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a b s t r a c t

Microbeam radiation therapy (MRT), a novel form of spatially fractionated radiotherapy (RT), uses arrays
of synchrotron-generated X-ray microbeams (MB). MRT has been identified as a promising treatment
concept that might be applied to patients with malignant central nervous system (CNS) tumours for
whom, at the current stage of development, no satisfactory therapy is available yet. Preclinical experi-
mental studies have shown that the CNS of healthy rodents and piglets can tolerate much higher radi-
ation doses delivered by spatially separated MBs than those delivered by a single, uninterrupted,
macroscopically wide beam. High-dose, high-precision radiotherapies such as MRT with reduced
probabilities of normal tissue complications offer prospects of improved therapeutic ratios, as exten-
sively demonstrated by results of experiments published by many international groups in the last two
decades. The significance of developing MRT as a new RT approach cannot be understated. Up to 50% of
cancer patients receive conventional RT, and any new treatment that provides better tumour control
whilst preserving healthy tissue is likely to significantly improve patient outcomes.

© 2015 Published by Elsevier Ltd on behalf of Associazione Italiana di Fisica Medica. This is an open
access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Despite the technical and scientific advances of radiotherapy
(RT) over the past decades, only palliative therapy is available for
children and adults with a number of high-grade tumours. This
often only extends the survival of individual patients by a few
months. As an example, diffuse intrinsic pontine gliomas, which
constitute 15% of all childhood brain tumours (600 new cases/year
in Europe), are inoperable. Their response to radiation and
chemotherapy is only transient, with patients having a median
overall survival of 10 months [1,2].

Microbeam radiation therapy (MRT), a novel radiotherapy
method invented by Slatkin and coworkers in 1992 [3], is based on
a spatial fractionation of synchrotron-generated X-ray beams.
Spatial fractionation and the underlying laws of radiation physics
were discovered by Alban Koehler at the beginning of the 20th
century. It was used to reduce the extent of skin damage, a
frequently occurring adverse effect of early radiotherapy. MRT was
developed in a preclinical environment as a collaborative project
involving physicists, engineers, biomedical scientists, and
. Grotzer).
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physicians, initially at the National Synchrotron Light Source at
Brookhaven National Laboratory, Upton (USA), and later at the
European Synchrotron Radiation Facility (ESRF), Grenoble (France).

MRT, based on the spatial fractionation of kilovoltage-energy X-
ray beams, uses arrays of SRgenerated, collimated, planar, quasi-
parallel microbeams (MBs; size, approximately 25e50 mm, spaced
at 200e400 mm on centre). The synchrotron X-ray beam is
segmented into a lattice of narrow, quasi-parallel, microplanar
beams, typically 25- to 50-mm wide, separated by centre-to-centre
distances (c-t-c) of 200e400 mmand delivered in a single treatment
session, in a scanning mode. The very high in-beam MB ‘peak’ dose
zones, in excess of 100 Gy, are separated by very low-dose ‘valley’
regions. These in-beam doses are orders of magnitude greater than
those normally delivered in conventional RT. At a critical collimated
beam width and separation in the order of tens and hundreds of
microns, respectively, normal tissue can recover from hectogray
exposure levels, which were previously considered to be lethal,
whilst cancerous cells within the tumour are destroyed. Extremely
high X-ray doses must be delivered at very high dose rates, within a
very narrow timewindow, to prevent blurring of the MB tracks due
to organ motion, so that the irradiation of an entire organ can be
performed in a fraction of a second. The 6-GeV synchrotron ring at
the ESRF is currently the only source of synchrotron radiation in
Europe that is capable of generating intense X-ray microbeams,
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having a broad photon energy spectrum and fluence rates (i.e. X-ray
beam intensities) high enough to deliver high absorbed physical
radiation doses to deep targets in a scanning mode where a dedi-
cated biomedical facility is available. Together with the adequate
energy spectrum, the very low divergence of such X-ray beams is
also conditional for preservation of the plane parallel beams and a
sharp penumbra throughout the target, which is currently only
feasible at such high energy synchrotron wiggler sources.

