
doi: 10.1016/j.procs.2015.05.367 

A Framework for Migrating Relational Datasets to NoSQL∗

Leonardo Rocha, Fernando Vale, Elder Cirilo, Dárlinton Barbosa, and Fernando
Mourão

Universidade Federal de São João del Rei, São João del Rei, Minas Gerais, Brasil
{lcrocha,fvale,darlinton,elder,fhmourao}@ufsj.edu.br

Abstract
In software development, migration from a Data Base Management System (DBMS) to another,
especially with distinct characteristics, is a challenge for programmers and database adminis-
trators. Changes in the application code in order to comply with new DBMS are usually
vast, causing migrations infeasible. In order to tackle this problem, we present NoSQLayer, a
framework capable to support conveniently migrating from relational (i.e., MySQL) to NoSQL
DBMS (i.e., MongoDB). This framework is presented in two parts: (1) migration module; and,
(2) mapping module. The first one is a set of methods enabling seamless migration between
DBMSs (i.e. MySQL to MongoDB). The latter provides a persistence layer to process database
requests, being capable to translate and execute these requests in any DBMS, returning the
data in a suitable format as well. Experiments show NoSQLayer as a handful solution suitable
to handle large volume of data (e.g., Web scale) in which traditional relational DBMS might
be inept in the duty.

Keywords: Framework, Big Data Migration, Relational, NoSQL

1 Introduction

A modern generation of software applications, designed to meet demands from small groups of
users or large organizations, has to deal with a huge growth in the volume of data to be processed
and stored. Applications related to Social Media [13] data illustrates this scenario, in which
the decentralized creation and exchange of user-generated content are fostered and leads to a
awe-inspiring worthy amount of data. For many decades, the Relational Database Management
Systems (RDBMS), based on the relational model, satisfactorily fulfilled the requirements of the
most diverse software applications. Its success is due to the offering of simplicity to developers as
well as robustness, high performance and compatibility. However, more recently, the traditional
RDBMSs have been shown not able to handle efficiently the demands of a new generation of
software applications, which are especially focused on unstructured data and massive storage.

∗This work was partially supported by CNPq, CAPES, Fapemig, and INWEB.

Procedia Computer Science

Volume 51, 2015, Pages 2593–2602

ICCS 2015 International Conference On Computational Science

Selection and peer-review under responsibility of the Scientific Programme Committee of ICCS 2015
c© The Authors. Published by Elsevier B.V.

2593

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82800571?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.05.367&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.05.367&domain=pdf


In order to meet the needs for efficient storage and accesses of large amounts of data, the
Database Management Systems ”Not only SQL”, or simply NoSQL [12], were proposed. We can
observe today that some companies have been joined to this new way of massive data comput-
ing, such as Google, Facebook, Twitter and Amazon. In most cases, they are trying to adhere
to demands for scalability, high availability and storage of huge amount of unstructured data.
The main characteristics that distinguish the NoSQL model from the traditional RDBMS one
are partitioning of data and data replication. Despite these benefits, most of existing large and
medium scale software applications are still based on RDBMS since there are many challenges
associated with the migration process. The first one is the volume of data to be migrated.
Organizations, in general, decide to migrate their database when the volume of stored data
is huge and the RDBMS are no longer able to satisfy the scalability and high availability ex-
pectations. Another challenge is related to the relational database model’s manner of avoiding
data redundancy, which is part of the NoSQL models. In this case, it is required to maintain
the new data model semantically identical to the original one. Thus, all existing relationships
have to be adequately represented without loss or distortion of data. Finally, in addition to
all data and model migration, there is a cost associated with adapting software applications to
communicate properly with the new database model.

