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We investigate the production of �ccc baryon in high energy nuclear collisions via quark coalescence 
mechanism. The wave function of �ccc is solved from the Schrödinger equation for the bound state 
of three charm quarks by using the hyperspherical method. The production cross section of �ccc per 
binary collision in a central Pb+Pb collision at √sN N = 2.76 TeV reaches 9 nb, which is at least two 
orders of magnitude larger than that in a p+p collision at the same energy. Therefore, it is most probable 
to discover �ccc in heavy ion collisions at LHC, and the observation will be a clear signature of the 
quark–gluon plasma formation.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
From Quantum Chromodynamics (QCD) at finite temperature, it 
is widely accepted that there exists a deconfinement phase transi-
tion from hadron gas to a quark–gluon plasma (QGP) at a critical 
temperature Tc ∼ 155 MeV [1]. Such a phase transition is expected 
to be realized in heavy ion collisions at the Relativistic Heavy Ion 
Collider (RHIC) and the Large Hadron Collider (LHC). Since the fire-
ball formed in a heavy ion collision expands rapidly, one cannot 
observe directly the QGP in the final state and needs probes to 
signal the QGP formation in the early stage of the fireball evolu-
tion. The quarkonium suppression is considered as such a sensitive 
probe [2]. The measured J/ψ nuclear modification factor and es-
pecially the transverse momentum distributions at RHIC [3–6] and 
LHC [7–9] show a strong hot medium effect.

In this paper we investigate �ccc production as an alternative 
probe of the QGP formation in heavy ion collisions at LHC. The 
existence of �ccc baryon, the ground bound state of three charm 
quarks, is a direct result of the quark model. In p+p collisions at 
LHC energy, the �ccc production is difficult, since it requires at 
least three pairs of charm quarks with small relative momenta in 
an event. In relativistic heavy ion collisions, however, there are 
plenty of off-diagonal charm quarks in the fireball, and the �ccc

production becomes much easier. The coalescence mechanism [10]
has been successfully used to describe the light hadron produc-
tion, especially the quark number scaling of the elliptic flow [11]
and the enhancement of the baryon to meson ratio [13,12,14]. 
Taking into account this mechanism, the yield of �ccc is propor-
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tional to the cube of the charm quark number, N�ccc ∼ N3
c , at 

given temperature and volume of the fireball. For central Pb+Pb 
collisions at LHC energy, the �ccc production becomes significant 
and may play an important role in the probe of QGP. The co-
alescence mechanism [15] or statistical emission [16–18] or re-
generation [19–21] for quarkonium production is widely discussed 
in heavy ion collisions and successfully explains the J/ψ yield 
and momentum distributions. Recently it was suggested that Bc

mesons can be observed at RHIC and LHC due to the regenera-
tion mechanism [22,23]. The production of particles with double, 
triple and hidden charm in heavy ion collisions was also studied 
in the framework of a statistical coalescence model [24], and the 
symmetries of the three-heavy-quark system was also investigated 
within the effective field theory framework of potential nonrela-
tivistic QCD [25].

Hadrons with one charm quark are well checked experimen-
tally. While the SELEX Collaboration claimed the observation of the 
doubly charmed baryon �+

cc in 2003 [26], FOCUS [27], BaBar [28]
and Belle [29] Collaborations failed to reproduce the baryon in the 
same decay channel. One can expect that it will be more difficult 
to find triply charmed baryons in elementary particle collisions. 
If the �ccc baryon is found in heavy ion collisions at the LHC en-
ergy, it is not only the discovery of a new particle, but also a clean 
signature of the QGP.

In coalescence models the change in the constituent distribu-
tion before and after the coalescence process is required to be 
small, namely the number of constituents involved in the coales-
cence must be small compared with the total constituent number 
of the system. In this sense, the coalescence mechanism is more 
suitable for the production of rare particles like �ccc . The coa-
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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lescence probability in phase space, namely the Wigner function, 
is usually parameterized as a Gaussian distribution [15,30] and 
the width is fixed by fitting the data in heavy ion collisions. For 
�ccc , there are currently no data, and an adjustable coalescence 
probability will lose the prediction power of the calculation. For-
tunately, for charmed hadrons like J/ψ and �ccc we can calculate 
their wave function and in turn the Wigner function by solving the 
Schrödinger equation with the help of the lattice simulated heavy 
quark potential at finite temperature [31].

