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Abstract

The influence of the austenitic grain size on the overall stress–strain behavior in a multiphase carbon steel is analyzed
through three-dimensional finite element simulations. A recently developed multiscale martensitic transformation model is
combined with a plasticity model to simulate the transformation-induced plasticity effects of a grain of retained austenite
embedded in a ferrite-based matrix. Grain size effects are included via a surface energy term in the Helmholtz energy. Ten-
sile simulations for representative orientations of the grain of retained austenite show that the initial stability of the aus-
tenite increases as the grain size decreases. Consequently, the effective strength is initially higher for smaller grains. The
influence of the grain size on the evolution of the transformation process strongly depends on the grain orientation.
For ‘‘hard’’ orientations, the transformation rate is higher for larger grains. In addition, the phase transformation is par-
tially suppressed as the grain size decreases. In contrast, for ‘‘soft’’ orientations, the transformation rate is lower for larger
grains. The phase transformation is more homogeneous for smaller grains and, consequently, the effective transformation
strain is larger. Nevertheless, in multiphase carbon steels with a relatively low percentage of retained austenite, the influ-
ence of the austenitic grain size on the overall constitutive response is smaller than the influence of the austenitic grain
orientation.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Among the class of high-strength high-ductility steels being developed, special attention has been devoted
to low-alloyed steels whose microstructure at room temperature consists of a dispersed mixture of ferrite, bai-
nite, thermal martensite and isolated grains of retained austenite. This class of multiphase steels can achieve
high levels of strength without the addition of costly alloying elements such as Cr or Ni. The improved
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mechanical performance of multiphase steels (compared to traditional carbon steels) has been attributed to a
transformation-induced plasticity effect (TRIP effect) that occurs when the grains of retained austenite trans-
form into martensite upon mechanical loading. Experimental studies have shown that an important factor that
controls the performance of TRIP steels is the rate of transformation of austenite into martensite as a function
of the deformation (i.e., the ‘‘stability’’ of austenite).

There are several factors that affect the transformation rate at the level of a grain of retained austenite. As
shown in experimental studies (Oliver et al., 2002; Kruijver et al., 2003) and modeling analyses (Turteltaub and
Suiker, 2005; Suiker and Turteltaub, 2005), the transformation rate in TRIP steels depends on the orientation
of the grain with respect to the loading. A second factor that controls the transformation rate is the size of the
grain of retained austenite. It has been experimentally observed in studies of fully austenitic alloys and mul-
tiphase TRIP steels that the resistance to martensitic transformation increases as the grain size of austenite
decreases (Leal and Guimaraes, 1981; Jeong et al., 1993). The grain size of the retained austenite to some
extent can be controlled through a suitably chosen thermal processing route (Bai et al., 1998). Consequently,
in order to optimize the mechanical characteristics of TRIP steels, it is relevant to understand in detail the
effect of the austenitic grain size on the onset and evolution of the martensitic transformation, which is the
main objective of the present work.

In multiphase carbon steels, austenite can be found in several forms, namely as ‘‘blocky-type’’ grains and as
‘‘film-type’’ lamellaes intertwined with bainitic plates (Jeong et al., 1993; Jacques et al., 2001). The austenite
present in the bainitic phase generally does not transform into martensite. In contrast, the blocky-type austen-
itic grains do transform upon application of mechanical loads. In the present study, attention will be focussed
on the latter type of grains, i.e., retained austenite surrounded by a ferrite-based matrix. The thermomechan-
ical response of retained austenite depends on sub-grain phenomena and length scales sketched in Fig. 1. In
austenite to martensite phase transformations, the basic lattice structure changes from face-centered cubic
(FCC) to body-centered tetragonal (BCT). At the lattice scale, the martensite consists of one out of three pos-
sible BCT variants. Two of these variants, arranged in specific proportions and orientations, form a twinned
structure at the lower microscale that is termed a ‘‘transformation system’’. The type of martensite that we
consider in the present analysis is twinned plate martensite. Thermally induced plate martensite is associated
to a high value of carbon concentration of 1.4 wt.% and higher in the austenitic parent phase (Umemoto et al.,
1983; Christian, 2002). Experimental studies have indicated the appearance of twinned martensite upon
mechanical loading in TRIP steels with a local value of carbon concentration of 1.4 wt.% and higher in the
grains of retained austenite (Sugimoto et al., 1997; Rao and Rashid, 1997). As a working assumption, we con-
sider that the mechanically induced martensite is similar to the thermally induced martensite for the same car-
bon concentration. According to the theory of martensitic phase transformations (Wechsler et al., 1953; Ball
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and James, 1987), there are 24 possible stress-free martensitic transformation systems. At the upper
microscale, a grain of retained austenite contains platelets of twinned martensite intertwined with untrans-
formed austenite. In the present context, the mesoscale refers to a representative sample containing austenite
and possibly several transformation systems of martensite.

