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We present a way to combine Vlasov and two-fluid codes for the simulation of a collision-
less plasma in large domains while keeping full information on the velocity distribution in 
localised areas of interest. This is made possible by solving the full Vlasov equation in one 
region while the remaining area is treated by a 5-moment two-fluid code. In such a treat-
ment, the main challenge of coupling kinetic and fluid descriptions is the interchange of 
physically correct boundary conditions between the different plasma models. In contrast 
to other treatments, we do not rely on any specific form of the distribution function, e.g. 
a Maxwellian type. Instead, we combine an extrapolation of the distribution function and 
a correction of the moments based on the fluid data. Thus, throughout the simulation 
both codes provide the necessary boundary conditions for each other. A speed-up factor 
of around 10 is achieved by using GPUs for the computationally expensive solution of 
the Vlasov equation. Additional major savings are obtained due to the coupling where the 
amount of savings roughly corresponds to the fraction of the domain where the kinetic 
equations are solved. The coupled codes were then tested on the propagation of whistler 
waves and on the GEM reconnection challenge.
© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC 

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

For many relevant problems in plasma physics, the plasma can be considered nearly collisionless. In these cases, the 
Vlasov–Maxwell system is sufficient for a complete description of the physically important phenomena. Nevertheless, it is 
close to impossible to numerically solve the Vlasov equation for global problems on fluid scales due to the vast amount of 
memory needed to resolve a 6-dimensional phase-space. However, in many situations a complete kinetic description is not 
necessary and computationally much less expensive fluid models based on the moments of the distribution function are 
sufficient. In addition, plasmas are typical multi-scale phenomena. Often there are only localised and small regions, where a 
kinetic description is needed, whereas the rest of the domain can be described by means of a fluid model. This separation 
of scales can be found in many typical problems of plasma physics, such as reconnection in the magnetotail of the earth, 
solar flares or typical phenomena in tokamaks. To determine what amount of computational savings coupling techniques 
might provide, a rough estimation of the numerical costs can be made on the basis of spatial scales. To do this, both the 
computational effort for the fluid region and the overhead for the coupling itself can be assumed as negligible compared 
to the costs of the kinetic part of the simulation. Thus the fraction of the domain where kinetic effects occur can indicate 
how much computational time might be saved. This fraction can be estimated on the basis of typical plasma parameters. 
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The most relevant scales are determined by the ion skin depth, below which the dynamics of ions and electrons decouple, 
and the ion gyro radius, which is especially important in the context of collisionless plasmas.

In the magnetotail of the earth, kinetic effects are important in and around the current sheet, where reconnection takes 
place. In an example of a typical setup for this problem given by Birn et al. [1], the current sheet—and thus the kinetic 
region—covers around 10% of the computational domain. In a typical tokamak with an overall size ∼1 m, the ion skin 
depth is ∼5 cm (see Woods [2]). The ion gyro radius is even one order of magnitude smaller. Thus, taking into account the 
rotationally symmetric geometry of a tokamak and the magnetic field therein, the fraction of the domain where localised
kinetic effects as reconnection might take place is likely to scale with the fraction of 5 cm/1 m and can thus be expected 
to be only 5% of the domain, to give a very rough estimation of the order of magnitude. In a solar flare, the ratio is even 
smaller: A typical size of ∼107 m compares to an ion skin depth of about 10 m (see for example Ramesh et al. [3]). We 
stress that this is a rough estimate assuming e.g. that there are isolated reconnection sites and no turbulent reconnection 
events where the turbulence scales meet the kinetic scales. In this situation, the fraction of the simulation domain occupied 
by the kinetic region would be substantially larger.

If the kinetic regions are known, this additional information might be used to reduce the computational costs drastically 
by restricting the expensive kinetic simulation to this smaller area and using a suitable fluid model for the rest of the 
domain. There have been several approaches to exploit this ansatz in numerical schemes. In the works of Degond et al. 
[4], Dellacherie [5], Goudon et al. [6], Klar et al. [7], and Le Tallec and Mallinger [8] methods for coupling the Boltzmann 
equation to some kind of fluid model like the Navier–Stokes or Euler equations are addressed. Sugiyama and Kusano [9] and 
especially Daldorff et al. [10] describe the coupling of PIC and MHD models, Markidis et al. [11] show a way to combine PIC 
and fluid models, and Kolobov and Arslanbekov [12] describe the transition from neutral gas models to models of weakly 
ionised plasmas with respect to coupling kinetic and fluid equations. Schulze et al. [13] use coupling techniques in the 
context of epitaxial growth.

Most of these schemes are based on the strong assumption that the distribution function is close to Maxwellian in the 
vicinity of the coupling border and use this approximation to generate boundary conditions for the kinetic region. In other 
approaches, an artificial field is introduced that expresses the deviation from a Maxwellian and is coupled to the underlying 
equations [4], or the fluxes at the boundary are used for the coupling [8].

This paper presents a different mechanism for coupling the Vlasov equation with a five-moment model and the full 
Maxwell equations. Our method is easy to implement and does not rely on any specific assumptions with respect to the 
distribution function near the coupling border. In addition, no extensive transition region between the kinetic and fluid 
domains is required.

The rest of this paper is organised as follows: After the physical models have been described in Section 2, the numerical 
schemes are presented in Section 3. The coupling procedure is explained in Section 4. Technical details on CUDA graph-
ics cards and their use on the Vlasov code as well as parallel programming issues are discussed in Section 5. Finally, in 
Sections 6 and 7, first numerical results are presented and discussed.