In the following we first solve the three-body Schrödinger equa-
tion via hyperspherical method to get the wave function in co-
ordinate space and the Wigner function in phase space of �ccc , 
and then fix the coalescence hypersurface and derive the �ccc
momentum distribution via the coalescence mechanism. We will 
numerically calculate the �ccc production in Pb+Pb collisions at 
LHC energy and summarize the results and physics in the end.

Since charm quarks are so heavy, we can employ the non-
relativistic Schrödinger equation in the coordinate representation 
to describe the bound states of three charm quarks,

Ĥ�(r1, r2, r3) = ET �(r1, r2, r3),

Ĥ =
3∑

i=1

p̂2
i

2mc
+ V (r1, r2, r3) (1)

with charm quark mass mc and total energy ET . As a usually used 
approximation [32], we neglect the three-body interaction and ex-
press the potential as a sum of pair interactions,

V (r1, r2, r3) =
∑
i< j

V cc(ri, r j). (2)

According to the leading order QCD, the diquark potential is only 
one half of the quark–antiquark potential, V cc = V cc̄/2. We assume 
that such a relation still holds in the case of strong coupling and 
take the Cornell potential

V cc̄(ri, r j) = − α

|ri j| + σ |ri j|, (3)

where ri j = ri − r j is the relative distance between the two quarks 
i and j, and α = π/12 and σ = 0.2 GeV2 are coupling parame-
ters of the potential which together with the charm quark mass 
mc = 1.25 GeV reproduce well the J/ψ and ϒ masses [33] in 
vacuum. In hot and dense medium, the strength of the interac-
tion between two quarks should decrease with temperature. How-
ever, from the lattice calculation [34], the J/ψ spectral function is 
clearly broadened only at T > Tc . Therefore, we still take the Cor-
nell potential between a pair of charm quarks at the coalescence 
which happens at Tc .

It is hard to solve a three-body problem exactly, and one usu-
ally take some approximations to simplify the problem. One of 
the most popular and effective approaches is the hyperspheri-
cal method [32]. Its main idea is to change a low dimensional 
three-body problem to a high dimensional one-body problem with 
the assumption of hyperspherical symmetry for the potential [35]. 
Since the potential (2) is only related to the relative coordinates 
ri −r j , the motion of the three-quark bound state can be factorized 
into the motion of the baryon and the relative motion among the 
quarks, by making the transformation between r1, r2, r3 and the 
baryon coordinate R and relative coordinates rx, ry , (R, rx, ry) =
(r1, r2, r3)MT with the transformation matrix

M =

⎛
⎜⎜⎝

1
3

1
3

1
3√

1
2 −

√
1
2 0√

1
√

1 −
√

2

⎞
⎟⎟⎠ . (4)
6 6 3
Then by rewriting rx and ry in terms of their azimuthal angles 

θx, φx, θy, φy and the hyperradius r =
√

r2
x + r2

y =√(
r2

12 + r2
23 + r2

31

)
/3 and hyperpolar angle α = arctan(|ry |/|rx|), 

the volume element in hyper coordinates is represented as

d3rxd3ry = r5 sin2 α cos2 α sin θx sin θydrdαdθxdφxdθydφy (5)

and the kinetic energy in center of mass frame becomes

T̂ = 1

2mc

(
− ∂2

∂r2
− 5

r

∂

∂r
+ L̂2

r2

)
,

L̂2 = − ∂2

∂α2
− 4 cot 2α

∂

∂α
+ l̂2x

sin2 α
+ l̂2y

cos2 α
, (6)

where L̂ is the hyper angular momentum and l̂x and l̂ y are the 
normal angular momenta.