We can find in the literature some solutions that offer an (semi-)automatic migration pro-
cess or adjustments in relational models so they become able to offer better performance and
scalability when dealing with large volume of data [15]. However, the cost of adapting the
source code of applications is usually neglected. In this paper, we present NoSQLayer, a frame-
work to perform automatically and transparently data and model migration from relational
(i.e., the MySQL) to NoSQL databases, more specifically MongoDB. The main idea behind the
NoSQLayer solution is to keep the semantics of the original database, not only in the manner
data is modeled, but also w.r.t. how programmers write the source code to query the database.
Our framework offers an abstract layer that allows software applications to access data in the
NoSQL model transparently, without the need of changing the existing queries in the applica-
tions. NoSQLayer grants this feature by performing all data migration, the entire structure of
the original database is maintained and being all data stored as a NoSQL model. Each SQL op-
eration (i.e., select, insert, update and delete) requested by the original application is captured
by our framework and converted into requests to the NoSQL database. Once the SQL operations
are performed on the NoSQL database, its result is converted to the SQL standard format and
forwarded to the application, so that any modification in the original application is need. [Some
information about the structure of the original database is maintained to assist the NoSQLayer.

We evaluate our proposal following two different perspectives: qualitative and quantitative.
The qualitative evaluation is a proof of concept, in which a typical software application based
on the relational database is implemented using NoSQLayer in order to show it working in
practice. In this case, firstly, we performed the entire migration process, moving from the
original RDBMS (MySql) to MongoDB. Later, various SQL operations were executed through
NoSQLayer over both databases (MySQL and MongoDB) showing that in 100% of the cases the
results were identical. In the quantitative evaluation, our objective was to evaluate the overhead
presumably caused by the introduction of the NoSQLayer layer. To perform this assessment,
we employed an experimental set-up with a huge volume of data. In this case, we evaluated
the response times of various operations executed over both the original RDBMS and over the
NoSQLayer layer, always varying the volume of data involved in the operation. In all scenarios
we observed that the overhead presumably caused by NoSQLayer is only significant when the
volume of data involved in the operation is small, that is, according to the growth of data
applied in each operation, the perceived overhead was neutralized by the excellent performance

A Framework for Migrating Relational Datasets to NoSQL Rocha, Vale, Barbosa, Cirilo and Mourao

2594



of the NoSQL model. Based on the observed results, we can state that our solution, in addition
to be economically viable, is also computationally efficient.

2 Grounding Research

Comparisons between relational data models and NoSQL models have already been presented in
the literature. For instance, [12] identified some distinct characteristics between these two mod-
els, such as the method of storing and retrieving information through requests. In relational data
models, tables are typically defined and stored by a rigid schema contrasting with NoSQL models
that have no pre-defined schema, making the attributes of a record are not necessarily the same.
The authors also performed a comparison between some of the major NoSQL database models,
such as: Key-value [10], used by the management systems Riak, Redis and Project Voldemort;
document oriented [8], used by the MongoDB, CouchDB and SimpleDB systems, and column
oriented [8], implemented by Google Big Table and Cassandra systems. One of the main findings
of this work is the difficulty of RDBMS to deal with databases on which the data volume is large.

Recently, we have noted works aimed at dealing with large volume of data in RDBMSs. In
[14], the authors created an abstraction layer between SQL and NoSQL databases. According
to the authors, certain data sets show better results when processed by relational databases,
and others are better running on NoSQL databases. From there, two models are used in such
a way that requests are analyzed in order to decide which model would be ideal for processing
such request. Differently, our approach keeps the structure of the original database and all data
are stored in the NoSQL database. Queries arising from applications are translated at runtime
to NoSQL, without requiring any manual work on the part of administrators or programmers.

To overcome the problems associated with the storage of unstructured data, [9] authors
presented a framework able to integrate, in the same application, data from different sources.
In this proposal, the structured data are kept in a relational database while unstructured data
are stored in several files from different formats such as CSV, XML, etc. This framework has
an intermediate module that is connected to the application and all queries requested is treated
by it. This module checks the various data sources and consolidates the result, which is for-
warded back to the application. Another concept used in this framework, which is particularly
interesting for our proposed framework, is the Interceptor/Controller/Mediator protocol. The
Interceptor performs a sidetracking in the information flow between the application and the
data source ensuring that the application is not modified when the data source changes. In
our work, we propose the complete migration of relational databases to NoSQL, maintaining
only one data source, eliminating the need to decide between a source or another. Moreover,
this strategy keeps the application unchanged and considering the data as being stored in a
relational model. In order to achieve this goal, the main challenge is to provide a complete
abstraction of the relational model for NoSQL model, since they are completely different w.r.t.
their structures, and the means to use it as an abstraction layer.

