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ABSTRACT 

We study the well-known Sylvester equation XA - BX = R in the case when A 
and B are given and R is known up to its first n - 1 rows. We prove new results on 
the existence and uniqueness of X. Our results essentially state that, in case A is a 
nonderogatory matrix, there always exists a solution to this equation; a solution is 
uniquely determined by its first row xl; and there is au interesting relationship 
between zl and the rows of R. We ah give a complete characterization of the 
nonsingularity of X in this case. As applications of our results we develop direct 
methods for constructing symmetrizers and commuting matrices, computing the 
characteristic polynomial of a matrix, and finding the numbers of common eigenvalues 
between A and B. Some well-known important results on symmetrizers, Bezoutiaus, 
and inertia are recovered as special cases. 

I. INTRODUCTION 

The Sylvester matrix equation 

XA-BX-R, 0.1) 
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where A, B, and R are given complex matrices of appropriate dimensions 
and X is the unknown matrix, has been widely studied in the literatures of 
linear algebra and control theory. It is known that a solution X to this matrix 
equation may or may not exist, and when a solution exists, it is unique iff A 
and B do not have an eigenvalue in common. No complete characterization 
of nonsingular solutions is available. 

In this paper, we study the Sylvester equation in the case when A and B 
are given and R is known up to its first n - 1 rows. The equation (l.l), in the 
special case when B = - x is a normalized lower Hessenberg matrix and the 
first n - 1 rows of R are zero, was used earlier by Carlson and Datta [3] in 
connection with developing an algorithm for computing the inertia of A, and 
recently by Datta [7] and Datta and Datta [8] for solving the well-known 
eigenvalue and canonical form assignment problems in control theory. Here, 
with B as a normalized lower Hessenberg matrix and A as an arbitrary 
matrix, we prove a new result (Theorem 1) on the existence and uniqueness 
of a solution X to (1.1). Our results essentially state that, in contrast to the 
known results on the Sylvester equation, the equation (1.1) in this case always 
admits a solution, a solution is uniquely determined by its first row xi, and 
there is an interesting relationship between xr and the rows of R. We also 
give a complete characterization of the nonsingularity of X in this case. As 
applications of our results we develop direct methods for constructing sym- 
metrizers and commuting matrices, computing the characteristic polynomial 
of a matrix, and finding the number of common eigenvalues between A and 
B. Some well-known important results on symmetrizers, commuting matrices, 
bezoutians, and inertia are recovered as special cases. 

In conclusion here, we remark that, though we assume (for the sake of 
simplicity only) that B is a normalized lower Hessenberg matrix, the results 
of this paper are valid (with trivial modifications) for any nonderogatory 
matrix B. Note that a nonderogatory matrix B is orthogonally similar to an 
unreduced Hessenberg matrix, that is, a Hessenberg matrix with nonzero 
codiagonal. An unreduced Hessenberg matrix can further be reduced to a 
normalized Hessenberg matrix by diagonal similarity [3]. 

II. A THEOREM ON THE EXISTENCE AND UNIQUENESS OF THE 
SOLUTION OF XA - BX = R 

THEOREM 1. Let B=(bjj) be an nxn rwrmulized lower Hessenberg 
matrix -tht is, bij=O ifj>i+l and biicl=l, i=l,...,n-1-uand let 
A be a&tray. Let r,, r,, . . . , r,,_ 1 be n - 1 vectors in row n-space. 
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(i) there always exists an X such that XA - BX = R has as its first n - 1 
rows rl through r,, _ 1. 

(ii) X is uniquely determined by xl, the first row of X. 
(iii) Let r,, be the nth row of R. Then 

x&(A) =r,D,,+ ‘.a +r,_,D,_,,,+( -l)“+‘r,, 

where Di i is the n X n matrix which is the cofactor of the element d i j in the 
matrix a 

D= 

I b,,Z - A Z 0 . . 0 

b2,Z b,Z-A Z 0 .‘. 0 
. *. *. 

I’ 6 
Z 

b,,Z . . . . b,,,Z - A 

and C#J(X) is the churacteristic polynmniul of B. 

Proof. From 

XA-BX=R 

we have 

XA=R+BX. 

Let 

/ \ 
Xl 

x2 

x= * . 