Various models have been proposed for transformation-induced plasticity but only a few of them address
the issue of grain size effects. Adopting a geometrically linear framework, Reisner et al. (1998) studied the
transformation rate in a Cu–Fe and a low-alloyed TRIP steel, although grain size effects were only included
for the Cu–Fe alloy. They predicted that the number of alternating bands of martensitic twins increases with
increasing grain size. Based on a modification of a model proposed by Olson and Cohen (1975) and applying
the Hall–Petch relation for the austenitic phase, Iwamoto and Tsuta (2000) studied the influence of grain size
on the mechanical response of an austenitic stainless steel. Their phenomenological model, which does not
explicitly take into account the crystallography of the transformation systems, predicts an increase in effective
tensile strength for an increase in austenitic grain size. This result is ascribed to the formation of less mar-
tensite for smaller grain sizes. Also based on a modification of the Olson-Cohen model, Perlade et al.
(2003) proposed a one-dimensional constitutive formulation for low-alloyed TRIP steels. The effective
strength resulting from stress-assisted and strain-induced transformations was found to be sensitive to the
austenitic grain size.

In the present study, we assume that plastic deformations occur primarily in the ferrite-based matrix while
the untransformed austenite behaves elastically. Although the austenite adjacent to a newly formed platelet of
martensite deforms plastically to accommodate the transformation strain, we assume that this plastic defor-
mation is confined to a small neighborhood around the martensite and that the stresses in the rest of the aus-
tenite (bulk) remain below the initial yield strength. The small scale yielding assumption is reasonable for
austenite with a relatively high carbon concentration, which has a high yield strength in comparison with
the ferrite-based matrix (Furnémont et al., 2002). The effect of the local plastic accommodation is lumped into
the transformation barrier at the mesoscale. The validity of this assumption is limited to stresses in the grain
that are below the initial yield strength of the austenite. However, in many common grades of multiphase
TRIP steels, the austenitic phase deforms plastically before transformation. For those steels, the assumption
of an elastic austenitic phase will probably affect the quantitative predictions of the model considered in the
present communication. Nonetheless, the predicted trends are expected to be essentially correct. The influence
of the plastic deformation in the austenite will be analyzed in forthcoming work.

The effects of austenitic sub-grain structures on the kinematics and the constitutive behavior are accounted
for using a recently developed multiscale model for martensitic transformations (Turteltaub and Suiker, 2005,
2006; Suiker and Turteltaub, 2005). The microstructural information for the phase transformation model is
based on the crystallographic theory of martensitic transformations and further includes the anisotropic stiff-
ness of each system of twinned martensite. In addition, the model contains a surface energy term associated to
regions close to the habit planes, as shown at the upper and lower microscales in Fig. 1. The surface energy is
indirectly related to the grain size via a length scale parameter. Using this feature of the model, it is possible to
study the effect of grain size on the mesoscale responses of a TRIP steel.

A summary of the transformation model is given in Section 2, with a microstructural interpretation of
the length scale parameter introduced in the surface energy. Simulations of grain size effects are presented
in Section 3, where the response for several grains sizes is analyzed for two representative orientations of the
grain of retained austenite. Finally, in Section 4, some closing remarks are given. As a general scheme of
notation, scalars are written as lightface italic letters (e.g., a, b), vectors as boldface lowercase letters
(e.g., a, b), second-order tensors as boldface uppercase letters (e.g., A, B) and fourth-order tensors as black-
board bold capital letters (e.g., A;B). For vectors and tensors, Cartesian components are denoted as ai, Aij

and Aijkl. The action of a second-order tensor on a vector is denoted as Ba (in components Bijaj, with impli-
cit summation on repeated indices) and the action of a fourth-order tensor on a second-order tensor is
denoted as BA ði:e:; BijklAklÞ. Composition of two second-order tensors is denoted as AB (i.e., AijBjk).
The tensor product between two vectors is denoted as a � b (i.e., aibj). All inner products are denoted with
a single dot between tensorial quantities of the same order, i.e., a Æ b for vectors and A Æ B for second-order
tensors (in components, aibi and AijBij respectively). A material time derivative is denoted by a superim-
posed dot.
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2. Transformation model