A Swiss-based research group for MRT has been intimately
associated with the inventors of MRT for its development and
validation over 20 years. The extensively equipped biomedical fa-
cility (ID17) at the ESRF, which is financed by 20 countries, acts as a
central synchrotron RT research facility that plays a leading role in
Europe and worldwide.

MRT in small animals

Preclinical long-term experiments that involved different spe-
cies such as insects [4], birds [5], rodents [6e12], and pigs [13] have
revealed an extraordinary tolerance of normal organs and blood
vessels exposed to fractionated radiation doses in excess of 100 Gy
delivered by arrays of MB. This tolerance was particularly evident in
suckling rats and weaning piglets, whose irradiated brains are still
developing [13e16].

MRT in small animal models has achieved therapeutic ratios
that clearly exceed those obtained by conventional radiography
with a homogeneous dose distribution, in a range of malignancies,
including gliomas, gliosarcomas, human squamous cell carcinomas,
and glioblastomas. These characteristics of MRT have been exten-
sively demonstrated by results of preclinical experiments [12,17].
Furthermore, MRT-associated bystander effects have been identi-
fied [18e21]. The tumour control of MRT has been improved by
combining MRT with various compounds [22e24], radiation-
enhancing substances [25], gene-mediated immunoprophylaxis
[26], and other adjuvant techniques. It can clearly be concluded that
high-dose, high-precision radiotherapies with reduced probabili-
ties of normal tissue complications offer prospects of improved
survival outcome probability and decreased risk of therapy-related
toxicity.

Several probable reasons why MRT provides a higher thera-
peutic index for tumours than broad beam irradiation have been
elucidated, such as the following: (1) MBs produce steep dose
gradients between tissue slices receiving the peak and valley doses;
they have a 90%e10% dose fall-off, about 200 times steeper than
that of a Gamma Knife [27]. The radiotoxic dose is therefore
confined to a very narrow zone while the integrity and function-
ality of the adjacent normal tissue in the valleys between the peaks
can be preserved. (2) Spatial fractionation results in a very large
specific contact surface between peak and valley zones. This
extended contact surface is instrumental for the repair of heavily
irradiated tissues in peak regions. (3) In contrast to the high
tolerance of the normal microvasculature [9] and arteries [7] to
irradiation byMB, the tumour vasculature of 9L gliosarcomas in rats
is selectively damaged by MRT [28] with ensuing tumour hypoxia
and shrinkage. Conversely, normal brain tissues exposed to MB
during MRT remain sufficiently perfused to maintain normoxia
[17]. (5) MB irradiation of normal rat brains provokes proteomic
responses that are indicative of oncogenesis and proteomic changes
associated with bystander effects, indicative of apoptosis mediated
by reactive oxygen species. Furthermore, potentially anti-
oncogenic apoptotic proteomic changes indicate that the collec-
tive interaction of such MB irradiation-induced bystander effect
proteins might confer a protective effect on normal tissues [20]. (6)
Transcriptional gene expression analysis of intracerebral glio-
sarcomas in rats [12,29] and EM6.5 breast tumours in mice [30]
have identified MRT induced immunity-related modulations,
clearly different from transcriptional changes induced by unseg-
mented broad beams.

MRT for large animals

Although encouraging, previous preclinical results in small an-
imals are not sufficient to justify MRT studies to advance directly to
phase I human clinical trials. Before moving to human applications,
MRT must be applied in therapeutic veterinary trials of larger an-
imals such as pigs bearing intracerebral glial tumours [31], as well
as companion dog and cat patients bearing spontaneous tumours.
The use of larger animals in MRT studies is supported by the
dimensional and physiological similarities of spontaneous tumours
in dogs and cats compared to those in human malignancies, in
contrast to implanted tumours of mice and rats [32e35]. The
physical disadvantage of using rather low-energy photons to treat
larger, deep-seated targets can be overcome by the use of
conformal image-guided MRT that uses several ports.

