-square positive definite Hermitian matrix, 

1 ~ r ~ n, and 

A I = A [ I  . . . . .  r l  1 . . . . .  r], 

A2 = A[r -~ 1 . . . . .  n I r + 1 . . . . .  n], 

B = A [ 1  . . . . .  r l r +  1, . . . ,n]  

then 

per(A) -- per(A1) per(A2) >_ #,,-2 ]1B ]l" (7) 

where t z is the minimum eigenvalue o f  A and II B [] is the Euclidean norm 

o f  the matrix B, i.e., t r (BB*) 1/2. 

In [1] Lieb proves that 

per(A) -- per(A1) per(A2) ~ 0 (8) 

with equality if and only if A = A1 ~- A2. The inequality (7) gives an 
estimate on the size of  the difference in (8). The case r ~ 1 of  (8) was 
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proved in [2] and for r :-- 1, (8) was conjectured in [4]. Also, (7) is proved 

for r :: 1 in a paper  to appear  in the Proceedings of  the Symposium on 

Inequalit ies (Wright -Pat terson Air  Force Base, August  1965). 

With the aid of  Theorem 2 the Hadamard  de terminant  theorem can 

be sharpened as follows. 

THEOREM 3. Let A be a ,  n-square positipe definite Hermitian matrix 

and let f be either 

(i " 

per(A) - ai, or 1I ai~ det(A).  
i=1 I'=l 

Th("tl 

: " '2 Z ] a i j ]  ~ ~/" ~ : ai2 - >~ [';_~ ,u '~ 
i<j i<j 

(9) 

where # amt ~] are respectil,ely the mhlimum and maximum eigenualues o f  A. 

The upper (resp. lower) inequality holds i f  and only i f  A is a diagonal matrix, 

or by a simultaneous permutation o f  its rows and cohmms (i.e., P~'AP, P 

a permutation matrix), A may be brought to the form 

where 2 ~1 (resp. 2 ~ ~). 

By applying Theorem 3 we have the following result. 

COROLLARY. /it G :~ A , ,  the alternating group, and 7. ~ 1 the,  

i ,l ~ (i �9 - -  aii i < ~2" ~ ~ l a/;  Iz (11) 

and equality occurs in (11 ) i f  and only ([" A is a diagonal matrix. 

Our next result is another  extension of  the Fischer  inequal i ty  and con- 

tains new results even in the case of  the de te rminant  function.  Before 

going on we introduce several pre l iminary combina tor ia l  notions.  

The group G c S,, operates on /7,,~,~ in the fol lowing obvious way:  

if (r ~ G and co = ((01 , ..., co,~) c 1;,~,,~ then co~ = (coom, ..., co~,~). 

F rom each orbi t  in I ; ,  .... select a sequence which is first in lexicographic 

order  and  denote  the result ing system of  dist inct  representat ives by d .  

Let G,,, denote  the stabil izer of  m, i.e., r ~ G,,, if and  only if r ~ = co, 
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and let r(co) denote the order of G~.,. Let J denote the subset of A con- 
sisting of those co ~ A for which the character Z is identically equal to 1 
on G,,,. For example, if G --  S, ,  and :~ -- e, the signum function, then 
is the set of non-decreasing sequences in F,,~,~ and J is the subset of 
strictly increasing sequences. For this choice of G and Z we shall use the 
following special notat ion:  Gm,~ = A,  Q,,,~ = A. If  co is any sequence 
in Fro, . we will let m~(~o) denote the multiplicity of  occurrence of the 
integer i in co, i = 1 . . . . .  n. 

THEOREM 4. For each co ~ A let b,,, be a non-negatiue number, l f  A is an 

n-square positive definite Hermitian matr ix  then 

where 

( dzG(A[~o I col) ) b , , ,  2~r 
H ~(co) > min f i  q' 

,,~eJ ~eS n i=1 

qi = ~ bo,mi(co), i = 1 . . . . .  n and 21 ~ " ' "  ~ 2it 
f'aC A 

(12) 

are the eigenualues o f  A. 

For the determinant and permanent functions we have the following 
results for the n-square positive definite Hermitian matrix A. 