Since the potential V (|ri − r j |) depends on both the radius and 
the 5 angles, one cannot directly separate the relative motion into 
a radial part and an angular part. The approximation [35] we take 
here is to average the potential over all the angles,

v(r) = 8

π

∑
i< j

π/2∫
0

V Q Q̄

(√
2r sinαi

)
sin2 αi cos2 αidαi . (7)

With this homogeneous potential, the equation of relative motion 
can now be factorized into the radial equation (for the ground state 
with L = 0)[

1

2mc

(
− d2

dr2
− 5

r

d

dr

)
+ v(r)

]
ϕ(r) = Eϕ(r) (8)

and the angular equation

L̂2Y (�) = L(L + 4)Y (�), (9)

where ϕ(r) is the radial wave function, Y (�) the eigenstate of the 
hyper angular momentum operator L̂2 with � representing all the 
angle variables {α, θx, φx, θy, φy}, L the corresponding angular mo-
mentum number, and E the relative energy.

The radial wave function ϕ(r) is normalized as

∞∫
0

P (r)dr = 1, (10)

where P (r) = |ϕ(r)|2r5 is the probability to find the three charm 
quarks in the ground bound state in a hyper spherical shell of unit 
thickness at radius r. By solving the radial equation for �ccc , we 
obtain its mass m� = 4.78 GeV and binding energy ε� = 980 MeV. 
From the radial probability shown in Fig. 1, �ccc is a tightly bound 
state of three charm quarks with average radius r ∼ 0.5 fm which 
is almost the same as J/ψ .

We now construct the Wigner function in the center of mass 
frame of �ccc ,

W (r,p) =
∫

d6ye−ip·yψ
(

r + y

2

)
ψ∗ (

r − y

2

)
, (11)

where p = (px, py) is the 6D relative momentum correspond-
ing to r = (rx, ry), and the 3D relative momenta px, py and the 
�ccc momentum P, corresponding to rx, ry and R, are associated 
with the three quark momenta p1, p2, p3 via the transformation 
(P, px, py) = (p1, p2, p3)M−1. Using the above obtained relative 
wave function ψ(r) = ϕ(r)Y (�) in the approximation of hyper-
spherical symmetry and taking the first axis of the vector y in 
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Fig. 1. The radial probability P (r) to find the three charm quarks in the ground 
bound state in a hyper spherical shell of unit thickness at radius r.

the direction of p and the second axis on the plane constructed 
by p and r, the Wigner function for the ground bound state �ccc

(Y (�) = π−3/2) is simplified as

W (r, p, θ) = 1

π3

∫
d6ye−ipy1ϕ

(
r+

y

)
ϕ∗ (

r−
y

)
,

r±
y =

√√√√r2 + 1

4

6∑
i=1

y2
i ± (y1r cos θ + y2r sin θ). (12)

Note that the vectors r and p in the Wigner function are cor-
related with each other through the angle θ between them. By 
integrating out the angle we obtain the probability to find the 
three charm quarks in the ground bound state in a hyperspheri-
cal shell in coordinate space at radius r and in a hyperspherical 
shell in momentum space at radius p,

P(r, p) = 1

24π
r5 p5

π∫
0

W (r, p, θ) sin4 θdθ (13)

which satisfies the normalization

∞∫
0

P(r, p)drdp = 1. (14)

Fig. 2 shows the probability P(r, p). The most probable position 
in the phase space is located at (r, p) ∼ (0.5 fm, 1 GeV), leading 
to r · p ≈ 2.5, which is near to the result 

√〈r2〉〈p2〉 = 3 from the 
uncertainty relation for a Gaussian Wigner function.

The observed momentum distribution of �ccc via coalescence 
mechanism can be calculated from the Wigner function [36,37],

dN

d3P
= C

∫
d3R

(2π)3

∫
d3rxd3ryd3pxd3py

(2π)6

× F (r1, r2, r3,p1,p2,p3)W (rx, ry,px,py), (15)

where F is the distribution function of the three charm quarks 
in phase space, C the factor to count the intrinsic symmetry. For 
�ccc , it is a color singlet and carries spin 3/2. Since there is only 
one color singlet state in the 3 × 3 × 3 = 27 possible color states 
and 4 spin 3/2 states in the 2 × 2 × 2 = 8 possible spin states, we 
obtain C = 1/27 × 4/8 = 1/54.