3 NoSQLayer

In this section, we present the implementation details of the NoSQLayer framework. The
framework is divided into two main modules: Data Migration Module and Data Mapping
Module. The data migration module is responsible for identifying automatically all elements
from the original database (e.g. tables, attributes, relationships, indexes, etc.), creation of
equivalent structure using NoSQL data model, and finally, completely migrate the data. The

A Framework for Migrating Relational Datasets to NoSQL Rocha, Vale, Barbosa, Cirilo and Mourao

2595



data-mapping module consists of the persistence layer, designed to be an interface between
the application and the DBMS, which monitors all SQL transactions from the application,
translates these operations and redirects to the NoSQL model created in the previous module.
Finally, the result of each operation is treated and transformed to the standard expected by
the SQL application. The following subsections describe each of these modules.

3.1 Data Migration Module

The data migration module starts with an analysis of the relational database in order to find
out which metadata is required at the conversion process. The goal is to identify all elements
belonging to the database. As mentioned in Section 1, the first release of NoSQLayer handles
relational databases implemented using MySQL DBMS. Figure 1 illustrates the operation of
this module, which we detailed as follows.

Figure 1: Data Migration Module Working Diagram

MySQL, like most DBMSs, has a data dictionary containing all the information required by
the data migration module. However, the manner each DBMS access such information varies
significantly. In order to make NoSQLayer extensible to different DBMSs, this implementation
takes advantage of the Java DatabaseMetaData API [1], which consists of several classes and
methods that facilitate the recovery of metadata. This API can be instantiated for different
DBMSs, using their respective drivers. In the MySQL case, we used the MySQL Connector [2] to
establish the connection. Table 1 lists the main API methods used for this stage of the module.

Method Description

getTables() Method that returns all tables contained in the database. This method returns a list that is then traversed in order
to obtain information about each table.

getColumns() Method that retrieves the names of all the attributes of a given table defined by the parameter, and their characteristics
(name, type, etc.). Furthermore, this method also allows the identification of the primary keys.

getIndexInfo() Method that retrieves all indexes created on the relational database.

getMetaData() Other information of the relational database are obtained by this method, such as integrity constraints and data types.

Table 1: Description of the main methods of DatabaseMetaData API
After identifying the elements of the relational database, the next step is to create a new

scheme suitable for NoSQL database. Currently, NoSQLayer supports MongoDB [5], which is
a document-oriented NoSQL DBMS. MongoDB stores data as documents, allowing the repre-
sentation of complex data structures. Furthermore, data may be distributed among different
machines, increasing the system availability and performance as a whole. The construction of
this new schema follows the mapping model presented in [6], which creates into MongoDB a
table for each one existing in the relational database. The records of each table are retrieved
and mapped as documents, where each attribute of the tables are represented by fields in these
documents. Also, the relationships existing among tables are represented by document refer-
ences, to facilitate the mapping module in transactions involving table joins. Finally, for each
identified index, a function provided by MongoDB (ensureIndex(index, unique) is used to set
the names of the indexes in the collections.

NoSQLayer also creates a specific collection in MongoDB to store all information collected
in the previous step, such as table names, names of attributes, types of attributes and integrity

A Framework for Migrating Relational Datasets to NoSQL Rocha, Vale, Barbosa, Cirilo and Mourao

2596



constraints, which is called Metadata. This Metadata collection plays an important role in our
framework, since the mapping module uses this collection to check whether the integrity con-
straints are being met, as well as the types of data used. The method of mapping operations
also uses the Metadata collection to retrieve information of the attributes involved in the SQL
operations that restore the response forwarded to the application.

Finally, the last step performs the data migration from a relational database to the NoSQL
one. This step consists of mapping the complete requests on each table of the relational database
stored in MySQL (select * from table) onto data insertions in the corresponding collections of
MongoDB NoSQL database.

3.2 Data Mapping Module

This module provides an abstraction layer (i.e., persistence layer) between the application and
the DBMS (i.e. MongoDB). The goal of this module is to allow a seamless database migration,
preventing any change in the application code before changing the data model used. Therefore,
application developers will continue creating queries in the relational model, but the data will
be fetched in a NoSQL database, benefiting from the advantages of performance and scalability
offered by this management system. Figure 2 illustrates the working operation of this module.