THEOREM 5. Let  cot~), ..., co(r) be strictly increasing sequences o f  arbitrary 

lengths not exceeding n. Suppose s distinct integers a l , . . . ,  a~ appear 

among coil) . . . . .  co(r) and at occurs a total o f  Pt times, Pl ~ �9 �9 �9 ~ P.~ ~ 1. 

Then 

det(A[ co(y) ]co(J)]) --> ISI "~'rt--]~l p' " (13) 
j=l  j=l  

In particular i f  r = 2, and cola) and co~2) are disjoint and exhaust all o f  

1, ..., n then 

det(A[ co(l) I co(l)]) det(A[co(2) ] co(2)]) ~ det(A), (14) 

the classical Fischer inequality. I f  the sequences co(l), ..-, co(r) are non-de- 

creasing then 

15[ per(A[coJ I ~ J]) > ([  PJ (15) 
j=~ rj j=a 

where 
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ri II re,l,,~')! 
t [ 

In particular if  ~,~ is at O' non-decreasing sequence o j length m~t exceeding H 
then 

JI 

per (A[.)(,~]) ~• 11 ,,,,(,~)! -I!I ,~fiJj~,. (16) 
t=l j=l 

Various choices of  o/i) ..... ~,)") in 

ard results. For  example, if (,~ = (1, 
Theorems 4 and 5 yield many stand- 

.... n) then (12) becomes 

d~a( A)~:" I I  ),,, i~ =~det(A), 
j - I  

the inequality of  Schur [9]. Again, suppose o/1~ ... . .  (,~") are strictly 

increasing sequences of  lengths not exceeding n and moreover each of  

1 ..... n appears k times among all the (,/J< j = 1 .. . . .  r. Then (13) becomes 

| ]  det(A[,#~ l o,~J~]) > det(A)< 
1 =  1 

3. PROOFS 

To prove Theorem 1 we write the left coset decomposit ion 
dulo H G,. • G~" 

G== U rH. 
r6R 

of G too- 

Then summing over the individual cosets we have 

Jl 

dza(A) =: Z Z(or) l l  ai~,,~ 

:: Z )2 Z ( r ~ ) H  a i .~ i ) .  
r e  R .~E I t  i = 1  

(17) 

Any summation over H can be effected by summing separately over Gr 

and G~ since H is the direct product  of  these groups. We recall also that 

the permutations in G~ leave 1 .. . . .  r elementwise fixed and similarly the 
permutations in Gr leave r ! 1 .. . .  , r --I- s = n, elementwise fixed. Thus 
continuing (17) we have 
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d r ( A )  Z Z Z Z(W 0) 1~[ ai,~(/~,(i) 
reR q'eG r O~G s i=1 

r ~ R  q:eGr i=1 OeG s 'i=r t l 

-- ~] Z0:)dzr(A[1, ..., r l ~:(1) . . . . .  T(r)]) 
rcR 

• dz~(A[r + 1, ..., n[ "c(r @ 1), ..., T(n)]). 

In the last equality in (18) we have used (3) and (5) with 

B == A[r  + l ,  ..., n l z ( r  4 1 ) , . . . , z ( n ) ] .  

(18) 

dr G(A) = Z(a -1 )dzG(C)  

= g(a  -a) Y, Z(T)df(C[l . . . . .  r [ T(I) . . . . .  T(r)]) 
reR 

• dzs(C[r + 1 ..... n [ T(r + 1) . . . . .  r(n)]) 

-: Y~ Z(a-lT)dy[(A[a(1) ..... a(r)  l r ( l )  . . . . .  r(r)]) 
r~R 

• dzs(A[a(r + 1), ..., a(n) I T(r ~ I) . . . . .  T(n)]). 