Martensitic transformations (FCC to BCT) in multiphase carbon steels are characterized by the formation
of up to 24 active transformations systems. A transformation system is denoted with a superscript a. Each
transformation system is described in terms of a shape strain vector b(a) and the unit vector normal to the habit
plane m(a) (i.e., a vector normal to the austenite-twinned martensite interface). The shape strain vector can be
expressed as
bðaÞ ¼ cT b̂ðaÞ;
where b̂ðaÞ is a unit vector in the direction of b(a) and cT = jb(a)j is the magnitude of the shape strain vector. The
magnitude cT is the same for all 24 transformation systems (Wechsler et al., 1953; Ball and James, 1987).

Within the framework of large deformations, the mesoscale deformation gradient F in a material point of a
grain of retained austenite may be decomposed as
F ¼ FeF tr; ð1Þ

where Fe is the elastic deformation gradient and Ftr is the transformation deformation gradient. Based on this
decomposition, it is possible to introduce three configurations, namely the reference, intermediate and current
configurations. In the present model, the mesoscale transformation deformation gradient in (1) is obtained
through averaging lower scale kinematic information derived from the theory of martensitic transformations
(Wechsler et al., 1953; Ball and James, 1987). This procedure leads to the following expression for the trans-
formation deformation gradient (Turteltaub and Suiker, 2006):
F tr ¼ I þ
XN

a¼1

nðaÞcðaÞ;
where
cðaÞ ¼ cT b̂ðaÞ �mðaÞ
is the transformation strain, n(a) is the volume fraction of the transformation system a in the undeformed ref-
erence configuration, N (= 24) refers to the total number of transformation systems and I is the second-order
identity tensor.

The constitutive relation between the second Piola–Kirchhoff stress S in the intermediate configuration and
the elastic Green–Lagrange strain Ee ¼ ðFT

e Fe � IÞ=2 is taken as
S ¼ CEe; ð2Þ

where the mesoscopic effective stiffness tensor C has the form (Turteltaub and Suiker, 2005, 2006; Suiker and
Turteltaub, 2005)
C ¼ 1

J tr

1�
XN

a¼1

nðaÞ
 !

CA þ ð1þ dT Þ
XN

a¼1

nðaÞCðaÞ
( )

: ð3Þ
In (3), dT = b(a) Æ m(a) is the volumetric expansion due to the phase transformation (same for all systems a) and
Jtr = detFtr. The terms CA and CðaÞ refer to, respectively, the microscale stiffnesses of austenite and transfor-
mation system a of martensite. In turn, CðaÞ can be related to the stiffness of each variant of martensite and its
orientation in the transformation system. Expressions for CðaÞ can be found in Turteltaub and Suiker (2006).

The Helmholtz energy ŵ for the transformation model developed by Turteltaub and Suiker (2006) consists
of a mesoscale bulk strain energy wm, thermal contributions wth and wh and, central to the analysis of grain
size effects, a surface energy term ws that depends on the volume fractions n(a) of the transformation systems.
The general form of the Helmholtz energy density is
ŵðEe; h; nÞ ¼ wmðEe; nÞ þ wthðh; nÞ þ wsðnÞ þ whðnÞ; ð4Þ
where h is the temperature and n is an N-dimensional vector whose entries are the martensitic volume fractions
n(a). In the isothermal analyses presented in this paper, specific forms for wth and wh are not necessary apart
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from the fact that these energies are assumed to be linear functions of n. The bulk elastic strain energy asso-
ciated to the constitutive relation (2) has been derived as (Turteltaub and Suiker, 2006)
wmðEe; nÞ ¼
J trðnÞ
2q0

CðnÞEe � Ee; ð5Þ
where q0 is the mass density in the reference configuration. As shown in Fig. 1, at the lower microscale a local
elastic deformation is required to preserve the coherency at the interface between austenite and twinned mar-
tensite (i.e., at the habit plane). A local strain energy can be associated to this deformation. In the model devel-
oped by Turteltaub and Suiker (2005, 2006), this contribution is not taken into account at the bulk level, but it
is described via a mesoscale surface energy term (per unit mass) of the form
wsðnÞ ¼
v

q0l0

XN

a¼1

nðaÞð1� nðaÞÞ: ð6Þ
Here, v is an interface energy per unit area and l0 is a length scale parameter. The above expression for the
surface energy assumes that all austenite-twinned martensite interfaces have the same energy per unit area.
The formulation given by (6) is based on a martensite–austenite interfacial area per unit volume that is pro-
portional to the term n(a)(1 � n(a)) for each transformation system a. This form is motivated from the follow-
ing limit cases: (i) when there is no martensite present at a given material point (i.e., n(a) = 0 for all a), the
surface energy should be equal to zero, and (ii) when a given material point is fully occupied by a single mar-
tensitic transformation system (i.e., n(b) = 1, n(a) = 0 for all a 5 b), the surface energy should be equal to zero.