Figure 2: Data Mapping Module Working Diagram

The first task of this module is to intercept queries issued by the application to the DBMS,
in order to redirect them to the suitable NoSQL DBMS. In this sense, we created a sub-module
called Mediator. We built Mediator using MySQL Proxy [7], an open source tool that performs
the communication between MySQL server and client application. This proxy uses the LUA
language [11] for performing data manipulation. It also comes with predefined functionalities
in order to intercept queries, refine the results and send signals regarding queries performed
successfully or with errors. We changed the MySQL Proxy using LUA, so these operations
are properly intercepted and forwarded to a second sub-module, which is responsible for query
conversion. We implemented the communication between the Mediator and the request conver-
sion sub-module using the Using LuaSoap library [4], which uses SOAP (Simple Object Access
Protocol) protocol and XML files containing all the information related to the operations.

The conversion sub-module, called Convert, receives from Mediator all requests forwarded to
the relational database and converts them to queries supported by MongoDB. This sub-module
was developed as a WebService using Java language. It waits for new requests, which are sent by
Mediator as XML files. An example of XML files used in the request communication is presented
below. In this example, the first attribute of the xmlns represents which class of the WebService
should be used (i.e., queryInterceptor). The second attribute represents which method should
be executed (i.e., Intercepta). Furthermore, we highlight two required parameters: query and
queryType, which represent, respectively, the intercepted request and its type.

A Framework for Migrating Relational Datasets to NoSQL Rocha, Vale, Barbosa, Cirilo and Mourao

2597



<?xml version=’1.0’ encoding=’UTF-8’?>
<soap:Envelope xmlns:soap=’http://schemas.xmlsoap.org/soap/envelope/’

xmlns:ns1=’http://queryInterceptor/’>
<soap:Body>

<ns1:Intercepta>
<query>SELECT id, name FROM users

WHERE status=’A’ AND (id>10 OR name=’guest’)
</query>
<queryType>SELECT</queryType>

</ns1:Intercepta>
</soap:Body>

</soap:Envelope>

Convert evaluates the parameter queryType in order to identify what should be the next
procedure to be executed, according to the operation type (i.e. Select, Insert, Update or Delete).
For each operation, a corresponding method is responsible for performing the operation onto
the NoSQL database and returning the result of this operation. All methods perform the same
steps described below, with some peculiarities related to each transaction:

Information extraction about the query : The method evaluates the query parameter in order
to gather details about the SQL operations, such as tables, attributes, etc., in addition to the
criteria used in where clauses. We implemented this method using Java library JSQLParser [3].
What differentiates each method in this step is the information that each one exploits. For ex-
ample, while the corresponding operation to the SQL Select method needs to treat the involved
tables, the existing joins, as well as functions for sorting and grouping. In the other hand, an
insert operation must address only the attributes and tables involved in the operations.

Generation and implementation of equivalent operation in NoSQL: This step corresponds to
translate the SQL operations onto its equivalent NoSQL ones. The translation process is based
on the official MongoDB form to SQL operations mappings [6]. The collection Metadata, which
stores the relationship of the original database with its correspondence in NoSQL database, is
very important. At the end, this new operation is executed on MongoDB and the results are
processed in the next step.

Mapping return results: The results returned by MongoDB is then sent to Mediator, which
is responsible to forward the result to the application. First, the result header is built, which
contains the correct identifications of tables, attributes, and other elements related to the result.
Then, each record returned by MongoDB is mapped, following the header built. Based on this
information, an XML is built and sent by Convert to Mediator. We present below an example
of this XML.