(19) 

To establish the expansion by rows (i.e., summation over a in (6)) 
we argue as follows. By taking the inverses of  the elements in each coset 

H, we obtain 
G =  u a H  

(IE/~ 

_ U H a  1. 
aeR 

Thus as in (18) we have 

d~G(A) Y~ Z Z Z(q ~0~ 1)II  ai,~o~-l.) 
cr~R q 'eG r OcG s i=1 

- -  Z Z Z Z(O 900' 1 ) f i  a ~ ( i ) , 7 o ( ~  ) 
c ~ R  g e G  r OeG s i=1 

..... Z Z ( a - 1 ) d z r ( A [ a ( 1 )  . . . . .  a ( r )  l 1 . . . . .  r ] )  
c~R 

• dzS(A[a(r -- 1), ..., a(n) [ r  + 1 . . . . .  n]) 

and we complete the p roof  by applying (2) again. 

To obtain the expansion of dza(A) by columns (i.e., summation over ~) 
in (6), replace A in (18) by C A[a(1) . . . . .  a(n) ] 1 . . . .  , hi, a c G, and 
use (2) to conclude that 
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The choices of  G,. and G.~ in Theorem 1 that  are pertinent to our needs 
are the following. Let G 5',, and let G,. be the entire subgroup of S,, 
holding the integers r + 1 . . . . .  n individually fixed, i.e., @ is isomorphic 

to S,.. Similarly let G~ be the entire subgroup of S,, isomorphic to S,, ,. 
holding the integers 1 . . . . .  r individually fixed. There are two choices of  

a system of  left coset representatives that  are useful. 

{ (1 . . . r  r +  l . . . n  ) V= . (7~  7 , ) e Q , , , , }  (20) 

where 7 1 '  < " ' "  < )'~t r is the sequence in Q,,_~,,, complementary  to 7 

in 1, II. There are permutat ions  in R and we can see that 

no two are equivalent modulo  G r x G s as follows: if r;~Tv e G r ix G~ 

then 

: : , r ) ( ,  r r -  
r r +  1... fix fl, fi,' 

must map  the set {1, ..., r} onto itself. Thus the 

the same and since a and fl are in Q .... it follows 

M 

(b) R :- U R,, where M --  min(r,  s), Ro 
m=0 

R,,, ~- {~; ,  - (a,5,)  ( , ~ / 3 ~ ) . . .  (~,,,#,,,) 1 ~ ,  " -  

I . . .  II 

J 5 '  n--/" 

integers in a and/5  are 

that  a ft. 

{e} and for m > 0 

(21) 
�9 �9 �9 ~ a m ~ r <( 

/~, < . . . .  .~ ~~ < ,1}. 

That  is, for m > 0, R,,, is the set of  all products  of  transposit ions of  the 

form H i~'~l (O~ifli)  where each ai is at most  r and each fli is greater than r. 

) ( )  ( r  s 
Clearly there are permutat ions  in R,,~ and moreover  

, m D7 

Ri & Rj is empty  if i ~ j. Hence, the number  of  elements in R is 

,, ( r ) ( s )  (,,) 
m =O  17l I l l  r 

On the other hand, suppose two elements cr~a e R m and crra e R v are 
- 1  equivalent modulo  G r X G s . Then %,~y~ = c%Sr, 5 e G~ >," G~ and 

hence must  map  the sets {1, ..., r} and {r + 1 .. . . .  n} onto themselves. 
But 
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and  hence 

a ~ j v ~ ( y t )  = aa;~(6 t) c {1 . . . .  , r}, t = 1 . . . . .  p. (22) 

But  6 t ~ {r + 1 . . . . .  n} and  hence  unless 6t ~ {fia . . . . .  fl,,,}, a~,:~ would  

leave 6t fixed, in con t rad ic t ion  to (22). Thus  {61 . . . . .  dr} c {fl~ . . . . .  fl,,,}. 

Also,  since 
(a~y~a) -1 =aye ,  aa,3 c Gr • G~., 

we can conc lude  tha t  {fll,-..,fl~,~} c {61 . . . .  ,6p} .  Thus  p = m and  

fl 6. Similarly a - -  7 and  hence  a~,~ : av~. 