2. Physical models

Consider a non-relativistic plasma consisting of different particle species s. The Vlasov equation

∂t f s + v · ∇x f s + qs

ms
(E + v × B) · ∇v f s = 0 (1)

describes the time evolution of the phase-space density f s(x, v, t), where E is the electric field, B is the magnetic field, qs
is the charge, and ms is the mass per particle. By calculating the moments of f s with respect to v, we can derive important 
physical quantities describing the plasma:

the mass density ρs = ms

∫
f sd3 v, (2)

the momentum density us = ms

∫
v f sd3 v, (3)

and the energy density Es = ms

2

∫
v2 f sd3 v. (4)

Their time dependence can be calculated from the Vlasov equation (1) and is given by:

∂tρs = −∇ · us (5)

∂tus = −∇ ·
(

us ⊗ us

ρs
+ Ps

)
+ qs

ms
(ρsE + us × Bs) (6)

∂tEs = −∇ ·
(
Es1 + Ps

ρs
us

)
− ∇ · Qs + qs

ms
us · E, (7)

where Ps is the pressure tensor and Qs is the heat flux tensor. These quantities must be provided in order to close the 
system.
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For our first tests of the coupling procedure, we assume that the plasma is adiabatic and the pressure is isotropic, which 
corresponds to

Ps = ps1, ps = 2

3
Es − 1

3

u2
s

ρs
, and ∇ · Qs = 0 (8)

respectively. Note that this fluid closure was chosen for simplicity and other fluid models may be used depending on the 
situation of the plasma application.

Furthermore Faraday’s and Ampère’s laws

∂tB = −∇ × E (9)

∂tE = c2(∇ × B − μ0j) (10)

are required to determine how the electromagnetic fields evolve where current density j is given by

j =
∑

s

qs

ms
us. (11)

3. Numerical schemes

In order to solve the coupling problem, we must first design numerical schemes for solving the Vlasov equation, the 
five-moment two-fluid equations and the Maxwell equations separately. It is important to note that we have chosen the 
fluid model with care such that we do not impose a generalised Ohm’s law to obtain the electric field E but use the same 
set of Maxwell equations as for the Vlasov equations. This implies that timescales of both fluid and kinetic descriptions are 
comparable. This allows for a clean separation between the Maxwell solver, the Vlasov solver and the fluid solver. That is, 
the Maxwell solver only requires the current density as a source term, which can be obtained from the fluid and the Vlasov 
solver.

Coupling to even larger spatial and temporal scales which could be described with an MHD model, would thus be more 
related to the question of coupling Maxwell’s equation to a generalised Ohm’s law. This kind of coupling can be done on 
the fluid level (2-fluid with Maxwell equation coupled to MHD with generalised Ohm’s law). This is still a major task and 
will be the next necessary step.

Both models, the Vlasov equation and the two-fluid equations, are implemented independently and each code can be 
executed alone or coupled to the other—a concept known as multiple program multiple data (MPMD).

Because of the high dimensionality of the distribution function f s , the Vlasov code is much more computationally expen-
sive than the fluid code. Therefore, to achieve optimal performance, the Vlasov code is executed on multiple GPUs, while 
the relatively low cost fluid model and Maxwell’s equations (9) and (10) are solved on CPUs. The network communica-
tion is implemented via MPI. Our code solves the 2.5-dimensional problem (i.e. two space dimensions and three velocity 
dimensions), but a generalisation to the full 3-dimensional case is straightforward. In the following subsections we will 
describe the numerical schemes. In addition to that, a detailed description of semi-Lagrangian solvers is given because they 
are essential both to the Vlasov code and to the coupling routine that will be explained in Section 4.

3.1. Numerical implementation of the Vlasov equation

In this section, the numerical solver for the Vlasov equation used in this work is described. By means of splitting meth-
ods, the Vlasov equation is broken down into a set of simpler one-dimensional conservation laws. These can then be solved 
with a semi-Lagrangian scheme. Such a scheme requires finding the characteristics for which we use the Backsubstitution 
method, and approximating the integrals between these characteristics, which we do by means of the positive flux conserva-
tive scheme (PFC scheme).

3.1.1. Conservative semi-Lagrangian schemes
The underlying idea of how to solve conservation laws by means of semi-Lagrangian schemes is now described. As 

an example consider

∂t f (x, t) + ∂x
(
u(x, t) f (x, t)

) = 0. (12)

Let the domain be divided into equal cells and the ith cell be bounded by the points xi and xi+1. Different points in time, 
separated by the time interval �t , are denoted as tn = n�t . The scheme will then evolve the cell integrals

f i
(
tn) =

xi+1∫
xi

f
(
x, tn)

dx (13)

in time. Next, a family of curves C(t; x, s) is introduced, called the characteristics of Eq. (12), which are defined by
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d

dt
C(t) = u

(
C(t), t

)
(14)

C(t = s) = x. (15)

Integrating f along x between the two curves that pass through the cell boundaries of cell i at time tn+1, taking the time 
derivative, using the chain rule for parameter integrals, and inserting the conservation law (12) leads to

d

dt

C(t;xi+1,tn+1)∫
C(t;xi ,tn+1)

f (x, t)dx = 0. (16)

If the velocity field u(x, t) is Lipschitz continuous, the Picard–Lindelöf theorem will guarantee that two different character-
istics will never intersect. Then we may integrate over time to obtain

f i
(
tn+1) =

C(tn;xi+1,tn+1)∫
C(tn;xi ,tn+1)

f
(
x, tn)

dx. (17)

Here f i(tn) and the points C(tn; xi, tn+1) are known, the cell integrals f i(tn+1) can be found by reconstructing the right 
hand side of Eq. (17) from the f i(tn) by means of an arbitrary reconstruction scheme. In other words, in order to solve 
the conservation law (12), it is sufficient to find the source points of the characteristics that will pass through the cell 
boundaries.

3.1.2. Splitting
The phase space density f S depends on six coordinates plus time. Trying to solve the Vlasov equation in a naive way by 

simply discretising it based on an arbitrary scheme would lead to severe problems: If the number of dimensions is d, the 
number of direct neighbours of a given cell is 3d − 1. Even if one spatial dimension can be left out because of the symmetry 
of the problem, this still results in 242 cells. A stencil spanning a larger part of these cells, would produce a very clumsy 
and slow scheme. This exponential growth of the number of dependencies can be avoided by splitting the Vlasov equation 
into smaller parts that are more manageable and can be solved separately. If this is done carefully, the resulting error does 
not exceed the one of the overall scheme.

The Vlasov equation can be written in the form

∂t f s + (A+ B) f s = 0 (18)

with operators

A = v · ∇x

and

B = qs

ms
(E + v × B) · ∇v.