<?xml version=’1.0’ encoding=’UTF-8’?>
<S:Envelope xmlns:S=”http://schemas.xmlsoap.org/soap/envelope/”>

<S:Body>
<ns2:interceptaResponse xmlns:ns2=”http://queryInterceptor/”>

<return>header = {’id’,’name’}</return>
<return>

result set = {{’12’, ’John’}, {’15’, ’Steve’},
{’2’,’guest’}}

</return>
</ns2:interceptaResponse>

</S:Body>
</S:Envelope>

NoSQLayer also supports SQL nested transactions, such as a Delete, in which the items to
be removed rely on a Select. Initially, NoSQLayer triggers the corresponding method related
to the most external operating. During the parser execution, as soon as the nested transaction
is identified, the corresponding method for that operation is triggered in order to completely
resolve it. Then, it returns the required information to execute the external operation. Con-
sidering again the Delete operation, the respective method to this operation, mapped by the
parser execution, identifies the Select operation and invokes the method responsible to deal with
it. The result of the Select execution is then returned to the method Delete. Each nested oper-
ation of the corresponding method is invoked. This scheme supports even the use of recursive
calls (e.g., several nested queries), in which the limitation of these calls is only subject to the
hardware resources availability.

A Framework for Migrating Relational Datasets to NoSQL Rocha, Vale, Barbosa, Cirilo and Mourao

2598



Finally, Mediator handles the XML sent by Convert. Mediator is responsible for transform-
ing the XML into the MySQL format expected by the MySQL Resource. In order to perform
this, Mediator relies on the support of MySQLProxy. The source code of NoSQLayer is available
at https://www.github.com/nosqlayer/code.

4 Evaluation

In this section, we present an assessment of NoSQLayer focusing on two types of analysis: qual-
itative and quantitative. While in the qualitative evaluation our goal is to present a proof of
concept by showing the NoSQLayer execution in practice, in the quantitative one we aim to
verify whether the use of NoSQL, with our framework, leverages the system performance.

4.1 Experimental Setup

In our analysis, we used two relational databases, as presented in Figure 3. The first one comes
from W3Schools (http://www.w3schools.com/), a well-known web developer information web-
site. Although presenting simple structure, this database may capture characteristics quite
different from those typically used in most of the applications, such as integrity constraints,
relationships or various types of data. The second database has a simple database model regard-
ing an application that collects and stores user posts from Twitter. This database has a high
volume of stored data that may help us, mainly, in the quantitative assessment of NoSQLayer.

(a) W3schools

(b) Twitter

Figure 3: Database models used in the evaluation.

Both databases were implemented using MySQL. For each database, an application, written
in Java, was created with the purpose of executing several SQL operations. We call this con-
figuration MySQL Scenario. For each arrangement application/database, we created another

A Framework for Migrating Relational Datasets to NoSQL Rocha, Vale, Barbosa, Cirilo and Mourao

2599



version that used NoSQLayer to perform the entire migration of the MySQL database to Mon-
goDB, including the structure and the data themselves. For this latter configuration, which
we call NoSQLayer Scenario, the NoSQLayer was also used to capture and map the operations
requested by the applications and MongoDB. Thus, we performed quantitative and qualitative
comparisons of the results achieved by each scenario. Although several SQL operations were
tested during the development process, due the lack of space, in this paper we focus only on the
operations presented in Table 2. These operations used various operators such as set operators,
MAX functions, ORDER BY, different Joins, among others.

Table 2: Operations performed in the evaluations.
Identifier Dataset Operation

Select1 Twitter App. SELECT created at,user id FROM collections WHERE user id IN (831178813,14152035,341925705)

Select2 Twitter App. SELECT MAX(user id) AS HighestID, MIN(user id) AS SmallestUserID FROM collections

Select3 Twitter App. SELECT COUNT(*) AS NumberOfTweets FROM collections

Select4 W3Schools App. SELECT Customers.CustomerName, Orders.OrderID FROM Customers LEFT JOIN Orders ON Cus-
tomers.CustomerID=Orders.CustomerID

Select5 W3Schools App. SELECT * FROM Customers WHERE Country=’Germany’ AND (City=’Berlin’ OR City=’München’)

Select6 W3Schools App. SELECT * FROM Customers ORDER BY Country DESC

Select7 W3Schools App. SELECT * FROM Employees WHERE FirstName LIKE ’%a’

Select8 W3Schools App. SELECT Orders.OrderID, Employees.FirstName FROM Orders RIGHT JOIN Employees ON Or-
ders.EmployeeID=Employees.EmployeeID