Wi th  the choices o f  G = Sn ,  Gr ,  G s ,  and  R as given in (a), (19) 

becomes ,  with a ~ Sn and  xy as in (20), 

d(A)  = Z Z ( a - ' L , ) d ( A [ a ( 1 ) ,  ..., a ( r ) I  Ty(1), ..-, T~(r)]) 
ry~R 

• d(A[a(r  4- 1) . . . . .  a ( n ) [ T y ( r  + 1) . . . .  , T~(n)]) 
(23) 

- -  Y, Z(a-a-c,/)d(A[a(1) . . . . .  a ( r ) [  Y, . . . . .  ?',]) 
YEQr,~q 

�9 ..~ ...~ / ) • d(A[a(r  ~ 1), a(n)  ! 7 ( ,  Y,, ,] 

where d(A)  is either per (A)  or  det(A).  

The  s u m m a t i o n  (23) is o f  course  the usual  Laplace  c o l u m n  expans ion  

for  de te rminan t s  or  pe rmanen t s  accord ing  as Z e or  Z - -  1. 

We can also invest igate (6) for  the choice o f  R in (b). Thus  (6) becomes ,  

with r e S,, and  aa~ as in (21), 

3/ 
d(A)  = Y~ Y, Z(a,~fc)d(A[a,,~(1) . . . . .  a,,~(r)] r (1)  . . . .  , T(r)]) 

,~=o oa~R~ (24) 

• d(A[a,,t~(r + 1) . . . . .  a~,f~(n)] "r(r + l)  . . . . .  r(n)]).  

Let  Q~,,_r  = {fl - -  (/3~ . . . . .  ft,,) I r + 1 < fl~ < fl~ < . . .  < fl,~ < n}, 
m - -  1 . . . . .  M,  and  let f (aa3 ) be the s u m m a n d  in (24) so that  

3l 

d~ ' (A )  Z Z f (a , , , )  
m=0 ~ S n ~  (25) 

,11 

: ~ Z E f(a~,;j). 
m=o ~Q~,, /3~Q~.~_ r 

N o w  the sequence ( a ~ ( 1 )  . . . . .  aa,~(r)) is ob ta ined  f r o m  the sequence 

(1 . . . . .  r) by  replacing at with f i t ,  t - -  1 . . . . .  m.  Similarly the sequence 
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(%,;(r  - 1) . . . . .  %.j(n))  is o b t a i n e d  f rom the seqvence  (r ; 1 . . . . .  n) 

by rep lac ing  fit wi th  a t , t : 1 . . . . .  m. In the case 7, 1 and  thus  d ( A )  

per (A) ,  (25) becomes  

M 

per (A)  ~ F ( m l  (26) 
~ 0 

where  

Obse rve  tha t  

F(m) Z J(<,,O. 
c<~,Jc R~n 

F(O) f i e )  

: : per(A[1 . . . .  , r ! r ( l )  . . . . .  v(r)])  

• p e r (A i r  + 1 . . . . .  1i r ( r  - -  1) . . . . .  v(n)]) 

(271 

and  tha t  for  m 3> 0 

F(m)  = Z .~ per(A[fi  I . . . . .  fl .... %' .  .... a'~ ,,, i 

i ! 
:. pe r (A[a ,  . . . . .  . , , , ,  fi, . . . .  , fl~ ,,, 

T(1) . . . . .  T(r)]) 

(28) 

T(r > 1), ..., r (n)] )  

where  ( a [ ,  .... a'r ,,~) is the sequence  in Q . . . . . .  c o m p l e m e n t a r y  to ct in 

1 . . . . .  r, and  ( t i l  t ,  . . . ,  f18 m )  is the sequence  in Q's-m ..... . c o m p l e m e n t a r y  to fl 

in r +  1 . . . . .  n. 

Before p r o v i n g  T h e o r e m  2 we list ce r ta in  p rope r t i e s  of  the induced  

power  m a t r i x  Pz.(A) where  A is an n -square  m a t r i x  [7]. The  entr ies  of  

Px.(A) are the n u m b e r s  

p e r (A[a  ] f l l ) /X /V(a )v ( f l ) ,  a, fl 6 G~. ,, 

where 

~(a) 1 !] m,(~)!, 
/=1 

and  these are  a r r a n g e d  d o u b l y  l ex icograph ica l ly  in a a n d  /3 in the 