Instead of solving the full equation (18), we consider the equations

∂t f s +A f s = ∂t f s + v · ∇x f s = 0 (19)

and

∂t f s + B f s = ∂t f s + qs

ms
(E + v × B) · ∇v f s = 0. (20)

Now, given some differential equation

∂t f + S f = 0, f (t = 0) = f0 (21)

we can write its formal solution as f (�t) = exp(−�tS) f0 =: T (S) f0.
With this notation in mind we can decompose the solution of (18) in terms of solutions of (19) and (20) by making use 

of the Strang splitting method:

f s(t + �t) = T (A+ B) f (t) = T

(
1

2
A

)
T (B)T

(
1

2
A

)
f (t) +O

(
�t3). (22)

This decomposition is exact if the operators A and B commute. However, this is not the case here, but the resulting error 
is of third order in time and thus does not destroy the overall accuracy. Now that the problem has been split into two sub 
problems, each one can be solved separately. In both (19) and (20) the operators still act on a three-dimensional space. It 
is natural to try to decompose the operators A and B further in order to simplify the problem even more and make it 
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possible to solve it with a semi-Lagrangian scheme which only works for one dimension. As for A, which is the sum of 
three commuting operators, this splitting is exact and can easily be done by a simple composition of the single operators.

The operator B, however, does not allow for such an easy decomposition. Here, it would be possible to use Strang 
splitting again, but there would be some disadvantages in this. First, the resulting scheme would be non-isotropic, as the 
single operators would not be used the same number of times. Second, the application of these operators is particularly 
expensive, so it is not desirable to apply them more than necessary.

Thus, the next problem is to find a splitting so that Eq. (20) can be solved by only three applications of the time-evolution 
operator (one for each dimension of v) and obtain at least second-order accuracy in space and time. We rewrite (20) as

∂t f s + B f s = ∂t f s + (Vx + Vy + Vz) f s = 0 (23)

with

Vi = qs

ms

(
Ei + (v × B)i

)
∂i

and make the ansatz

f (t + �t) = T (Ṽz)T (Ṽy)T (Ṽx) f (t) + Esplit + Emod (24)

with modified operators Ṽi that still have to be determined. The term Esplit represents the error due to the splitting scheme, 
while Emod is the error caused by modifying the operators. If the modifications are chosen correctly, both error terms cancel 
out and the splitting is exact. It should be noted however, that the error term of the splitting depends on the order in 
which the solution operators are applied. Thus it is not possible to change the order of execution of the T (Ṽi) once the 
modifications have been chosen. The implementation of (24) is done by means of the Backsubstitution method, which is 
described in the next section.

3.1.3. The Backsubstitution method
The Backsubstitution method [14,15] relies on the calculation of the characteristics needed for the semi-Lagrangian 

schemes that occur in the single operators in (24) by means of the Boris push method. The latter is best known from the 
context of PIC simulations.

We start with a review of the Boris push method. Considering the discretized equation

vn+1 − vn

�t
= qα

mα

(
En+1/2 + vn+1 + vn

2
× Bn+1/2

)
, (25)

the effects of the electric and magnetic fields can be separated by introducing new variables

v+ = vn+1 − qα

mα

�t

2
En+1/2 and v− = vn + qα

mα

�t

2
En+1/2. (26)

With that, Eq. (25) becomes

v+ − v−

�t
= qα

mα

v+ + v−

2
× Bn+1/2. (27)

This equation is solved in two steps. Introducing the quantities

t = qα

mα

�t

2
B and s = 2t

1 + t2
, (28)

the first step calculates an intermediate vector v′ from v− , the second step uses this intermediate vector to calculate the 
result v+

v′ = v− + v− × t (29)

v+ = v− + v′ × s (30)

There is also a backward-in-time version of the Boris push that calculates v− from v+:

ṽ′ = v+ − v+ × t (31)

v− = v+ − ṽ′ × s. (32)

A big advantage of the Boris push is that it correctly conserves energy respectively the magnitude of v if only magnetic and 
no electric fields are present.

Following the idea of cascade interpolation [16], the first step of the update in velocity space will be performed along 
the vx direction, the second step along vy , and the last step along vz . For the last step, the distance along the vz direction 
is just the z component of the characteristic ending exactly at the grid point. Since we are tracing the characteristics back 
in time, the grid-point coordinates are denoted by vn+1. By using the new variables (26), the electric fields can be removed 
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from the equations and the grid-point coordinates become v+ . The distance for the vz update is then given by a formula 
v−

z = v−
z (v+

x , v+
y , v+

z ). This notation means that v−
z is a function of the variables v+

x , v+
y , and v+

z . Using the z component 
of Eqs. (31) and (32), one obtains

v−
z = v+

x (tzsx − sy) + v+
y (tzsy + sx) + v+

z (1 − txsx − t ysy) (33)

for the sought-after function. The step along the vy direction follows a characteristic passing through v+
z at time t −�t and 

v+
y and v+

x at time t . This means that an equation of the form v−
y = v−

y (v+
x , v+

y , v−
z ) is needed. This can be obtained by 

solving Eq. (33) for v+
z and inserting the result into the y component of Eq. (32), yielding

v−
y = v+

x

(
sxt y + sz − (tzsx − sy)(t ysz − sx)

1 − txsx − t y sy

)
+ v+

y

(
1 − txsx − tzsz − (tzsy + sx)(t y sz − sx)

1 − txsx − t ysy

)
+ v−

z
t ysz − sx

1 − txsx − t y sy
. (34)

For the last step, the equation for v−
z has the form v−

z = v−
z (v+

x , v−
y , v−

z ). In the original version of the Backsubstitution
method [14], this equation was obtained in a similar way by solving Eqs. (33) and (34) for v+

z and v+
y , respectively, and 

“substituting them back” into the x component of Eq. (32). However, this results in a lengthy calculation, and it is difficult 
to simplify the resulting expression. There is an easier way to obtain the final result using the forward-in-time version of 
the Boris push and solving the x component of Eq. (30) for v−

x , which results in

v−
x = v+

x − v−
y (txsy + sz) − v−

z (txsz − sy)

1 − t y sy − tzsz
. (35)

Eqs. (35), (34), and (33) provide the starting points for the one-dimensional updates along the vx , vy , and vz-axis, respec-
tively. The order in which these steps must be applied is vx , then vy , then vz .