These studies will further augment our understanding of how
deeper-seated and larger tumour tissues respond to MRT and serve
as an early warning system for unexpected late adverse effects.
Considering that the time course of biological events is compressed
in domestic and companion animals compared to humans and that
the large animal phase I/II trial precedes human clinical trials by
several years, one can re-assess and, if necessary, refine the treat-
ment plan for human patients based on the results obtained in
these larger animal studies.

MRT for human patients

MRT for human patients requires a careful, multi-disciplinary
evaluation of epidemiological, medical, logistical, and ethical con-
siderations, including quality of life in comparison to life span, and
endpoint definitions. Candidate populations could be adult patients
with glioblastoma multiforme (approximately 20,000 new cases/
year in Europe). Current standard treatment consists of surgery
followed by chemoradiation and adjuvant temozolomide [36], but
no standard of care exists for patients with recurrent tumours.

Paediatric patients with diffuse intrinsic pontine glioma (DIPG;
approximately 600 new cases/year in Europe) would be an excel-
lent candidate population. DIPG remains a most frustrating tumour
in paediatric oncology. Because of the location of tumours and the
difficulty in distinguishing tumour tissue from normal structures,
surgical debulking is restricted by the substantial risk of morbidity
and mortality. The mainstay of therapy for intrinsic pontine glioma
has been RT. While there is evidence that conventional RT provides
short-term benefits (i.e. a temporary improvement in neurological
function and thus an increase in the quality of life), long-term re-
sults have been dismal and the overall survival time has not
changed [1,2].

To safely conduct human clinical trials with MRT, new hardware
and software need to be developed and tested. A patient-
positioning system for MRT is currently available for small ani-
mals and larger animals such as pigs, dogs, and cats, up to a weight
of 40 kg. Designing and building a patient-positioning system that
will move a heavier human patient with the required exactness/
spatial precision are therefore necessary. The therapy accuracy
system used in the large animal trials was based on computed
tomographic images. For clinical trials in humans, therapy planning
which incorporates magnetic resonance imaging findings is desir-
able, as it provides higher spatial resolution [37]. A marker system
for reliable repositioning between image acquisitions and posi-
tioning for treatment could be either of the fiducial type or ensured
by a stereotactic frame system. The preclinical veterinary trial in
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larger animals will improve understanding of the dosimetry, ther-
apy planning, and therapeutic results for larger, deep-seated,
spontaneous tumours.
Potential impact

The significance of developing MRT as a new RT approach
cannot be understated. Up to 50% of cancer patients receive con-
ventional RT. Especially for patients with highly malignant brain
tumours, however, the improvement in quality of life and survival
time with the currently available treatment schedules is unsatis-
factory; any new treatment that provides better tumour control
whilst preserving healthy tissue is likely to significantly improve
patient outcomes. MRT has been identified as a most promising
treatment concept for patients with malignant CNS tumours for
whom, at the current stage of development, no satisfactory therapy
is available yet [14].

MRT research is currently only possible at few centres in the
world, with mainly the Australian Synchrotron in Melbourne and
the ESRF in France having active programs for developing clinical
applications. The availability of world-class facilities and the asso-
ciated expertise of the investigators enable studies that have the
potential to substantially improve RT for cancer and advance our
understanding of fundamental tumour biology. ESRF is a most
adequate source when moving to human trials, as the current dose
rate assures no blurring of microbeams even within a slightly
moving target such as the human brain.

Once we have demonstrated both the technical feasibility of
using MRT in human patients and its therapeutic efficacy, results
may have a major impact on the development of MB trials by using
other available sources such as proton therapy, which could equally
benefit from the tissue-sparing effects of beam microfractionation.
The combination of MRT with drugs and/or other substances that
enhance radiation effects, at optimised and tuneable X-ray en-
ergies, as well as its combination with gene-mediated therapies
must be tested in order to establish whether these lead to
considerable improvements compared to conventional RT alone.

The development of compact X-ray sources (presently under
development in Europe by the France-based ThomX project),
throughwhichMRTmay possibly be implemented, couldmake this
promising technique available to a wider medical community.
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