(n + k  - 1)_square ma t r i x  Pt:(A).  I f  A is pos i t ive  def ini te  H e r m i t i a n  
, k 

.~:'nt(m) so is P # ( A )  and  the e igenvalues  of  Pz,(A) are  the  n u m b e r s  JILL1 t , 

o) ~ Gz., , ,  where  21 >_ . . .  _> 2,, are  the e igenvalues  of  A. Obse rve  t ha t  

( n ) - s q u a r e  m a t r i x  H k ( A )  P~.(A) has as a p r inc ipa l  s u b m a t r i x  the k 
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lying in posit ions (a, fl), a, f l e  Qk,. �9 Accordingly the entries of  Hk(A) 
are the numbers  

per(A[a ] fl]), a, fl ~ Qz- ..... 

It follows f rom a s tandard theorem on Hermi t ian  matrices that  the 

eigenvalues of  H~.(A) are in the interval ffk < x < ~]k where # = 2,, 
and ~7 = 21 are the smallest and largest eigenvalues of  A respectively. 

To  prove Theorem 2 we first observe that  for ~ = e in (27) we have 

F(0) per(Ax) per(A2) 

~ 0 ,  

since A1 and A2 are positive definite [9]. For  0 < m < M we show 

F(m) ~ 0 by using (28) with T = e. We first expand the permanents  in 

the s u m m a n d  in (28) by use of  (23) with a = e. Thus 

per(A[fl, . . . . .  fl,,,, a , , .  . . . . .  m I 1 . . . . .  r]) 

- Y, per(A[fll . . . . .  fl,, l y])per(A[a~', .... a'~_,, ]y ' ] )  
~'EQm,r 

(29) 

where y '  is the strictly increasing sequence in 1 . . . . .  r complementa ry  to y. 

Similarly 

! 

per(A[al  . . . . .  a .... ill', .... /3 ...... J r + 1 . . . . .  n]) 

5~ pe r (A[a l ,  ..., a,~ ] 6])per(A[/3~', .... fl.'~-m J 3!]) �9 
~Q,~,~ r 

(30) 

Thus using (29) and (30), (28) becomes 

F(m) = Y, Y, per(A[fl ] vl)per(A[a' l y'])per(A[a ] 51) 
",V~qm,r ~,~e',,, . (31) 

x per(A[fl' [ 6']). 

Let K b e  the ( r )  "square matr ixwh~ (a 'y)  entry' a ' y c Q m ' r ' i s m  

K,y ~- per(A[a '  ] ~']) (32) 

and observe that  by reversing the order of  both  the rows and columns 
of  K that  we obtain H~_m(A1). Hence it follows that  the eigenvalues of  K 
and Hr-m(A1) are the same and K is positive definite Hermit ian.  Further ,  

let L be the ( s i - square  matr ix  whose (fl, 6 ) e n t r y ,  fl, 6@ Q'~,,,_r, is 
\ m ! 
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L~,~ per(A[fl' [ ~Y]) (33) 

and similarly L has the same eigenvalues as H~_~,,(A~) and is positive 

definite Hermitian.  

N o w l e t  C b e t h e  ( r ) ( s )  • matrix whose (y, fl) entry is 
m , Eft , 

C~.,~ = per(A[fl ] y]), (34) 

y e Q.,,,., f l e  Q~,,.-r. Note that  

per(A[a [6]) per(A[6]a]) C~,~ (35) 

From (31), (32), (33), (34), and (35) we have 

F(m) 
~,yeQm,r 3,,5cQ'm,n_r 

Z K~.Cr,~L,~,~(C*)6,, 
e,fl,y,h 

E (KCLC*G 
r 

tr(KCLC*) 

~ 0  

(36) 

F(M) : t per(A[r + 1 n, ax,  a '  , . . . .  , . . . . . . .  ]1 .... r]) 
~tEQs,r 

per(A[al . . . . .  a~ ]1" + l . . . . .  n]). 
(37) 

Now from (23) applied to per(A[r q- 1 . . . . .  n, at ' ,  .... a; .~ I1 . . . . .  r]) we 
obtain 

F(M) -- Z per(A[r + 1 ..... n i fl])per(A[a' ] fl']) 