,%I/ 
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Then 

Xl \ 

x2 

\%I, 

= 

A 

b 11 1 0 0 ... 0 

b 21 b, 1 0 ... o 

( 

\ 

b,_l,l . . . . b-1 n 

b 
?I1 . ’ . . b,_,:, 

Comparing the two sides, we have 

-1 

0 

0 

1 

b nn 

\ 
I 

I, 
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Xl 

x2 

X,-l 

X” 

f 

x1( b,,Z - A) + x,Z = - rl, 

x,b2,Z+x2(b,Z-A)+x,Z= -r,, 

(2.1) 

xIbn_,,,Z + . . . +x n_l(b,,_l,n_ll - A) + x,1 = - r,_,, 

xlb,,,Z + . . . + xn( b,,Z - A) = - r,,. 

From the first n - 1 equations of (2.1) it is obvious that given x1, the 
unknowns x2 through x, can be determined uniquely by rows rl, r2,. . . , r,, _ I 
of R. 

Multiplying the lst, 2nd,.. . , nth equations of (2.1) on the right by the 
cofactors of d,,, d,,, . . . , d,, respectively and adding, we have 

- x,t#~(A)=r,D,,+r~D~,,...,+r,,_,D,_,,,+( -l)“+lr,,. W (2.2) 
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NOTE. Given r,,, the system (2.2) has a unique solution xi iff +(A) is 
nonsingular, that is, iff A and B do not have an eigenvalue in common. The 
matrix X is also uniquely determined in this case. We thus recover a 
well-known result on the uniqueness of solution of Sylvester’s equation 
[lo, 151. 

Nomingularity of X 
We now give a characterization for nonsingularity of solutions X of the 

Sylvester equation 

XA-BX=R, 

where A, B, R, X E F”,“, the set of n X n matrices over a complex field F. 
We shall assume further that B is normalized lower Hessenberg. Partial 
solutions have been obtained previously by Hearon [12] and Bhattacharyya 
and DeSouza [l]. Carbon and Datta [4] obtained a characterization of 
nonsingularity of solutions to a special type of quadratic matrix equation: 
XA + A*X = X*B*BX, under the assumption that (A, B*) is controllable. 

Let X and R have rows x j, rj respectively. Let (xi,. . . , xi) be the space 
spanned by xi,. . . , xi. Let Y E F"*" with rows yj such that 

Y, = Xl, 

(2.3) 
Y. 1+1 = xi+l md(q,...,q), i=1,2 ,..., n-l, 

i.e., yi+l = xi+1 + ailxl + . - . + aiiri for some ail, ais,. . . , aii E F. 
It follows that det Y = det X, so that det Y # 0 is a necessary and sufficient 

condition for the nonsingularity of X. 
We shall first define vectors 

z;, 2; ,...) z;_,; zf;...; z:_,;...; z;l-’ 

recursively by 

Zf=rr, j=l,...,n-1, 

and then for each p = 1,. . . , n - 1, 

Z”+‘=Z/qtl+ i bjkZfP+rjAP, j=l,...,n-1. f (2.4) 
k-l 
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Let us consider y, = xl, and define 

i-l I 

Yi+l= - c c b,,Z;-‘+x,A’, i=l,..., n-l. (2.5) 
1-l I=1 k=l 

As an illustration, for n = 3, we first define 

z; = r-1, z; = rz, Z,z = Z; + b,,Z; + r,A = rz + rl( b,,Z + A), 

and then 

Y, = Xl, y,= -rr,+x,A, 

y3 = - r2 - r,( bl,Z + A) + x,A2. 

From (2.1) we have 

i 
xj+l= - rj - c bjkXk + rjA, j=l,...,n-1. @*f3) 

k-l 

ForaU p=O,l,..., n-1, wehave 

i 
x~+~AP= - rjAP - c bjkxkAP + xjAP+‘, j=l ,..., n-l. (2.7) 

k=l 

We must prove that (2.3) holds. Fix the index (i, i). From now on all 
calculations are made mod(x,,...,xi). From (2.7) for p =0 we have 