3.1.4. The PFC scheme
In this section we present a brief review of the positive flux-conservative (PFC) scheme developed by Filbet et al. [17], 

which is used in this work and provides a method for calculating the integral in Eq. (17). For a comparison of other schemes 
that might be used for the same purpose, see Crouseilles et al. [18].

The PFC scheme is used to approximate the function f on the basis of its cell integral f i in the ith cell. Here, the case 
of a positive velocity u is discussed. The case u < 0 can be derived analogously. From Eq. (17) it holds that

f n
i =

xi+1/2∫
xi−1/2

f
(
x, tn)dx =

X(tn−1;xi+1/2,tn)∫
X(tn−1;xi−1/2,tn)

f
(
x, tn−1)dx. (36)

By setting

Φi+1/2 =
xi+1/2∫

X(tn−1;xi+1/2,tn)

f
(
x, tn−1)dx, (37)

Eq. (36) can be rewritten as an update equation for the f i :

f n
i = f n−1

i + Φi−1/2 − Φi+1/2. (38)

The primitive function of f at the cell borders is given by

F
(
tn, xk−1/2

) =
k−1∑
i=0

f n
i . (39)

An approximation F̃ of F within the ith cell can be obtained by the Newton interpolation of F on the cell borders 
{xi−3/2, xi−1/2, xi+1/2, xi+3/2}:

F̃ (x) = F (xi−3/2) + f i−1(x − xi−3/2) + f i − f i−1

2�x
(x − xi−3/2)(x − xi−1/2)

+ f i+1 − 2 f i + f i−1
2

(x − xi−3/2)(x − xi−1/2)(x − xi+1/2) (40)

6(�x)
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By differentiating and rearranging the terms, one obtains an approximation f̃ in the ith cell:

f̃ (x) = d F̃ (x)

dx
(x) (41)

= f i + f i+1 − f i

6(�x)2

(
2(x − xi)(x − xi−3/2) + (x − xi−1/2)(x − xi+1/2)

)
+ f i − f i−1

6(�x)2

(
2(x − xi)(x − xi+3/2) + (x − xi−1/2)(x − xi+1/2)

)
(42)

This reconstruction can create negative values of f̃ (x), or values larger than f∞ = max( f (x)), which would be a nonphysical 
solution to the Vlasov equation. Thus, slope limiters are introduced:

ε+
i =

{
min(1;2 f i/( f i+1 − f i)) if f i+1 > f i
min(1;−2( f∞ − f i)/( f i+1 − f i)) if f i+1 < f i,

(43)

ε−
i =

{
min(1;2( f∞ − f i)/( f i − f i−1)) if f i > f i−1
min(1;−2 f i/( f i − f i−1)) if f i < f i−1,

(44)

and the approximation becomes

f̂ i(x) = f i + ε+
i

f i+1 − f i

6(�x)2

(
2(x − xi)(x − xi−3/2) + (x − xi−1/2)(x − xi+1/2)

)
+ ε−

i

f i − f i−1

6(�x)2

(
2(x − xi)(x − xi+3/2) + (x − xi−1/2)(x − xi+1/2)

)
. (45)

The flux Φi+1/2 can be approximated by integrating f̂ i(x) from X(tn−1; xi+1/2, tn) to xi+1/2 (see Eq. (37)). It was as-
sumed that the velocity u used in calculating the characteristic X is positive. Because the characteristic is followed 
backwards in time, its footpoint lies to the left of xi+1/2. However, due to the semi-Lagrangian nature of this scheme, 
the point X(tn−1; xi+1/2, tn) might not be located in the ith cell, but multiple cells further to the left. Setting j so that 
X(tn−1; xi+1/2, tn) lies in the jth cell and defining αi = (x j+1/2 − X(tn−1; xi+1/2, tn))/�x one obtains

Φi+1/2 =
i∑

k= j+1

fk + αi

(
f j + ε+

j

6
(1 − αi)(2 − αi)( f j+1 − f j) + ε−

j

6
(1 − αi)(1 + αi)( f j − f j−1)

)
. (46)

For negative velocities, αi = (x j−1/2 − X(tn−1; xi+1/2, tn))/�x can be used in

Φi+1/2 = −
i∑

k= j+1

fk + αi

(
f j − ε+

j

6
(1 − αi)(1 + αi)( f j+1 − f j) − ε−

j

6
(2 + αi)(1 + αi)( f j − f j−1)

)
. (47)

If the αi are known for each cell, these formulas together with Eq. (38) provide the PFC scheme.

3.2. Numerical implementation of the two-fluid model

For the discretisation in space, we use the CWENO scheme [19], an easy to implement third order finite-volume scheme. 
The third order strong-stability-preserving Runge–Kutta scheme by Shu and Osher [20] is employed for the time integration. 
See also Hakim et al. [21] as a reference for numerical two-fluid schemes.

3.3. Maxwell solver

The electromagnetic fields live on a Yee grid [22]. They are evolved through the FDTD method presented in [23]. Since 
the speed of light exceeds all other speeds found in the plasma by far, subcycling is used in order to resolve lightwaves 
while keeping the global timestep as large as possible.

To obtain the electromagnetic fields and the sources at the correct positions, we use a linear interpolation. This results 
in a second order accurate scheme which is consistent with the Vlasov code.

4. Coupling

The three separate codes, the Vlasov code, the multifluid code, and the Maxwell code have to be coupled in order 
to complete our multiphysics approach to plasma simulations. The Maxwell solver is mostly independent of the other 
two schemes and can be solved globally in the complete domain. As a source term, it requires only the local current 
density, which can easily be calculated from the phase space distribution functions or its first moments. Similarly, the 
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electromagnetic fields appear as (space and time dependent) source terms in the fluid and Vlasov equation and are directly 
provided by the Maxwell solver. Thus, no restrictions with respect to the domain or the other two schemes are implied by 
the way in which Maxwell’s equations are solved. There is a further advantage to this approach: Because of the far-reaching 
separation between the Maxwell solver and the other schemes, the global timestep is not limited by the speed of light. 
During each step of the fluid solvers, several subcycling steps of the Maxwell scheme can be carried out in order to resolve 
light waves. If the interplay is organised correctly, the resulting overall error is still of second order in the global time step. 
As each step of the Vlasov scheme is very expensive, this separation of time scales is quite desirable and efficient.