• per(A[a [ r + 1 . . . . .  n]) 
(38) 

- -  ( K u ,  u )  

> 0 ,  

because both K and CLC* are positive semi-definite. Hence F(m) > 0 
for m = 1 ,2 , . . . ,  M - - 1 .  We next compute  F(M). From (28) with 

M = s < r w e  have 
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where K is defined in ( 3 2 ) a n d u  is the ( r  l - tuple  whose fl entry is 
S ! 

per(A[r -- 1 . . . . .  n I fl]), /3 c Q,~,r �9 

If r = s = M, then in (37) (al . . . . .  cq) is (1 . . . . .  r) and 

F(M) = per(A[r + 1, ..., n I 1 . . . . .  r] per(A[1 . . . . .  r I r + 1, ..., n]) 

= I per(B)12 (39) 

> 0 .  

Hence from (26), (36), (38), and (39) we have 

M 
p e r ( A ) -  p e r ( A 0 p e r ( A 2 ) =  Y~ F(m) 

,,,=1 (40) 
F(1). 

We compute  from (36) that  

F(1) = tr(KCLC*) 

where in this case C /~. Thus 

F(1 ) = tr (KBLB*) 

2min( K)tr( B LB* ) 

= 2min(K)tr(LB*B ) 

~'min(K)~'min(L) [ IB 112 

~- ~'min(Hr-l(A1))~'min(gs-l(A2)) II B ][z 
r-1 s - 1  /~min(Al)2min(A2) I IB II 2 

/~r-l~s-1 11 B II 2 

_ / ~ . - 2  iI B I[ 2, 

where ).rain(X) denotes the minimum eigenvalue of  the Hermit ian matrix 
X. This, together with (40), completes the p roo f  of  Theorem 2. We note 
that for  r = s > 1 we have also proved that per(A) ~ per(A0per(A2) + 
I per(B) 12 + ~,-2 [I B [[2, which improves Lieb's result. 

An inductive argument  applied to Theorem 2 also proves that  if A 
is part i t ioned into submatrices with square blocks down the main di- 
agonal, i.e., 
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then  

A : (A,.j). i , /  1 . . . . .  k. 

f,, 

per(A) - I] per (A i i )  >>/V ~ .2 y~ A;  i 2. 
i=1  I~i<j~Ic 

Of  course if all A.ii are 1-square we have 

iI 

per(A) --  lI aii >I/,,z-.., y,  
i =1  l~i<jLlt 

.a (41) l a i j l  

one of  the inequal i t ies  in T h e o r e m  3. 

We  now prove the upper  inequal i ty  in (9) for the p e r m a n e n t  and  ob ta in  

the cases of  equal i ty .  Firs t  define 

A, ,  =:~ A[1 . . . . .  m I 1 . . . . .  m], 1 ~ m < n. 

and  use (23) with r m, ~ = e, to ob ta in  

lit ~1 

per(A,~,l)  Y. per (A[ l ,  ..., m [ 1 . . . .  j .... m 5 1])a,,!l,i  
i = 1  

where j means  that  the integer  . / is  deleted. Similar ly we have 

per(A[1, ..., 1tl] 1 . . . . . .  i . . . ,  m + 1]) 

per(A[l  . . . .  f .... m i 1 . . . .  j .... m] )a i , ,~ l  
i=1  

so that  
#t 

per(A,,,.~ ~) =: a,,~+~,,,~ ~ per (A , , )  ~- Y~ 6,,~ :~,ia,~+~.j per (A,~(i I J) ) 
i,j=l 

where J((i I j )  is the subma t r ix  of  X ob ta ined  by dele t ing row i and  

co lurnn  j f rom X. Thus  we can write 

per(Am+l) = a,~+1.,,+1 per(Am) + (K,,ull~, ul~) (42) 

where K,,~ is the m-square  mat r ix  whose (i, j )  en t ry  is per(A,,~(i J j ) )  and  

u m =  (a,,+l,1 . . . . .  am+l.,l). As in  the p ro o f  of  T h e o r e m  2 we k n o w  that  

). ...... (K,,,) %< ~f,,-1. (43) 