In relativistic heavy ion collisions, the hadronization of the par-
ton system happens on the hypersurface of confinement phase 
transition. The 4D coordinates Rμ = (t, R) on the hypersurface is 
constrained by the hydronization condition,

T (Rμ) = Tc (16)
Fig. 2. The probability P(r, p) to find the three charm quarks in the ground bound 
state in a hyper spherical shell in coordinate space at radius r and in a hyper spher-
ical shell in momentum space at radius p.

which leads to t = t(Tc, R), where Tc is the critical temperature of 
the confinement phase transition, and the local temperature T (Rμ)

and fluid velocity uμ(Rμ) (which will be used in the charm quark 
distribution) are determined by hydrodynamic equations

∂μT μν = 0 (17)

with T μν = (ε + p)uμuν − gμν p being the energy momentum ten-
sor and ε and p the energy density and pressure. To close the 
hydrodynamical equations one needs to know the equation of state 
of the medium. We follow Ref. [38] where the deconfined phase at 
high temperature is an ideal gas of gluons and massless u and d
quarks plus 150 MeV massed s quarks, and the hadron phase at 
low temperature is an ideal gas of all known hadrons and reso-
nances with mass up to 2 GeV [39]. There is a first order phase 
transition between these two phases with the critical temperature 
Tc = 165 MeV. For the initialization of the hot medium, we take 
the same treatment as in Ref. [40]. The maximum temperature of 
the medium at the starting time τ0 = 0.6 fm/c is T0 = 484 MeV
for central 2.76 TeV Pb+Pb collisions at LHC.

Changing the volume integral d3R to the covariant integral on 
the hypersurface �, the �ccc distribution is rewritten as

dN

d2PT dη
= C

∫
�

Pμdσμ(R)

(2π)3

∫
d4rxd4ryd4 pxd4 p y

(2π)6

× F (r̃1, r̃2, r̃3, p̃1, p̃2, p̃3)W (rx, ry, px, p y), (18)

where PT , η and P 0 =
√

P2 + m2
� are, respectively, the �ccc trans-

verse momentum, rapidity and energy. Remember that the Wigner 
function obtained above is derived in the center of mass frame of 
�ccc and the �ccc moves with 4-velocity vμ = Pμ/m� in the lab-
oratory frame, the coordinates r1, r2, r3 or rx, ry in the parton dis-
tribution function F should be replaced by r̃μ

x = Lμ
νrν

x , ̃rμ
y = Lμ

νrν
y

with the boost matrix elements L0
0 = v0, L0

i = Li
0 = vi , Li

j =
δi, j + ξ vi v j , and ξ = 1/(1 + v0). Since in the center of mass frame 
of the three charm quarks the coalescence happens at the same 
time, there is r0

x = r0
y = 0. Similarly, the momenta pi (i = 1, 2, 3) in 

the charm quark distribution F are replaced by p̃μ
i = Lμ

ν pν
i with 

p0 =
√

p2
i + m2

c .

We now consider the integral element dσμ(R) over the coa-
lescence hypersurface �. In the framework of Bjorken hydrody-
namics [41], we take the rapidity η = (1/2) ln[(t + Rz)/(t − Rz)], 
the transverse radius RT =

√
R2

x + R2
y and the azimuth angle φ =

arctan(R y/Rx) as independent variables instead of R and regard 
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the proper time τ =
√

t2 − R2
z as a function of η, RT , φ through 

the coalescence condition (16), the hypersurface element can be 
expressed as

dσ0 =
(

RT
∂τ

∂η
sinhη + RT τ coshη

)
dRT dφdη,

dσ1 =
(
τ

∂τ

∂φ
sinφ − RT τ

∂τ

∂ RT
cosφ

)
dRT dφdη,

dσ2 = −
(
τ

∂τ

∂φ
cosφ + RT τ

∂τ

∂ RT
sinφ

)
dRT dφdη,

dσ3 = −
(

RT
∂τ

∂η
coshη + RT τ sinhη

)
dRT dφdη. (19)