Also, by induction, for p = 1,. . . , n - 1 we have 

xjA p-z;, j=l ,...,i-p. (2.8) 
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Assuming (2.8) and (2.4), 

x.A”+‘= 
I 

x~+~A~ + rjAp + i bjkxkAP= Z;+‘, j=l,...,i-p-l. 
k=l 

Now from (2.7) for (j, p) = (i,O), (i - 1, l), . . . ,(l, i - l), 

xi+l= -ri + XiA, 

i-l 

XiA= -ri_lA- C bi_l,kZL+ x~_~A’, 
k-l 

i-2 

xi_lA2 = - ri_2A2 - c bi_2,kZ; + x~_~A~, 
k-l 

x 

2 
A’-‘= - r 1 A’-’ - b,,Z;-‘+ x,A’. 

Adding and canceling xi A,. . . , x,A’-‘, we obtain 

i-l 2 

xi+l= - c c blkZ;-‘+xlAi=yi+l. 
l-1 Z-1 k-l 

We have proved the following: 

THEOREM 2. Let B be a norm&& Lower Hewnberg matrix. Zf X is a 
sohtim of (l.l), then X is non&g&r ifl 

I 
Xl 

-r,+x,A 

\ 

det - r, - rlA - b,,Z, + xlA2 

n-2 1 
# 0. 

- r,,_, - r,,_2A - . . . - rlAnP2 - c c b,,Z;-‘-‘+ x,A”-’ 

\ 1-l k-l 
I 
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A special case: If the first n - 1 rows of R are zero, then a solution X of 
the equation (1.1) is nonsingular iff 

‘Xl \ 
x1* 

rank : =fl > 

xi*+1 

that is, iff (A’, xf ) is controllable. 

III. APPLICATIONS 

A. Synmetrizers 

A symmetric matrix X is cahed a right symmetrizer of B if BX = XBr. 
Existence of a symmetrizer for an arbitrary matrix B was proved by Taussky 
and Zassenhaus [17] in 1959. 

In our discussion of Section II, if we choose ri through r,_ i to be zero 
and then A = Br, then from (2.2) we have r,, = 0, because by the Cayley- 
Hamilton theorem +(A) = 0. This gives R = 0, and the matrix equation (1.1) 
then becomes XBr = BX. If the first row xi of a solution X of this equation is 
chosen so that (B, x:) is controllable, then according to Theorem 2 X is 
nonsingular and therefore, B being nonderogatory, by a well-known theorem 
due to Taussky and Zassenhaus [17, Theorem 21, X is a right symmetrizer 
of B. 

Combining the above arguments with the results of Theorem 1, we can 
now state: 

THFDREM 3. Given a nonnulized lower Hessenberg matrix B and an 
a&tray n-uector xl such that (B, XT) is controllubb, there always exists a 
nonsingular symmetrizer X of B with x1 as its first row; and X is uniquely 
determined by such a x1. 

REMARKS. 

(1) Since (B, e,‘) is controllable, it follows from the above result that a 
right symmetrizer X of B with e, as its first row is nonsingular. In fact, 
taking x,=e,=(O,O ,,..., 1) and computing xs through x,, using the recur- 
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sive relation mentioned above, it is easy to see that the symmetrizer X has 

‘i,n+l-i =landxi,=Oifi+j<n+l. 
(2) A symmetric matrix X is called a left symmetrizer of B, if XB, = BTX. 

The case of left symmetrizes can similarly be disposed of. However, it is to be 
noted that a left symmetrizer of B, is uniquely determined by its last row x, 
chosen so that (Br, x$) is controllable. Such a symmetrizer is, of course, 
nonsingular. 

The Bezout Matrix as a Symmetrizes and Derivation of an Zmportant 
Property. Let 

i 

OlO*.*.O 
0010~*~0 

A= 

and 

B= 

I. ....... 
........ 

0 ...... 1 

al * * * - * . a, 

‘0 lOO***O 
0 0 1 . . . . . 
. . . . . . . . 

. . . . . . . . 
0 . . . . . . 1 

/b, b, - . . - . b, 

be two companion matrices (in normalized lower Hessenberg forms) of the 
polynomials 

f(z) =x” - (anxn-l + * - * + a,), 

g(x) =x” - (b,,,“-‘+ - - - + b,). 