Delete1 W3Schools App. DELETE FROM Categories WHERE CategoryID >= 1 AND CategoryID <= end value

Delete2 W3Schools App. DELETE FROM Customers WHERE CustomerID >=1 AND CustomerID <=end value

Insert1 W3Schools App. INSERT INTO OrderDetails

Insert2 W3Schools App. INSERT INTO Customers

Update1 W3Schools App. UPDATE Categories SET CategoryName=’NewName’, Description=’NewDescrip’ WHERE CategoryID >= 1 AND
CategoryID <= end value

Update2 W3Schools App. UPDATE Customers SET CustomerName=’NewName’, ContactName=’NewContact’, Address=’NewAdd.’,
City=’NewCity’, PostalCode=’NewPostal’, Country=’NewCountry’ WHERE CustomerID >=1 AND CustomerID
<= end value

4.2 Qualitative Evaluation

The purpose of this analysis is to assess whether the use of NoSQLayer affect the functionality
of the applications w.r.t. performing various SQL operations. In our experiments, we consider
two scenarios, which are listed below. In order to accomplish a complete assessment, we vary
the amount of records that were selected or affected by the operations.

Scenario 1: Query operations : For every operation performed, the results were stored in
plain text files. Then, an application that identifies differences between files was executed and
the result was stored in another file. For all queries shown in Table 2, the resulting files with the
differences were empty, meaning that no anomaly had occurred and, consequently, NoSQLayer
had worked properly.

Scenario 2: Operations that change the database state: For each execution of an operation
that changes the database state, we conducted a dump of the tables (or collections in the case
of MongoDB) and stored the results in text files, named according to the operation performed.
We also evaluated differences in this result files, and again, no difference was found, thereby
demonstrating the proper functioning of NoSQLayer.

4.3 Quantitative Evaluation

In this evaluation, we checked the efficiency of the proposal. The focus is to assess whether,
despite the overhead of defining a layer between the application and NoSQL database, the use of
NoSQLayer is still an advantageous option in terms of performance compared to the RDBMS.
We conducted a set of experiments to measure the runtime of several SQL transactions, con-
sidering each of the aforementioned scenarios.

The SQL operations considered were those presented in Table 2. We vary the amount of data
processed by each operation. For query operations, before each query, we changed the total of
records in the database that should be returned. In order to enable this setup, before each query

A Framework for Migrating Relational Datasets to NoSQL Rocha, Vale, Barbosa, Cirilo and Mourao

2600



we perform the insertion of the data that should be retrieved. We used this same strategy for
the Update and Delete operations, in this case, changing the amount of data affected by these
operations. For the insert operation, we varied the amount of data that was sent for insertion.

In all these operations, the execution time was measured from the instant that the applica-
tion performed the request up to the instant the results were sent back to the application. These
measurements were performed considering both MySQL Scenario (the time was measured from
the instant of the application request until the response from MySQL) and the NoSQLayer
Scenario (the time was measured until the response from NoSQLayer). We performed each
operation 10 times and the final time was given according to the average of these 10 executions.
All experiments were performed using a computer equipped with an Intel Core i3 2.53GHz,
4GB RAM, 500GB hard processor system, using operating system Ubuntu 04.13 64-bit. We
present these results in Figure 4. For all plots, we adopt a log scale in y-axis (execution time)
aiming at a better visualization. Due to lack of space, we present the results related to four
Select operations and one for each changing operations.

(a) Select1 (b) Select2 (c) Select3 (d) Select4

(e) Delete 1 (f) Insert 1 (g) Update 1

Figure 4: Execution time of different operations
Observing the results related to the Select operations, MySQL has a lower response time

for lower data volume, compared to NoSQLayer. As the total number of records to be retrieved
increases, the response time also increases. We also observe a peak in the response time of
MySQL. We explain this behavior by an excessive use of the CPU to deal with large amount
of data. In this case, MySQL starts using a new processing unit (i.e. new CPU core), which
in turn, must address issues related to synchronization among distinct CPUs, increasing sub-
stantially the response time. This result shows that, even with the overhead generated by the
database abstraction layer, NoSQLayer is more efficient than a relational database as the data
volume grows. Considering the distributed processing features of MongoDB, not explored in
this study, these overtakes might be even more significant. Finally, analyzing the plots related
to changing the database state, all of them have the runtime in NoSQLayer much lower than
the execution in MySQL. The main reason for this behavior may be the absence of integrity
constraints of NoSQL databases. An improvement in NoSQLayer would be to treat and in-
ternally verify these integrity constraints related to change of state of the database process.
Currently, through the collection Metadata, NoSQLayer supports only primary key constraint.