Observe that the surface energy shown in (6) refers only to the interfaces between twinned martensite and
austenite (i.e., habit planes) and it does not include the energy associated to the interfaces between individual
variants inside a transformation system (i.e., twins’ surface energy). Under the assumption that the ratio
between the surface occupied by the twins’ interfaces and the volume occupied by the corresponding transfor-
mation system is constant, the energy associated to the twins’ interfaces can be modeled as a linear function of
the volume fraction. In contrast to the surface energy associated to the habit planes, an energy associated to
the twins’ interfaces would not be zero when n(b) = 1 for one given system b. In an analysis where individual
values of n(b) become large (say, above 0.2), then an additional term related to the surface energy of the twins
should be included in (6). Nonetheless, in the simulations shown in Section 3 below, none of the individual
values of the volume fractions after completion of transformation was large and, for simplicity, the energy
related to the twins’ interfaces was not included.

One limitation of using the volume fraction of martensite as the independent variable for describing the
surface energy is that it is implicitly assumed that at a material point there is only one platelet of each mar-
tensitic transformation system. The case where the volume fraction corresponds to two or more platelets of the
same system is not accounted for. Furthermore, for simplicity, it is assumed that the interface energy per unit
area between two transformation systems is 2v; hence when two transformation systems coalesce, the expres-
sion (6) remains unaltered. Despite these simplifications, the expression for the surface energy is qualitatively
in accordance with experimental observations reported by Leal and Guimaraes (1981) for an austenitic alloy.

An interpretation of the length scale parameter l0 can be obtained from the geometry of a plate of twinned
martensite inside a grain of austenite at the onset of transformation (i.e., when n(a)� 1). In particular, the
value l0 can be interpreted as the ratio between the initial volume and surface of a newly formed plate of
twinned martensite (Turteltaub and Suiker, 2006). Accordingly, consider an ideal spherical grain of retained
austenite with diameter d0 and, at the beginning of the transformation, an ideal disc-shaped plate of twinned
martensite of thickness t0 that spans the whole grain, as shown in Fig. 2. The ratio between the volume and the
surface of the martensitic platelet is
l0 �
pd2

0t0

4
� 2

pd2
0

4

� ��1

¼ t0

2
; ð7Þ
where the surface pd0t0 associated to the edge of the platelet has been neglected since typically the thickness of
the platelet is much smaller than the diameter. For simplicity, the ratio c = t0/d0 of a plate of newly formed
twinned martensite is assumed to be the same for all grain sizes d0 (thus, the thickness t0 changes proportionally
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Fig. 2. Ideal disk-shaped platelet of martensite in an spherical grain of retained austenite.
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with d0). Therefore, from (7), the length scale parameter l0 can be related to the average size d0 of a grain of
retained austenite and the ratio c as
l0 � ðc=2Þd0: ð8Þ

The expression for the surface energy given in (6) indicates that the martensite–austenite interfacial area per

unit volume is inversely proportional to the length scale parameter l0. Consequently, the interpretation of the
length parameter given in (8) implies that the martensite–austenite interfacial area per unit volume is inversely
proportional to the austenitic grain size d0. This assumption is qualitatively consistent with the experimental
observations of Leal and Guimaraes (1981) for fine and coarse grains in a Fe–Ni–C alloy.

The final ingredient of the transformation model consists of a constitutive relation that relates the rate of
change of the martensitic volume fraction _nðaÞ of system a to the corresponding transformation driving force
f(a). The transformation driving force f(a) that is consistent with the Helmholtz energy given in (4) has been
derived as (Turteltaub and Suiker, 2006)
f ðaÞ ¼ f ðaÞm þ f ðaÞs þ f ðaÞth ð9Þ

for a = 1, . . . ,N, where
f ðaÞm :¼ J trF
T
e FeSF�T

tr � cðaÞ þ
1

2
CA � ð1þ dT ÞCðaÞ
� �

Ee � Ee ð10Þ
is the mechanical bulk contribution to the driving force that contains the resolved stress and a term related to
the stiffness difference of the austenitic parent phase and the martensitic product phase. Furthermore,
f ðaÞs :¼ � v
l0

ð1� 2nðaÞÞ ð11Þ
is the surface energy contribution to the driving force, which reflects the creation (or annihilation) of interfaces
(austenite–martensite and martensite–martensite). The thermal contribution to the driving force f ðaÞth is con-
stant for isothermal processes. The specific expression for f ðaÞth can be found in Turteltaub and Suiker (2006).