The numerical fluid and Vlasov solvers presented above do not require any non-local operations in physical space. This 
makes it possible to subdivide the physical domain into arbitrary pieces or blocks, in which the equations can be solved 
independently. Over one time step, each block has to only provide the boundary conditions for its neighbouring blocks. 
In principle, this makes it possible to mix fluid and kinetic blocks in an arbitrary way as long as meaningful boundary 
conditions can be provided. Providing boundary data for the fluid solver from kinetic data is simple and can be achieved 
by calculating the necessary moments via integration of the phase space density. The difficulty comes in provisioning the 
boundary conditions for the Vlasov solver at the boundary to the fluid region. Even if an arbitrarily high (yet finite) number 
of moments is known, there is no unique way of deriving a correct phase space density. The necessary information is 
simply missing and can only be guessed on the basis of further assumptions. Our approach here is to extrapolate the shape 
of the distribution function at the border of the kinetic region into the cells, where the new distribution is needed. This 
extrapolated phase space density is then slightly altered such that it has the correct lowest moments, which are known 
from the fluid region. Thus, the only assumption we enforce is that the shape of the distribution function does not change 
too rapidly near the coupling border. There are neither any assumptions with respect to any specific form of the distribution 
function, nor is there any need for an extensive transition region. In addition, this coupling method is not limited to the 
simple fluid model shown above and a huge class of fluid models may be used in this spirit.

In addition, because electrons and ions are treated separately and are only coupled via the currents and electromagnetic 
fields, no quasi-neutrality is required in the overall scheme.

4.1. Boundary data for the two-fluid regions

In the Vlasov regions, the full phase-space densities f s are known and the boundary data needed by the two-fluid code 
can be calculated by means of the moment equations (2)–(4). The Runge–Kutta scheme that is used for updating the fluid 
data from time t to time t + �t needs boundary conditions at times t , t + �t/2 and t + �t . Thus the Vlasov data has 
to be advanced before the fluid data. Then, by linear interpolation in time, the intermediate boundary conditions can be 
calculated and the fluid simulation can be advanced.

4.2. Boundary data for the Vlasov regions

To update the Vlasov data from t to t + �t , boundary conditions are required only at the initial time t . The full phase-
space density is required though and the moments provided by the fluid code are in general not sufficient to determine f s . 
If, however, the coupling boundary is placed in a region that changes slowly with respect to typical phenomena of the 
plasma, then it is appropriate to assume that the shape of f s will not change significantly over the distance of a few grid 
cells—otherwise the simulation would be underresolved. We may then construct the phase-space density in the boundary 
cells by first extrapolating f s from the Vlasov data and then modifying its shape such that it matches the moments given 
by the fluid data. As the extrapolation of the distribution function to the boundary cells is straightforward, we now focus 
on a detailed description of the procedure to adjust the moments of the distribution function.

To simplify notation, we will drop the subscript s for the particle species in this section and denote the extrapolated 
distribution functions by f E and the modified functions—the ones that will be used as boundary conditions—by f M . The 
modification of the zeroth moment can be performed by a simple multiplication. The first moment can be changed by shifting
the distribution function in velocity space. Finally, the second moment is altered by squeezing or stretching of the function. 
This fitting can be done in various ways. However, here we use the same semi-Lagrangian method as in the Vlasov solver 
itself with an appropriately chosen advecting “velocity” field for changing the distribution function. Note that the method is 
not limited to a special choice of a semi-Lagrangian scheme for solving the advection problem. An exaggerated example is 
depicted in Fig. 1. This procedure will now be explained in more detail. For simplicity, only the one-dimensional case will 
be discussed here. The extension to three dimensions can be obtained by successive application of the algorithm along each 
direction. It is convenient to use slightly different moments than the ones defined in (2)–(4). Writing

n :=
∫

f (v)dv, V := 1

n

∫
v f (v)dv, and T := 1

n

∫
v2 f (v)dv − V 2, (48)

no generality is lost and both sets of moments can be converted into one another:

ρ(n, V , T ) = mn, u(n, V , T ) = mnV , E(n, V , T ) = m

2
n
(
T + V 2), (49)

n(ρ, u,E) = ρ
, V (ρ, u,E) = u

, T (ρ, u,E) = 2E − u2

2
. (50)
m ρ ρ ρ



444 M. Rieke et al. / Journal of Computational Physics 283 (2015) 436–452
Fig. 1. Example of the modification of a distribution function. The solid line represents the original distribution function obtained by extrapolation. After 
multiplication with an appropriate factor and advection by a “velocity field” av + b, the area under the curve, the expectation value and the variance have 
changed, but the overall shape of the distribution function is preserved. Note that this plot is exaggerated for clarity.

Now, the idea is to let the distribution function be advected by a divergent velocity field av +b, i.e. to solve the initial value 
problem

∂τ f (v, τ ) + ∂v
(
(av + b) f (v, τ )

) = 0, f (τ = 0) = f E , (51)

where τ is just a dummy time variable independent of the actual time of the simulation t . Note that a rescaling of τ can be 
compensated by a rescaling of a and b. Since this equation has the form of a conservation law, the zeroth moment n of f
will not be changed. Furthermore it will preserve the main features of f , like the number of maxima etc. To solve Eq. (51)
using a semi-Lagrangian scheme, we need to find the source points of the characteristics.

First we investigate the effects of this advection on the first moment:

∂τ
1

n

∫
v f dv + 1

n

∫
v∂v

(
(av + b) f

)
dv (52)

= ∂τ V − b − aV = 0 (53)

Here, partial integration and the vanishing of f at infinity is used. The resulting differential equation can be solved by 
variation of constants to yield

V (τ ) =
{(

V (0) + b
a

)
exp(aτ ) − b

a for a ∈R \ {0}
V (0) + bτ for a = 0.