Then it is easy to see that 

X=diag(l, -l,...,( -l)+l) 

isasolutionofthematrixequation XA-(-B)X=R,wherethefirst n-l 
rows of R are zero and 
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Construct now a left symmetrizer of B with r, as its last row. This 
symmetrizer can be easily recognized as the Bezout matrix associated with 

f(r) and g( - r) PI. A well-known classical result [13, 141 about Bezout 
matrices is: the Bezout matrix associated with f(x) and g( - x) is nonsingu- 
lar iff f(x) and g( - x) are relatively prime. Many diferent proofs of this 
result are available [6, 13, 141. Using the results of our Theorem 1, we can still 
give an alternative proof of this result as follows: 

Let cl,ca,..., c, be the n rows of the Bezout matrix. Then by Theorem 1, 
we have 

C” = r, = ( - l)“q#J( - B) = ( - l)“er+( - B), 

where 

e,=(l,O ,..., 0). 

Then from the construction of the left symmetrizer of B we have 

ci = Ci+l(B) 

= c,(B)“-’ 

= (- l)“e&( - B)(Z3)“Pi 

= ( - l)“e,(B)“-‘Q( - B) 

Thus, the Bezout matrix associated with 

for i=1,2 ,..., n-l. 

f(r) and g(r) is 

’ Cl \ ’ ( - l)“elB”-l+( - B) ’ 
c2 ( - l)“e,B”-2+( - B) 

= * 

\ cn , 
( - 1)“ed - B) 

/o 0 . . . I\ ‘e1 \ 
0 0 1 . elB 

=(-1)” : : : $4 - B). 
. . 

\l 0 ... 01 erB”-r 

Since (Br, e:) is controllable, it follows that the Bezout matrix is nonsingular 
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if +( - B) is nonsingular. But from the nonsingularity of $( - B), it follows 
that f(x) and g( - x) are relatively prime, and conversely. 

B. Commuting Matrices 
In (1.1) choose A = B and ri through r,, as zero vectors. Then R = 0; and 

the solutions X to (1.1) are then matrices that commute with A. 

COROLLARY to Theorem 1. Associated with a rwrmalized lower Hessen- 
berg matrix A and an n-uector xl, there is a matrix X with xl as its first row 
such that X commutes with A. X is uniquely determined by x1. X is 
norrsingular iff (A*, XT) is controllable. 

As before, our procedure yields a recursive formula for generating a 
n-parameter family of matrices which commute with A. 

Derivation of a Known Result on Commuting Matrices. It is shown in 
[5] that the vectors x2 through x, defined recursively are the second through 
nth rows of a polynomial matrix I’( A) in a normalized Hessenberg matrix A 
with first row xi. We therefore immediately have the following well-known 
result on commuting matrices [lo]: A matrix X that 

THEOREM 3. Let B be a norm&& lower Hessenberg matrix, and let 

A= 

olo~**o 
OOl***O 
0001**0 
. . . . . . . 
. . . . . . . 
. . . . . . 1 
oo****o 

\ 

I 

Let X be the solution of the equation (Ll), with xl = e, = (LO,. . . ,O). Let 
+(x)=(-l)“x”+b,_ix”-l+ ... + b0 be the charactaistic polynomial of 
B. Let the first n - 1 rows of R be zero. Then r,,, the lust row of R, is 

(-l)“r,=(b,,b,,b,,...,b,_,) 
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Proof. From Theorem 1, we have 

( - l)“r,, = e&(A). 

Write +(x) = ( - l)%” + P(r). Since A” = 0, we have +(A) = Z’(A). Thus 

( - 1)“~~ = e,P( A) = bae, + b,e,A + . . * + b,_,e,A”-’ 

=b,e,+b,e,+ .*. +b,_,e,_, 

= (b,, hi,..., b,_,). n 

REMARKS. Note that the above theorem gives us a constructive proce- 
dure for computing the characteristic polynomial of a normalized Hessenberg 
matrix I%. 

D. Ccmmon Eigenvalue Problem 
The problem of finding the number of common eigenvalues between two 

given matrices A and B and, in particular, of finding if they are relatively 
prime, is an important problem in mathematics and arises in control theory. 
It is a classical result in matrix theory [lo, 141 that the resultant of the 
characteristic polynomials of A and B (equivalently, the determinant of 
A@ I - I@ B) is nonsingular iff A and B do not have an eigenvalue in 
common. However, this approach is not computationally attractive. Another 
approach is to solve the matrix equation XA - BX = R. It is well known [ 151 
that X is the unique solution of this equation iff A and B are relatively 
prime. The most effective method available for solving this equation, namely 
the Hessenberg-Schur method of Golub, Nash, and Van Loan [ll] requires 
however the transformation of one of these two matrices into real Schur form, 
which is equivalent to finding the spectrum of that matrix. Using our 
Theorem 1, we can derive direct methods for solving this problem. These 
methods will not require computation of the characteristic polynomials or the 
spectrum of any of the given matrices. 