By an  obv ious  i n d u c t i o n  on  (42) we can  write 
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11--2 

per(A) - -  l ]  a i ~ - -  (Kn-lU._l, b/n 1) IL Z 1-[ a j j ( K s H s ,  us) (44) 
i=1 s=l j=s+2 

and hence since a ,  < ~l, i = l, ..., n, we have 

n n-2 
per(A)  -- H a .  < rf  ~-~ li u,, ~ [I ~ ~ E ~ . . . .  1~S- -1  II u~ 11' 

i=1 s=l 

= ~#-~ E il u~ II ~ (45)  S=] 

_ ~1,., E i a,:j ?. 
l ~ i < j ~  

If A is diagonal  or A has the form (10) it is clear that the upper inequality 
(9) is equality. Conversely  suppose  equality holds in (9) and (45). Then 
if A is not  diagonal  let t be the smallest integer for which ut_a ~ O, 

2 < t < n, i.e., atk ~: 0 for some  k, 1 < k < t -  1, and from (44) 
and (45) 

f i  ajj(Kt lb l t -1 ,  bit- l)  = ~ n - t ( X t _ l U t _ l  , ut_l). 
j=/+l 

Since A is positive definite Kt_i is positive definite and hence 

Thus 

( K  t lblt_l , Ht_l )  ~ O. 

a t~ l , t+  1 ~ . . . . _  a . n  ~.  

But since ~/is the m a x i m u m  eigenvalue o f  A it fo l lows  that A is a direct 
sum of  the form 

A = At Sr ~In t ,  

A t 

and 

I 
a !  0 0 at1 ] 

�9 0 
0 

a t - l , t - 1  at , l -1  

[__ at1 at,l 1 au  . 

If t = 2, A has the form (10). If  t were greater than 2 we would  have 

t t-1 t-1 
per (Al) ---- I]  a~i + Z [I  ajj l at~ L 2 

/=1 s--1 j=l, jC:S 
t l--1 

~< [ I  a .  + ~]z-z y, l a .  I ~. 
i=1 ~--1 

(46) 
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But equality in (45) implies that equality holds in (46) and since a,. ,• 0, 

1 

1I a j j  = , / ~  
)=l,j~,~" 

and as before 

a n  - "" " ~ ak  1 , k - t  - -  a k ~ l , k + l  . . . . . . . . . . .  a t - l , t - i  ~']. 

Hence A t  has only ate. and 8ta. as non-zero off diagonal elements and thus 
At and A may be brought into the form (10) by a simultaneous permuta- 
tion of rows and columns. Virtually the same argument gives the case of 
equality in (41). Thus (9) is proved for the permanent, including the 
cases of equality. 

The formula analogous to (42) for the determinant is 

a m , l , m .  1 det(A,D -- det(A,, 71) --  ( K m u m  , llm ) (47) 

where K , ,  denotes the adjugate of A, ,~ .  Thus, if the eigenvalues of A , ,  

are y~ > . . .  ~ y,,~ and the eigenvalues of A are 2~ > . . .  ~ 2, then 
for any unit vector x, 

~.~-~ <-- ~,~-,,+~ " "  ) , ,  <-- ~,,2 " .  ~',,~ <-- (K,,,x, x) _% 

Y l  " ' "  Y m - 1  ~ ~1 " ' "  2,,,--1 < fi~--l.  
(48) 

Thus to prove the upper inequality in (9) for the determinant, we obtain 
(43) from (48), and from (47) we obtain (44) with H'i~I aii - det(A) 
replacing per(A) - HI~I a i i .  The proof then proceeds as in (45), and 
the case of equality is identical also. The lower inequality in (9) is ob- 
tained for the determinant using the same proof. 

To prove the corollary we observe, for the alternating group An and 

z - - l ,  

d ~ , ( A )  - -  �89 T det(A)). 