(54)

Solving for b yields

b =
{

a(V (τ )−V (0) exp(aτ ))
exp(aτ )−1 for a ∈R \ {0}

V (τ ) − V (0) for a = 0.
(55)

Next, we examine the evolution of the second moment T :

∂τ
1

n

∫
v2 f dv + 1

n

∫
v2∂v

(
(av + b) f

)
dv (56)

= ∂τ T + ∂τ V 2 − 2bV − 2aT − 2aV 2 (57)

= ∂τ T − 2aT = 0. (58)

The solution of the resulting differential equation is

T (τ ) = T (0)exp(2aτ ), (59)

which can be solved for a, giving

a = 1

2
ln

(
T (τ )

T (0)

)
. (60)

We now want to find the characteristics C of Eq. (51), which can be calculated from

d

dτ
C(τ ) = aC(τ ) + b, (61)

with the initial condition C(τ = 0) = C(0). The solution is

C(τ ) =
{(

C(0) + b
a

)
exp(a(τ − 1)) − b

a for a ∈R \ {0} (62)

b(τ − 1) + C(0) for a = 0.
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Fig. 2. This is the order, in which the fields are updated in each step. Each arrow represents a substep of the respective scheme. The first line (two-fluid) 
represents the stepping of the fluid quantities. The update of the phase space density in physical (Vlasov X) and velocity space (Vlasov V) is separated by 
means of Strang splitting. The electric (E) and magnetic (B) field are updated separately.

Inserting a (60) and b (55) yields:

C(τ ) = V (τ ) +
√

T (τ )

T (0)

(
C(0) − V (0)

)
. (63)

As expected, all explicit dependence on τ has disappeared.
Finally, a summary of the algorithm for changing f E with moments ρ E , uE , and E E to f M with the prescribed moments 

ρM , uM , and EM :

1. Calculate f̃ = f EρM/ρ E to change the zeroth moment.
Now f̃ has moments ρ̃ = ρM , ̃u = uEρM/ρ E , and Ẽ = E EρM/ρ E .

2. Use the formulas (50) to obtain Ṽ , T̃ , V M , and T M .
3. Set V (0) = Ṽ , T (0) = T̃ , V (τ ) = V M , and T (τ ) = T M . Use a conservative semi-Lagrangian scheme with the source 

points of the characteristics given by Eq. (63) to obtain f M .

4.3. Time stepping

As multistage and splitting methods are employed, care must be taken with respect to the points in time at which the 
fields and the fluxes at the cell faces live. Fig. 2 reveals the structure of time stepping for the electric E and magnetic 
B fields, the fluid quantities and the distribution functions. The timestep for the Maxwell solver is chosen to be smaller 
than the global timestep in order to resolve light waves which are much faster than all other speeds in the plasma. We 
choose the ratio between the smaller timestep of the Maxwell solver and the global timestep as a power of two, so the 
electromagnetic fields are known at all relevant times and the two different discrete times stay aligned throughout the 
simulation.

Initially, all the fields exist at the same point in time. Based on the currents calculated at that time, half a substep of 
the magnetic field is done in order to start the scheme. Afterwards, the following steps are repeated in a cyclic way:

1. Calculate currents from moments and phase space density of the different species and pass them to the Maxwell solver.
2. With these currents as source terms, advance the electromagnetic fields by half a global timestep. The magnetic field 

is shifted by half a time step, so linear interpolation is used for obtaining the magnetic field at the times at which the 
electric fields live.

3. Do a complete step of the Vlasov solver, which translates into half a step in velocity space, a full step in physical space 
and half a step in velocity space again. Herein, the new electromagnetic fields are used as source terms. The boundary 
conditions for the kinetic region are known from the last step.

4. Do a full step of the multi-fluid scheme. Once again, the newly obtained electromagnetic fields are used as source terms. 
The Runge–Kutta method requires boundary conditions at intermediate times, which must be obtained by temporal 
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interpolation of the values provided by the Vlasov solver. Because of this, it is necessary to advance the plasma in the 
kinetic region first.

5. Now the currents can be calculated again.
6. With these, the electromagnetic field is advanced by another half step.

A test of the order of accuracy of this rather involved time stepping scheme is given below in Section 6.2.

5. Implementation on a cluster of graphics cards

In this section, we will outline the principal strategy, how this code is implemented on a cluster of graphics cards. 
We briefly discuss memory layout, program flow, parallelisation issues and performance results. Specific details will be 
presented elsewhere.

5.1. CUDA implementation of the Vlasov solver

The graphics cards were programmed using the CUDA programming environment [24]. For storing the distribution func-
tion f in two spatial and three velocity dimensions, the following memory structure was chosen. The spatial domain is 
represented by an array of pointers. Each of these pointers contains the memory address of an array that stores the three-
dimensional velocity distribution function at the respective coordinate. Since multiple CUDA cards are used, the spatial 
domain is divided into patches. Each card solves the Vlasov equation in its patch. The Vlasov solver then needs efficient 
implementations for the following tasks:

1. Operating along spatial directions.
2. Operating along velocity directions.
3. Calculating moments of the distribution function.

The problem with operating along spatial directions is that the equations for updating the value of f in a cell need the 
values of f in adjacent cells, but these values do not reside at adjacent places in memory. To solve this, the blocks are 
chosen to be two-dimensional with n threads in the first direction and Nx threads in the second direction. Here, Nx is the 
spatial resolution of the patch in the x direction and n is the CUDA warp size. The grid is two-dimensional and contains 
Ñ y blocks along the first direction and Nv/n blocks along the second direction. Ñ y is the resolution of the patch in the 
y direction including ghost cells. Nv is the total number of cells in velocity space, i.e. Nv = Nvx · Nv y · Nvz . Then, each 
CUDA warp in a block reads consecutively from the GPU global memory and stores its data into an array in GPU shared 
memory. When the data is written, the access pattern is chosen so that the data in the shared memory is transposed, 
i.e. values corresponding to different x coordinates are adjacent in shared memory. Now the semi-Lagrangian scheme can 
be used to update the distribution function and the data can be written back into global memory. Fig. 3 shows a graphical 
representation of this access pattern. The update along the y direction uses a similar access pattern.

For the update along the vx direction, the memory is already aligned correctly. To perform the updates for v y and vz , 
the velocity distribution function is transposed in global memory, so that the appropriate data is adjacent in memory. The 
transposition algorithm that was used is an extension of the algorithm by Ruetsch and Micikevicius [25].