The three quark distribution F (r1, r2, r3, p1, p2, p3) can be fac-
torized as

F (r1, r2, r3, p1, p2, p3) = S f (r1, p1) f (r2, p2) f (r3, p3), (20)

where S counts the symmetry of the same specie of quarks. For 
�ccc we simply take S = 1/3! = 1/6, since the number of charm 
quarks in an event is much larger than 3 at LHC energy. The single 
charm quark distribution f is in principle between the pQCD and 
equilibrium distributions. From the experimental data at LHC [42,
43], the observed large quench factor and elliptic flow for charmed 
mesons indicate that the charm quarks interact strongly with the 
medium. Therefore, one can take, as a good approximation, a ki-
netically thermalized phase space distribution for charm quarks,

f (ri, pi) = ρ(ri)
N(ri)

euμ(ri)pi
μ/T (ri) + 1

, (21)

where the local temperature T (ri) and fluid 4-velocity uμ(ri) of 
the medium are determined by the hydrodynamics, and

N(ri) =
[∫

d3p

(2π)3

1

euμ(ri)pμ/T (ri) + 1

]−1

(22)

is the normalization factor. The number density ρ(ri) is controlled 
by the charm conservation equation

∂μ

[
ρ(ri)uμ(ri)

] = 0. (23)

The charm quark number density at initial time τ0 = 0.6 fm/c is 
fixed by the colliding energy and nuclear geometry,

ρ(τ0,xT , η) = T A(xT )T B(xT − b) coshη

τ0

dσ cc
pp

dη
, (24)

where T A and T B are the thickness functions of the lead nuclei 
with nuclear matter density following the Woods–Saxon distribu-
tion, dσ cc

pp/dη is the rapidity distribution of charm quark cross 
section in p + p collisions, and b is the impact parameter.

We now apply the above coalescence approach to �ccc produc-
tion in relativistic heavy ion collisions. The yield at middle rapidity 
in Pb+Pb collisions at colliding energy 

√
sN N = 2.76 TeV is shown 

in Fig. 3 as a function of the number of binary collisions Ncoll . The 
charm production cross section is taken as dσcc̄/dη = 0.7 mb [44]. 
The yield increases almost linearly with Ncoll and reaches 5 × 10−4

in the most central collisions. If we consider a homogeneous fire-
ball with volume V at the coalescence time, the yield of �ccc can 
be estimated as

N� ∼ N3
c

V 2
, (25)

where Nc is the charm quark yield. Supposing both Nc and V are 
proportional to Ncoll , the yield of �ccc is then proportional to Ncoll , 
Fig. 3. The �ccc yield as a function of the number of binary collisions Ncoll in Pb+Pb 
collisions at middle rapidity and colliding energy √sN N = 2.76 TeV.

Fig. 4. The J/ψ nuclear modification factor R A A at middle rapidity as a function 
of the number of participant Npart in Pb+Pb collisions at √sN N = 2.76 TeV. The 
theoretical band is due to the uncertainty in the charm cross section, the upper and 
lower limit of the band correspond to dσ/dη = 0.7 and 0.5 mb. The data are from 
the ALICE Collaboration [47].

which approximately explains the linear increase in Fig. 3. From 
the �ccc yield we can define an effective cross section per binary 
collision,

σ� ≡ N�

Ncoll�η
σpp . (26)

With the inelastic proton cross section σpp = 62 mb, the rapidity 
range �η = 1.8, and Ncoll = 2000 for the most central collision, 
we have σ� = 9 nb, which is much larger than the cross section 
0.06–0.13 nb at 7 TeV and 0.1–0.2 nb at 14 TeV in p+p collisions 
at mid rapidity |η| < 2.5 [45]. It is necessary to point out that the 
tightly bound states of heavy quarks are in principle continuously 
produced in the medium above Tc and suffer from dissociation due 
to the interaction with the medium [46]. Therefore, the above ob-
tained �ccc yield from the sudden coalescence approach without 
considering dissociation is more like the upper limit of the pro-
duction.