A Framework for Migrating Relational Datasets to NoSQL Rocha, Vale, Barbosa, Cirilo and Mourao

2601



5 Conclusions

In this paper we present NoSQLayer, a framework to support developers at migrating auto-
matically from relational databases (MySQL) to NoSQL ones (MongoDB) while preserving the
semantics of the original database. NoSQLayer has a database persistence layer that allows ap-
plications to access data in NoSQL model seamlessly, without the need of modifying queries and
application code. NoSQLayer was implemented in Java, employing concepts of object-oriented
programming, in order to make it easily extensible to other DBMS.

We evaluate our proposal by qualitative and quantitative perspectives. The qualitative
assessment compared results of various operations applied directly to SQL and MySQL to
MongoDB using our framework. In all evaluated queries the results were identical, showing the
effectiveness of our proposal. The quantitative assessment compared the runtime of different
queries, varying the total number of records involved in the operations. Despite the overhead
generated by the persistence layer, which makes the framework a less efficient for small volumes
of data, as the volume of data grew, our framework showed to be more efficient than using
only MySQL. These experiments showed that NoSQLayer is a solution suitable to handle large
volume of data. As future work, we aim to extend NoSQLayer to other management systems
and technologies.

References

[1] Databasemetadata. http://docs.oracle.com/javase/
6/docs/api/java/sql/DatabaseMetaData.html. Accessed:2014-09-24.

[2] Jdbc. http://dev.mysql.com/doc/refman/5.6/en/
connector-j-reference.html. Accessed:2014-09-24.

[3] Jsql parser. http://jsqlparser.sourceforge.net/. Accessed:2014-09-24.

[4] Luasoap. http://tomasguisasola.github.io/luasoap/. Accessed:2014-09-24.

[5] Mongodb. http://docs.mongodb.org/manual. Accessed:2014-09-24.

[6] Mongodb mapping chart. http://docs.mongodb.org/
manual/reference/sql-comparison. Accessed:2014-09-24.

[7] Mysql proxy. http://dev.mysql.com/refman
/5.6/en/mysql-proxy.html. Accessed:2014-09-24.

[8] Rick Cattell. Scalable sql and nosql data stores. SIGMOD Rec., 39(4):12–27, May 2011.

[9] R. GAIOSO, F. LUCENA, and J. SILVA. Integrate: Infra-estrutura para integração de fontes de
dados heterogêneas. Master Thesis, Federal University of Goiás. Informatic Institute, 2007.

[10] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility of consistent, available,
partition-tolerant web services. SIGACT News, 33(2):51–59, June 2002.

[11] Roberto Ierusalimschy, Luiz Henrique de Figueiredo, and Waldemar Celes Filho. Lua—an: Ex-
tensible extension language. Softw. Pract. Exper., 26(6):635–652, June 1996.

[12] R. P. Padhy, M. R. Patra, and S. C. Satapathy. Rdbms to nosql: Reviewing some next-generation
non-relational database‘s. International Journal of Advanced Engineering Science and Technolo-
gies, 11(1), September 2011.

[13] Jaroslav Pokorny. Nosql databases: A step to database scalability in web environment. In Proc.
of the 13th iiWAS, pages 278–283, New York, NY, USA, 2011. ACM.

[14] John Roijackers. Bridging sql and nosql. Master Thesis, Eindhoven University of Technology.
Department of Mathematics and Computer Science, 2012.

[15] Aaron Schram and Kenneth M. Anderson. Mysql to nosql: Data modeling challenges in supporting
scalability. In ACM SPLASH ’12, pages 191–202, 2012.

A Framework for Migrating Relational Datasets to NoSQL Rocha, Vale, Barbosa, Cirilo and Mourao

2602