Transformation occurs if the driving force f(a) in (11) exceeds a critical value fcr. The evolution of the trans-
formation from austenite to a system a of martensite is taken to be governed by the following kinetic relation
between rate of change of the martensitic volume fraction _nðaÞ and the transformation driving force f(a):
_nðaÞ ¼ _nmax tanh
1

m
hf ðaÞ � fcri

fcr

� �
; ð12Þ
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where m > 0 and _nmax P 0 are a dimensionless viscosity-like parameter and the maximum value for the trans-
formation rate, respectively. Further, Macauley brackets are defined as hai :¼ (jaj + a)/2. The kinetic relation
(12) is a phenomenological expression consistent with the framework of irreversible thermodynamics proposed
by Onsager that relates a flux _nðaÞ to an affinity f(a) (see, e.g., Callen, 1985). Although the relation (12) is for-
mally related to rate-dependent kinetics (that describe isothermal transformations), the parameters m and _nmax

were calibrated to approximate the limit case of rate-independent kinetics (that describe athermal transforma-
tions, see Turteltaub and Suiker, 2005).

3. Grain size effects

3.1. Numerical simulations

To examine the influence of the grain size on the TRIP effect in carbon steels, several quasi-static uniaxial
loading simulations were conducted on a polyhedral grain of retained austenite Xgr embedded in a ferrite-
based matrix Xmat, as shown in Fig. 3. The grain of retained austenite occupies 16% of the total volume, which
is a typical average value for multiphase TRIP steels (Jacques et al., 2001). The transformation model outlined
in the previous section is used to simulate the mechanical response of the grain Xgr. For simplicity, the elasto-
plastic response of the ferrite-based matrix Xmat is modelled by a large-strain, J2-plasticity formulation with
isotropic hardening. Although at the present scale of observation it would be more appropriate to use an
anisotropic elastic model and an (anisotropic) crystal plasticity model, recent simulations have shown that
a J2-plasticity model provides similar results as a matrix composed of six ferritic single crystal grains with
Euler angles evenly distributed in the orientation space (Tjahjanto et al., 2006). Within the framework of large
deformation plasticity, the deformation gradient in a material point inside the ferrite-based matrix Xmat is
decomposed as F = FeFp where Fp is the plastic deformation gradient. The relation between the second
Piola–Kirchhoff stress S in a stress-free intermediate configuration and the elastic Green–Lagrange strain
Ee is taken as
S ¼ CFEe;
where CF is the stiffness tensor of the ferrite-based material and it is taken to be isotropic.
The computational domain X = Xgr [ Xmat corresponds to a 3L · 3L · 3L cube aligned with a global basis

{f1, f2, f3} as shown in Fig. 3. The imposed boundary conditions simulate a uniaxial tensile test. The normal
displacement of the top surface in the loading direction f1 is increased from 0 to 0.3 L which implies that the
Fig. 3. Grain of retained austenite Xgr in a ferrite-based matrix Xmat. The inset indicates the different grain orientations.
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final nominal uniaxial strain is 10%. The nominal strain rate is 10�4 s�1, which reflects quasi-static loading
conditions. Further, the normal displacements of three mutually perpendicular faces are constrained and
the remaining boundary conditions correspond to zero stress.

Two representative orientations for the grain of retained austenite were analyzed. The orientations are indi-
cated in Table 1 in terms of the Euler angles that map the global basis {f1, f2, f3} onto the lattice basis of aus-
tenite feA

1 ; e
A
2 ; e

A
3g, as shown in the inset in Fig. 3. The Euler angles are given using the so-called ‘‘323’’

convention. For each orientation, Table 1 also provides the Miller indices of the loading direction f1 in the
austenitic lattice basis. Henceforth, for ease of reference, the orientation of the grain will be referred to using
the Miller indices of f1.