Let the first n - 1 rows of R be zero. Then from (2.2) we have 
r, = ( - l)“x,+(A). Thus choosing x1 successively as the 1st through the nth 
row of the identity matrix, we can construct +(A) [without computing (p(x) 
explicitly]. Once +(A) is known, the relative primeness of A and B (in fact 
the number of common eigenvalues) can be determined by finding the rank 
and nullity of $(A). However, this approach will yield an 0( n4) method, 
since we have to repeat the recursion n times. Certainly an 0(n4) method is 
unpractical. 
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A more practical approach will be as follows: 

1. Transform A also into lower Hessenberg Form. (Assume, for the sake of 
simplicity, that it has unit superdiagonal. If not, the problem can be 
decomposed into several smaller problems of lower dimensions.) 

2. With x,=e,=(l,O,O ,..., 0), construct a solution X of the equation (1.1) 
using the recursion (2.1). 

3. Compute r,. 
4. With r, as pi, construct p, through p, recursively using: 

i-l 

Pi+ 1 = P,(A - ai,‘) - C aijPj_ i=l ,...,n-1. 
j=l 

IA 

‘Pl\ 

PZ 

P= . . 

\ P” , 

THEOREM [5]. lk number of common eigenvalues between A and B is 
equal to the nullity of P; in particular, A and B are relatively prime iff P is 
rwnsingulur. 

Proof. We have p, = r,, = ( - l)“e,+( A); as noted earlier, the vectors p, 
through p, define the rows of a polynomial matrix in A; and a polynomial 
matrix in normalized lower Hessenberg matrix is uniquely determined by its 
first row [5]. It follows that P = ( - l)“+(A). n 

E. Inertia Method 
The inertia of an n X n square matrix A is defined as In(A) = 

(a( A), v(A), S(A)), where ~r( A), v(A), 6(A) are respectively the numbers of 
eigenvalues of A with positive, negative, and zero real parts. 

In [3], Carlson and Datta gave a direct method for computing the inertia 
of a nonhermitian matrix in terms of the inertia of a hermitian matrix. Here 
we give an alternative derivation of the Carlson-Datta method. 

THEOREM [3]. Let A be a normalized lower Hessenberg mutrir. Let L be 
a rwnsingulur lower triungulur matrix with 1, = (l,O, . . . ,0) as its first row 
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such that the first n - 1 rows of the matrix R = LA + A-L are zero. Let S be a 
left symmetrizes of A with T,,, the last row of R, as its last row. Define 
H = L*S. Zf H is nonsingular, then H is hermitian and In(A) = In(H). 

Proof. 

HA + A*H = L*SA + A*L*S 

= L*ATS + A*L*S 

=(LA+AL)*s 

= r,*r, 2 0. (2.9) 
Since 

H=L*S 

and L is nonsingular by construction, the nonsingularity of H implies that S 
is nonsingular. From the special case of Theorem 2, it therefore follows that 
(A’, r,‘) is controllable, where 

r, = (- l)“+‘Z,$(A). 

K= 

II 

\ 

= +(A) 

( - l)“+‘Z, A 
I I 

The controllability of (AT, r,‘) implies that K is nonsingular. However, K is 
nonsing@ar iff +(A) is nonsingular, and the nonsingularity of +(A) implies 
A and A do not have any common eigenvalues. This means that 6(A) = 0. 
Now, applying the well-known inertia theorem of Carlson and Schneider [2] 
to the equation (2.9), we conclude that In(A) = In(H). n 

= 
(-l)“+‘Z, $(A) A”-’ 

(-l)“+‘Z, +(A) A”-” 

( -1)“~‘I1 +(A) A 

(- 1)“~‘I, A”-’ \ 
\ 

I 
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Z would like to express my sincere thanks and gratitude to Professor David 
Carlson for making some constructive suggestions on this paper. In particular, 
he suggested the proof of Theorem 2. 
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