An application of the upper inequalities in (9) proves (11). Equality 
in (11) would imply A is of the form (10) from Theorem 3, with ;t = tl. 
For such an A, (11) becomes 

thus equality implies b - - 0 ,  and A is diagonal. 
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To prove Theorem 4 we use the notat ion and techniques of  [3, Theorem 

2]. Thus on the space of  n-tuples, V, define T: V, -~ V,~ by Tx = A~'x, 
and let v I , ..., Un be an or thonormal  basis of  eigenvectors of  T corres- 
ponding respectively to 21, ..., ~t,~. Then if e~ . . . . .  e,  is the standard basis 
in V~ we compute  that 

dza((Te,,,~ , e.,)) - dz((A~e,,~ , e,,,)) 

--= dz(A[~o ] o)]). 

But according to equation (1 l) in [3] we have 

dza((Te., ~ , eo,j)) = v((o) (K(T) 

in which 

V v~-~ ) eo,*, V-~( ~ - e~,* ) 

yea /=1 

%,~,= ( V ~ )  eo,, ' V ~ v r , ) 2 .  

(49) 

Equations (2) and (3) in [3] tell us that  

Z c~,,,~-- 1, Z_ c.,,~--- 1 
yEA oJ~A 

for each ~o and y in zl respectively and moreover  

rni(co)su Z_ ml(ylc,,,.r 
i=1 yea 

(50) 

for any oJ e zl and each t, 1 < t < n, where su == [ (ei, vt) [2, i, t = 1, 
.... n. Set d~, = dxO([~]eo])/r(,:.o) and use the concavity of  the log 

function to obtain f rom (49) and (50), 

log d,, > Y,_ c,,,y ~ mr(y) log )-t 
yea /=1 

= ~ log 21 ~ c,,,,y mt(y) (51) 
t= l  yEA 

= ~] log 2t ~ rn,(w)sit. 
t=l i=I 
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Then since the scalars b,.. are non-negative we have from (51 ) that 

Jr ~l 

3~ b,., log d,,, ~ • ~ ~] b,.,mi({o)s+, t log )+t - (52) 
~u~A- t= l  i=1 +,,eJ 

The expression on the right in (52) is linear in the doubly stochastic 
matrix S = (sit) and hence by Birkhoff's theorem [5] assumes its mini- 
mum value when S is a permutation matrix. Thus in the notation of 
Theorem 4 

b~,, log d~,, ~ s ~ b+.,mi(~o ) log 2~,{,> 
.... ~ +=1 .... 7 (53) 

�9 - ~a qi  log ).~il 
i= t  

where a is the permutation minimizing the expresmon in (52). Taking 
expotentials in (53) produces the result (12). 

To prove Theorem 5 we need only modify the above argument slight- 
ly. Suppose that we look at (51) in the case of the determinant function. 
Then for any strictly increasing sequence m of length not exceeding n (51) 
becomes 

log det(A[eo ] eo]) ~ ~ log 2 t ~ m~((o)s~,. (54) 
t= l  i=1 

In (54) replace e~ by {,o {jl, ./ ~ 1 ..... r (see the statement of Theorem 5), 
and add the resulting inequalities. This then gives 

log 1[ det(A[ eo<j' [ e / a ' ] ) ~  ~ log,~+, ~ ~ mi(+,/a')si,. (55) 
j ~ l  t = l  i = 1  j = l  

~ r  Now ~j=t mi(~o<J}) is just the total number of times the integer i occurs 
among co {1), ..., o/r>; we have called the s distinct integers that appear 
among these sequences al ..... a, and their multiplities of occurrence 
are respectively p l ,  ...,p+, Pl ~> "'" ~ P+ ~ 1. Now let 

r 

M i  = Z nli(r  i =  1 . . . . .  n ,  
j = l  

(some M i may be zero) so that minimizing (55) as before we have for 
some cre 5',,, 

log lf[ det(A[{o'-i'[ eotJ']) ~ ~ Mi log )+~{+., 
j = l  i = t  



and 
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j-1 i d  
(56) 

s 

_> H 2{'/_;.,. 
j t 

The last inequality in (56) is the well-known result that states that the 
thing to do to make a product of powers small is to put the largest expo- 
nent on the least factor, the second largest exponent on the next smallest 
factor, etc. 

The inequalities (15) and (16) are proved in very much the same way 
from (51). 
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