For each orientation of austenite, three different grain sizes were considered. The basic parameters related
to grain size are summarized in Table 2. Taking into account that grains of retained austenite of the blocky-
type in multiphase steels are in the range of 0.5 lm to a few microns (Jeong et al., 1993; Bai et al., 1998;
Jacques et al., 2001), the analyses were carried out for grains of retained austenite with diameters d0 as given
in Table 2. The grain of austenite shown in Fig. 3 has a rectangular base of side length 2L, which is taken to
represent the grain size, i.e., d0 = 2L. The side length 3L of the computational domain is indicated in the sec-
ond column of Table 2. The third column of the table contains the corresponding values of the length scale
parameter l0 computed from (8) based on a fixed aspect ratio c, which has been estimated to be about
c = 0.05 (Wang and van der Zwaag, 2001). Table 2 also includes the values of the ratio v/l0 that appears in
the transformation driving force fs given in (11). This ratio was computed based on a surface energy per unit
area that, for martensitic transformations in metals and alloys, has been estimated to be v = 0.2 J m�2

(Christian, 2002).
Values for CA and CðaÞ were obtained from nanoindentation tests carried out by Furnémont et al. (2002)

following the interpretation presented in Turteltaub and Suiker (2005). The specific values can be found in
Suiker and Turteltaub (2005) and, for brevity, will not be reproduced here. The values of the parameters used
in the kinetic relation (12) have been chosen as m � 0.17, _nmax � 3� 10�3 s�1, which, under quasi-static condi-
tions, reflect a weak rate-dependent transformation behavior (i.e., close to a rate-independent transformation
behavior). Furthermore, the difference fcr � fth between the critical value and the thermal contribution of the
driving force has been estimated to be about 5 MPa (Turteltaub and Suiker, 2005).

Parameters for the ferrite-based material were calibrated from uniaxial tensile tests performed by Jacques
et al. (2001) on a polycrystalline material composed of 75 wt.% ferrite and 25 wt.% thermal martensite. The
calibration corresponds to an exponentially saturating hardening curve with an initial yield stress of
300 MPa and an ultimate yield stress in the saturated state of 880 MPa. More details on the calibration
can be found in Suiker and Turteltaub (2005) and are not included here. For the analysis of grain size effects,
it is important to point out that the ferrite has the lowest effective stiffness, followed by the austenite and
finally the martensite (Furnémont et al., 2002).
Table 1
Orientations of grain of retained austenite given in terms of ‘‘323’’ Euler angles and corresponding loading direction given in Miller indices

Case Orientation of austenite Global loading direction f1

1 (45�,36.26�, 0�) [111]A
2 (0�,0�, 0�) [100]A

Table 2
Average grain size d0 of austenite, side length 3L of computational domain, length scale parameter l0 for an aspect ratio c = 0.05 and
surface energy v over l0 for a surface energy of 0.2 J m�2

d0 [lm] 3L [lm] l0 [lm] v/l0 [MPa]

0.5 0.75 0.0125 16
2 3 0.05 4
8 12 0.2 1
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The results obtained from the simulations are reported in terms of the Cauchy stress T in the current con-
figuration and the logarithmic strain e, which are defined as
T :¼ ðdet FeÞ�1
FeSFT

e ; e :¼ ln V ;
where V is the left stretch tensor in the polar decomposition of the deformation gradient, i.e., V = FQ�1. The
axial Cauchy stress component T11 averaged over the austenitic grain in the current configuration is
T gr
11 :¼ 1

jXgr
t j

Z
Xgr

t

T 11 dv;
where Xgr
t is the region occupied by the austenitic grain in the current configuration at time t and the compo-

nents are referred to the global basis {f1, f2, f3}. The axial Cauchy stress component T11 averaged over the
whole computational domain in the current configuration is
T 11 :¼ 1

jXtj

Z
Xt

T 11 dv;
where Xt is the region occupied by the computational domain X in the current configuration at time t. The
axial logarithmic strain component e11 averaged over the austenitic grain in the reference configuration is gi-
ven by
�egr
11 :¼ 1

jXgr
0 j

Z
Xgr

0

e11 dv;
where Xgr
0 is the region occupied by the austenitic grain in the reference configuration. The axial logarithmic

strain component e11 averaged over the whole domain in the reference configuration is defined as
�e11 :¼ 1

jX0j

Z
X0

e11 dv;
where X0 is the region occupied by the whole computational domain in the reference configuration. The
austenitic volume fraction nA averaged over the whole domain in the reference configuration is given by
�nA :¼ 1

jX0j

Z
Xgr

0

1�
XN

a¼1

nðaÞ
 !

dv;
where n(a) are the volume fractions of the martensitic transformation systems.
The computational domain was discretized using 1771 linear tetrahedrons. The transformation model was

implemented using a fully implicit backward Euler discretization scheme for the stress update within the
framework of finite deformations. A robust search algorithm was used in the return mapping algorithm for
detecting the transformation systems activated during loading. Moreover, a sub-stepping algorithm was
implemented to warrant the stability of the numerical update procedure, as well as to accurately satisfy the
completion of the transformation process. The computation of the consistent tangent operator was performed
through a numerical differentiation method. Details on the numerical implementation can be found in Suiker
and Turteltaub (2005).