We also calculated the wave function and in turn the Wigner 
function for J/ψ where the interaction between the c and c̄ is 
exactly the Cornell potential. The calculated nuclear modification 
factor R A A = N A A/(Npp Ncoll) for J/ψ in Pb+Pb collisions at LHC 
energy is shown in Fig. 4 as a function of the number of partic-
ipant nucleons Npart , where N A A and Npp are, respectively, the 
J/ψ yield in Pb+Pb and p+p collisions. The model calculation with 
charm cross section dσ/dη = 0.7 mb, corresponding to the upper 
limit of the theoretical band, is clearly overestimated, in compar-
ison with the experimental data [47]. This is probably due to the 
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Fig. 5. The transverse momentum distribution of �ccc (solid line) and J/ψ (dashed 
line) at middle rapidity in central Pb+Pb collisions at √sN N = 2.76 TeV. The calcu-
lation for J/ψ is scaled by a factor of 10−3.

lack of J/ψ dissociation in the hot medium and the large charm 
cross section. Note that the J/ψ production in heavy ion colli-
sions is more complicated than �ccc . J/ψs can be produced via 
both initial p+p collisions and later coalescence, while the coales-
cence is the only way for �ccc production at LHC energy. A good 
description of the experimental J/ψ data needs dσ/dη = 0.5 mb
in our calculation, see the lower limit of the theoretical band in 
Fig. 4.

In heavy ion collisions, transverse motion is developed dur-
ing the dynamical evolution of the system. The microscopically 
high particle density and multiple scatterings are essential for 
the finally observed transverse momentum distributions. The dis-
tributions are therefore sensitive to the medium properties, like 
the equation of state. In order to understand the �ccc produc-
tion mechanism and extract the properties of the medium, we 
calculated the transverse momentum distributions of �ccc and 
J/ψ , shown in Fig. 5 with the assumption of thermalized charm 
quark distribution. In both cases the distribution drops down 
monotonously with transverse momentum pT . For �ccc it is about 
one order of magnitude smaller at pT = 4 GeV than that at pT = 0. 
As a characteristic of the coalescence mechanism [13,12,14], the 
decreasing of J/ψ becomes faster than �ccc at high pT .

We briefly discuss the possibility to experimentally observe 
�ccc . Since �ccc is the ground state of triply charmed baryons, 
its decay is via weak interaction, like the non-leptonic channel 
�ccc → �sss + 3π+ [45]. Taking a simple statistical model calcu-
lation for central Pb+Pb collisions at the LHC energy, there are 
roughly 10−7 uncorrelated �sss + 3π+ quadruplets around the 
�ccc mass with width � � 3�D+ . Assuming that the branch ra-
tio for the non-leptonic decay of �ccc is the cube of that for 
D+ → K +π+ , the correlated quadruplets from �ccc decay is about 
10−8, and the signal/background ratio is then 10−1 which looks 
acceptable.

In summary, we investigated the production of �ccc baryon 
via coalescence mechanism in relativistic heavy ion collisions. We 
solved the Schrödinger equation for the ground bound state of 
three charm quarks by the hyperspherical method and derived the 
radial wave function of �ccc . With the obtained Wigner function 
as the coalescence probability and thermalized charm quark dis-
tribution, we calculated the �ccc yield and transverse momentum 
spectrum in Pb+Pb collisions at colliding energy 

√
sN N = 2.76 TeV. 

The obtained production cross section per binary collision is at 
least two orders of magnitude larger than that in a p+p collision at 
LHC energy. Therefore, it becomes most probable to observe �ccc

in heavy ion collisions at LHC, and its observation is a clean signa-
ture of the quark–gluon plasma formation.
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