Calculating the moments of the velocity distribution function is trivial on CPUs, but can be a difficult task on massively 
parallel architectures like GPUs. An optimised algorithm for calculating large sums on CUDA was developed by Harris [26], 
who used a binary tree that is recursively reduced until the total sum is obtained. The first step of this algorithm was 
modified to calculate the moments of f instead of its sum.

5.2. Parallelisation via the message passing interface (MPI)

In total, 64 CUDA cards were used for the solution of the Vlasov equation. Maxwell’s equations and the two-fluid equa-
tions are computationally much less demanding and were solved on CPUs. To allow the exchange of information between 
the different solvers, the message passing interface (MPI) was used. This is a protocol that allows software to send packets of 
data over a network. There are two situations where MPI messages occur in the code:

1. Exchange of boundary conditions between different patches. These can either be boundary conditions between Vlasov 
patches, in which case the full distribution function is sent, or boundary conditions where at least one of the adjacent 
patches is a two-fluid patch. In this case, only the moments of the distribution function are exchanged.

2. Exchange of electromagnetic fields and current densities between the Maxwell solver and the Vlasov/two-fluid solvers. 
Since the Maxwell equations are solved over the whole domain, each patch needs to calculate its local current density 
and send the result to the Maxwell solver. The individual current density patches are then put together to form the 
global current density. Maxwell’s equations are solved, the resulting electromagnetic fields are divided into patches and 
are sent back to their respective sources.
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Fig. 3. Access pattern for access along the x direction. The top rectangle is an array of pointers, representing a patch of the two-dimensional spatial domain. 
Each cell points to an array in global memory that contains the local velocity distribution function. The resolution in this example is Nx = 8, N y = 2, 
n = Nvx = Nv y = Nvz = 4. For simplicity, only the first two elements in the x direction are shown. The block with coordinates (1, 1) copies the coloured 
cells into its shared memory. Now, the data points needed for the step in the x direction are adjacent in memory and can be accessed efficiently by the 
threads.

Table 1
Comparison of the computational time required for solving the GEM reconnection challenge problem (cf. Section 6.3).

Code System Resolution Time

Multifluid 32 CPUs 256 × 128 0.3 h
Vlasov (cf. [27]) 64 CPUs 256 × 128 × 30 × 30 × 30 150 h
Vlasov (this work) 64 CPUs / 64 GPUs 256 × 128 × 32 × 32 × 32 16 h
Vlasov/multifluid 64 CPUs / 64 GPUs 256 × 128 (×32 × 32 × 32) 8 h

For the sake of an easy coupling in different situations, the two-fluid solver and the Vlasov solver are implemented as 
two separate programmes. Each of these programmes can run on its own and thus treat the whole domain by either the 
two-fluid equations or the Vlasov equation. If both programs are run simultaneously using MPI, they will split the domain 
into a two-fluid and a Vlasov part and automatically use the coupling routine from Section 4.

5.3. Performance results

The simulations were done on the DaVinci cluster in Bochum. On this cluster, there is a total of 17 nodes. Each node is 
equipped with two CPUs (Xeon E5530 Quad Core, 2.4 GHz) and four GPUs (Tesla S1070). For the CPUs, there are 24 GB of 
RAM per node, whereas there are 16 GB RAM per node available for the GPUs. So, all in all, there are 272 CPU cores with 
408 GB RAM and 16 320 GPU cores with a total of 272 GB RAM on the cluster.

Data with respect to the performance of our code on this cluster can be found in Table 1.
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6. First results of the multiphysics approach

6.1. Whistler wave

In order to make it possible to compare the scheme to other recently proposed methods, a simulation of a whistler wave, 
similar to the one in Daldorff et al. [10] was carried out.

The whistler wave is an incompressible cold plasma wave whose wave speed cW = ω
k depends on the wave number k. 

Herein, ω is the angular frequency. The dispersion relation and the ratio of amplitudes for the different fields can be gained 
by linearising the two-fluid/Maxwell system above in the usual way. Under the assumptions cW 	 c and ω 	 Ωe , we obtain 
the four solutions

cW = ± W

2
±

√
W 2

4
+ c2

A, W = c2
Ak

Ωi
(64)

Herein, cA is the Alfven velocity. We choose the branch described by the largest cW. The wave is circularly polarised. Before 
describing the actual initial conditions, we discuss a whistler wave that propagates along the x-axis. Density and pressure 
are constant. We can set

Bx = B0

B y = −δB cos(kx − ωt)

Bz = δB sin(kx − ωt)

The velocities of ions and electrons have a phase shift of π relative to the magnetic fields and the amplitudes are δui =
δB
B0

(cW −W ) respectively δue = δB
B0

cW. The electric field is shifted by π
2 and has the amplitude δE = δBcW. If the assumptions 

above are fulfilled, this wave is a reasonable solution for the linear Vlasov regime as well (cf. [10]).
We choose the initial conditions in a way, that the wave propagates at an angle tan−1(2) through the double periodic 

domain which has an aspect ratio of 1
2 . This is achieved by a simple rotation of the fields given above. The wavelength of 

the whistler wave is set to λ = 10δi (ion inertial lengths) and accordingly we have a dimensionality of 
√

5λ ×
√

5
2 λ for the 

overall domain. At a spatial resolution of 64 × 32 this results in �x = �y ≈ 0.35δi . The kinetic region comprises one quarter 
of the domain and has a corresponding aspect ratio. Due to periodicity the actual position of the kinetic part is of minor 
importance. It can be seen in the figure. The resolution of the velocity space is 323. All the amplitudes are chosen in a way 
that the ratio of the perturbed to the background magnetic field is 5

100 . We set B0 = 1, ns = 1 and ps = 5.12 · 10−4. This 
way the requirements for the plasma regime that were used in the derivation are satisfied to a good degree.

An excerpt of the result can be seen in Fig. 4. The state after the propagation of one wavelength, which can be compared 
to the initial conditions, is shown. The wave passed through the kinetic region mostly correctly. Nevertheless, some small 
yet noticeable disturbances of up to about 5% of the wave amplitude have occurred, especially in the velocity field. This is 
mostly due to numerical heating in the kinetic region. Over the course of the simulation, the temperature in the kinetic 
region rises slowly and the resulting gradient induces some nonphysical flow out of this region. This can be tolerated if the 
resulting disturbance is negligible on the time scale of the simulation, as it can be said here, but it has to be addressed in 
the future.