The effect of the grain size is analyzed in terms of (i) the stress–strain response at the level of the grain of
retained austenite, (ii) the evolution of the phase transformation, (iii) the distribution of strains in the grain,
and (iv) the stress–strain response of the whole domain X.

3.2. Size effects at the level of the grain of retained austenite

The grain-averaged axial Cauchy stress T gr
11 as a function of the grain-averaged axial logarithmic �egr

11 is
shown in Figs. 4a and b when the grain of retained austenite in the matrix is loaded in the [111]A and
the [100]A directions, respectively. It can be observed that the stress level at which the transformation is
initiated increases with decreasing grain size for both grain orientations (i.e., a higher initial resistance to
transformation for smaller grains). In accordance with the expressions given in (9)–(11), the driving force
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available at the onset of transformation (when n(a) = 0) has a positive contribution from the resolved stress,
a negative contribution from the mismatch in stiffnesses (since martensite is stiffer than austenite) and a neg-
ative contribution from the energy required to create interfaces. This latter term, which in view of (11) is
equal to �v/l0 at the beginning of the transformation, is shown in Table 2. For the largest grain analyzed
(d0 = 8 lm), the term v/l0 = 1 MPa has a relatively small contribution compared to the net initial transfor-
mation resistance under isothermal conditions, i.e., fcr � fth = 5 MPa. However, for the smallest grain ana-
lyzed (d0 = 0.5 lm), the term v/l0 = 16 MPa dominates the onset of the transformation. Hence, the
necessary work per unit volume to create interfaces in smaller grains is higher and thus the value of f(a)

required to initiate the transformation is higher.
As shown in Figs. 4a and b, the slopes of the stress–strain curves initially decrease as the austenite begins to

transform into martensite but eventually increase as the transformation process stops. The deformation
between these two inflection points in the stress–strain curves is approximately equal to the effective transfor-
mation strain in the axial direction. Here, the effective transformation strain is defined as the average axial
transformation strain in the grain when the transformation process ends. For grains loaded in the [100]A
direction, the effective transformation strain is considerably larger than for grains loaded in the [111]A direc-
tion and, therefore, the [100]A-loaded grains show a softer response during transformation. As demonstrated
in Turteltaub and Suiker (2005), under a homogeneous uniaxial deformation, the axial transformation strain is
equal to 2.7% for a grain loaded in the [111]A direction and to 11% for a grain loaded in the [100]A direction.
Figs. 4a and b illustrate that the effective axial transformation strains in the present simulations are below the
values of the corresponding homogeneous uniaxial deformations for both grain orientations and all grain
sizes.
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As can be observed in Fig. 4a, for a grain loaded in the [111]A direction, the effective axial transformation
strain decreases as the grain size decreases. In contrast, for the grains loaded in the [100]A direction, the effec-
tive axial transformation strain increases as the grain size decreases. The dependence of the effective transfor-
mation strain on the grain size is related to the deviation from a state of uniaxial stress inside the grain due to
the triaxial stress state. A deviation from a state of uniaxial stress can be measured in terms of the lateral stres-
ses T gr

22 and T gr
33. Based on the values of these stresses (not reported here), for [111]A-loaded grains this devi-

ation occurs at lower strain values for smaller grain sizes. This situation is reversed for grains loaded in the
[100]A direction where the deviation from a uniaxial stress state occurs at lower strain values for larger grain
sizes. A deviation from a state of uniaxial stress tends to activate additional transformation systems that are
not optimally oriented with respect to a uniaxial deformation and, consequently, tend to lower the effective
uniaxial transformation strain. In addition, as shown below in Section 3.3, the reduction in effective transfor-
mation strain for smaller grains loaded in the [11 1]A direction is amplified due to an incomplete phase
transformation.