6.2. Convergence test of time stepping

In order to check, whether the rather involved time stepping scheme shown above actually leads to second order accu-
racy in practice, a numerical test was done.

A numerical scheme is of n-th order in time, if
f�t(t0) = fexact(t0) + C(�t)n (65)

holds where f�t(t0) is the numerical solution with step-width �t at time t0, fexact(t0) is the exact solution at the respective 
time and C is some constant in time which might nevertheless depend on the spatial discretisation. Both this constant and 
the exact solution are not known in general, so we have to find a way to eliminate them from the equations in order to 
find the order n of a scheme. By looking at the difference

f2�t − f�t = C
(
2n − 1

)
(�t)n (66)

we get rid of fexact. Both C and n can now easily be determined from a log–log plot of this quantity, as such a function 
appears as a straight line in such a depiction. Because we are dealing with a whole field of values rather than a single value, 
we consider a suitable norm of the pointwise differences of the fields. In particular, we take the discrete L1-norm ‖ · ‖1, 
which means

‖ f2�t − f�t‖ = 1

N

N∑
i=1

| f2�t,i − f�t,i | (67)

where N is the number of grid points and i represents the discrete cell values.
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Fig. 4. Coupled simulation of a whistler wave at t = 7.26Ω−1
i , after the propagation of about a wavelength. For initial conditions and parameters, see text. 

The kinetic region in the middle of the domain is marked with a dashed rectangle.

The result of such a test is shown in Fig. 5. Numerical simulations with different step widths �t of the whistler-wave 
were done for the first 0.015 ion gyroperiods, using the same setup as above. In accordance with the description above, 
pointwise differences were taken and averaged over the whole grid. Just for comparison, the line representing 1

2 (�t)2 was 
also plotted. It must not be understood as an exact fit. For this plot, the y-component of the electron velocity was chosen 
as the data source, but the other components and fields yield similar results.

We can clearly see, that the scheme is of second order in the interval of �t which is considered here. As we go further 
to the right, other orders of �t become more important or the chosen time step is simple to large, so that the scheme 
no longer converges correctly. At the left, the accuracy of floating point numbers becomes an issue. Because graphics cards 
are much slower when double precision values are handled, we stick to single precision floats, which makes it useless to 
decrease the time step further than in the plot given above.

6.3. GEM reconnection challenge

As a further test, the GEM reconnection challenge setup, set forth in [1], was used. It was simulated both with the 
multifluid and the Vlasov code alone, as well as with our multiphysics coupling method. In this test, the plasma is advected 
from the fluid region into the kinetic region.

In this test case, the vicinity of the current sheet was completely simulated by means of the Vlasov model and only 
in the outer regions the multifluid model was applied (see Fig. 6). Nevertheless, this already leads to nearly a half of the 
required computation time, as only half of the domain needs to be simulated with a kinetic code. In global simulations, like 
space weather simulations [28], typically the regions where a fluid approach is sufficient occupies a much larger fraction 
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Fig. 5. Log–log plot of the numerical error in dependence on the time step. For a detailed description, see the text.

Fig. 6. Partition of the domain of the GEM problem. The inner region (hatched), i.e. the vicinity of the current layer, is simulated by means of the kinetic 
model, whereas the multifluid code is employed in the outer regions.

Fig. 7. Comparison of reconnected flux vs. time for full kinetic (solid, taken from [27]), coupled (dashed), and pure multifluid (dotted) simulations.

of the simulation domain than the regions where a kinetic treatment is necessary. Thus the aforementioned factor 2 is 
underestimating the potential of the coupling strategy. In this case here the time needed for the multifluid code is negligible 
compared to that for the Vlasov code.

A comparison of the time needed for the respective simulations can be found in Table 1.
The results of the coupled simulation look both quantitatively and qualitatively the same as for the pure Vlasov simu-

lation, which means that the region in which the determining physical processes occur is indeed the current layer and the 
multifluid model is sufficient for the outer region that was chosen (see Fig. 7 and Fig. 8). Note, that the plots are chosen at 
slightly different times in accordance with Fig. 7 such that the reconnected flux is equal in both simulations.

As can be expected, a coupling inside the current sheet does not yield satisfactory results, because the simple 5-moment 
model leads to a different behaviour than the kinetic model. Thus, in future developments, new strategies will have to be 
developed in order to identify the regions which have to be treated by the kinetic or fluid description, respectively. This 
would result in an adaptive multiphysics approach to collisionless plasmas.
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Fig. 8. Comparison of jz and magnetic fieldlines between pure Vlasov and coupled simulation.

One problem, that is observed in general is the heating in the Vlasov region, due to numerical diffusivity in the velocity 
space, which can hardly be avoided. Especially the fast-gyrating electrons tend to be heated noticeably. This effect does 
not take place when the energy conservative multifluid code is used. This gives rise to a small yet observable temperature 
gradient at the coupling border and corresponding changes in other fields affected by it. As a quick fix, the numerical 
diffusivity can be lowered by a higher resolution in v-space. In the long run a more robust solution for this problem needs 
to be found.

7. Summary and outlook

A Vlasov code on GPUs and a conventional multifluid code were presented that can be run both on their own as well as 
coupled to each other during runtime. Coupling of both codes was achieved by a combination of extrapolating and adjusting 
the distribution function according to the moments of the fluid description. Specific results on the propagation of whistler 
waves and on the GEM reconnection setup were extremely encouraging and a remarkable speed-up was observed. However, 
we should note that this is only a first step in the treatment of multiphysics descriptions of collisionless plasmas. Further 
steps needed to achieve this goal should include

i) appropriate closure relations (adiabatic, Chew–Goldberger–Low, isotropic, polytropic, Landau–fluid) depending on the 
physical situation;

ii) an identification of regions which have to be treated by a kinetic or fluid description, respectively;
iii) allowing the kinetic regions to change and move in an adaptive way in order to get the most efficient description of 

the underlying problem (analogous to our adaptive mesh framework racoon [29]).

These topics are currently under development in our group.
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