3.3. Size effects on rate of phase transformation

The evolution of the transformation, measured in terms of the average volume fraction of retained austenite
�nA, is shown as a function of the average axial logarithmic strain �e11 in Figs. 5a and b for austenitic grains
loaded in the [111]A and [100]A directions, respectively. For grains loaded in the [111]A direction, the rate
of transformation jd�nA=d�e11j is lower for smaller grain sizes while for grains loaded in the [10 0]A direction
the transformation rate is higher for smaller grain sizes. In addition, it is interesting to observe that grains
of austenite loaded in the [111]A direction do not fully transform into martensite; the amount of untrans-
formed austenite increases as the grain size becomes smaller. This trend is in accordance with experimental
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results (Jeong et al., 1993; Bai et al., 1998). In contrast, since grains of austenite loaded in the [100]A direction
are more favorably oriented for transformation, they fully transform into martensite, which occurs at about
10% strain for all grain sizes.

3.4. Size effects on strain partitioning

The grain-averaged axial strain �egr
11 as a function of the axial strain averaged over the entire computational

domain �e11 is shown in Figs. 6a and b for grains loaded in the [111]A and [100]A directions, respectively. The
strain partitioning curves plotted in Fig. 6a indicate that the grain deformation initially follows the overall
strain during the transformation process. For larger grains, the strain in the grain �egr

11 is closer to the overall
strain �e11. As the transformation process ends, the grains start to behave as hard inclusions (i.e., �egr

11 < �e11). As
opposed to grains loaded in the [111]A direction, smaller grains loaded in the [100]A direction can initially
follow the overall strain �e11 (slightly) closer than larger grains. For all grain sizes, the initial behavior of grains
loaded in the [100]A direction corresponds to the response of a very soft inclusion ði:e:; �egr

11 > �e11Þ. Only when
the transformation process ends, the strain partitioning curves cross the equal-strain line and the grains start
to behave as hard inclusions.

3.5. Size effects at the level of the whole computational domain

The response of the material averaged over the whole computational domain (axial Cauchy stress T 11 as a
function of the axial logarithmic strain �e11) is shown in Figs. 7a and b for austenitic grains loaded in the [111]A
and [100]A directions, respectively. The figures also include the results of a benchmark calculation where the
whole domain is occupied by the ferrite-based material. This case is used as a reference to quantify the net
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effect of the grain of retained austenite on the effective constitutive response. As shown in Figs. 7a and b,
grains loaded in the [111]A direction have a higher strength than the ferrite-based material, whereas grains
loaded in the [100]A direction have initially a lower strength, although it eventually becomes higher as the
transformation process ends. The difference in strength between the [111]A- and [100]A-loaded grains can
be connected to, respectively, the hard and soft responses in those orientations during transformation (see
Figs. 6a and b).

For both grain orientations, the strength of the material is initially higher for decreasing grain size. However,
at higher strain levels (approximately above 4% for grains loaded in the [111]A direction and above 5% for
grains loaded in the [100]A direction), the overall strength is slightly smaller for smaller grain sizes. The details
of the influence of the grain size can be traced back to the grain-averaged behavior discussed in the previous
sections. In general, the influence of the grain size on the effective response is far less significant than the influ-
ence of the grain orientation. Nonetheless, in view of the grain-averaged responses shown in Figs. 4a and b, it is
anticipated that size effects will become more pronounced as the volume fraction of the austenite is increased.

4. Concluding remarks

In a multiphase carbon steel, the local mechanical response of a transforming grain of retained austenite
strongly depends on the grain size. The surface energy term in the transformation model captures the increased
resistance to transformation due to a reduction in the size of the austenitic grains, which is in agreement with
experimental observations. Simulations show incomplete transformations for grains loaded in the [111]A
direction, particularly as the grain size is reduced. In contrast, grains loaded in the [100]A direction fully
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transform into martensite. Furthermore, for this orientation, the deformation in the austenite is more homo-
geneous for smaller grains, which results in a higher effective transformation strain.

The grain size effect is less noticeable in the overall response of a sample containing a grain of retained aus-
tenite embedded in a ferrite-based matrix. At this level of observation, the response depends primarily on vol-
ume fraction and grain orientation. However, it is expected that size effects will become more prominent in
multiphase carbon steels with high volume fractions of retained austenite. The available experimental data
for grain size effects in multiphase carbon steels is mainly related to transformation kinematics; additional
experimental studies that quantify stress distributions are required to confirm the results predicted in the pres-
ent study. Furthermore, it is relevant to mention that the transformation model does not include plastic defor-
mation in the austenite nor damage due to the martensitic transformation. These effects are likely to play an
important role at high strain levels. Nonetheless, the predictions of the current model can qualitatively capture
the most relevant grain size effects during the initial stage of transformation.
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