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Let X be a metrizable space and F(X) and A(X) be the free topological group over X and 

the free Abelian topological group over X respectively. We establish the following criteria: 

(a) tightness of A(X) is countable iff the set X’ of all nonisolated points in X is separable, 

(b) tightness of F(X) is countable iff X is separable or discrete, 

(c) A(X) is a k-space iff X is locally compact and X’ is separable, 

(d) F(X) is a k-space iH X is locally compact separable or discrete. 

We also show that if X is second-countable, then F(X) and A(X) are k,-spaces iff X is locally 

compact. 

AMS (MOS) Subj. Class.: 54C40, 54A25 

Introduction 

The structure of the free topological group over a topological space X is very 

simple from the algebraic point of view-it is exactly the free algebraic group over 

the set X. On the contrary, the topology of F(X) is rather complicated even for 

very simple spaces X. Indeed, only when X is discrete can the space F(X) have 

the Baire property or the Frtchet-Urysohn property, only for X countable and 

discrete the space F(X) is second-countable. Even for the space Q of rationals 

F(Q) is not a k-space. It remains unknown whether F(X) is paracompact if X is 

the product of a compact space with a discrete space. 

In this paper we consider the following questions: For which space X is the space 

F(X) a k-space? When is the tightness of F(X) countable? It is only natural to 

state similar questions for the free Abelian topological group A(X)-more so 

because the answers turn out to be different. 
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The first theorem of this type was obtained by Graev [ 1 l] who proved that for a 

compact space X the spaces F(X) and A(X) are k,-spaces. Later this was general- 

ized by Mack, Morris and Ordman [14] who showed that the same is true if X is 

a k,-space. On the other hand, the free topological group over rationals is not a 

k-space [IO] as we already mentioned above. Using [I I] one can easily deduce that 

if X is compact of countable tightness, then the tightness of F(X) is countable. If 

X is second-countable, then F(X) and A(X) (and, in fact, any topological group 

generated by its subspace homeomorphic to X) have countable network weight [3] 

and therefore countable tightness. Thomas noted [22] that the tightness of the free 

Abelian topological group over the sum of a segment of the real line and a discrete 

space is countable. The question whether the same is true for the free topological 

group was raised by Coban [8]. The criterion obtained in this paper yields the 

negative answer to Coban’s question. 

Some results of this were announced in [7,6]. 

1. Notations, terminology and some general facts 

All topological spaces in this paper are assumed to be Tychonoff. In notations 

and terminology we follow [I, 91. The symbols F(X) and A(X) denote respectively 

the free topological group and the free Abelian topological group over a space X 

[ 15, 111. The group F(X) without topology is the free algebraic group over the set 

of generators X-that is, F(X) is the set of all irreducible words x;l . . . x> where 

XI,..., x, are elements of X and ei E {-1, l}, i = 1,. . . , n, equipped with the natural 

group operation. We denote by e the empty word which is the unity of the group 

F(X). The length of an irreducible word x;l . . . r> is the number n (by definition, 

the length of e is 0). We denote by F,,(X) the subspace in F(X) consisting of all 

words the length of which does not exceed n. 

The free Abelian topological group A(X) is the topological factor-group of F(X) 

by its cornmutant. In dealing with A(X) we use additive notation. The length of 

an element in A(X) and subspaces A,(X) are defined similarly to that in F(X). 

A covering y of a space 2 is called generating if a subset F in 2 is closed iff for 

each PE y the intersection F n P is closed in P. Clearly, 2 is a k-space iff its 

covering y = {K c Z: K is compact} is generating. The spaces allowing countable 

compact covering are called &,-spaces. We often use: 

Theorem 1.1 [14]. IfX is a k,-space, rhen both A(X) and F(X) are k,-spaces. 

The tightness of a space Z is countable iff Z has a generating covering all elements 

of which are countable. 

The following assertions concerning generating coverings are almost obvious. 
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Proposition 1.2. (i) Every open couering is generating. 

(ii) If y is a generating covering of Z and Z, is a closed subspace in Z, then 

y, = {Z, n P: P E y} is a generating couering of Z,. 

(iii) If a covering y is refined by a generating covering y, , then y is generating. 

(iv) If y’ is a generating covering of Z, y is a covering of Z and yp = {P n A: A E y} 

is a generating covering of P for each P E y’, then y is a generating covering of Z. 

For each subspace Y of a space X we consider subgroups A( Y, X) in A(X) and 

F( Y, X) in F(X) generated by elements of Y As shown in [ 111 closedness of Y 

in X implies closedness of A( Y, X) in A(X) and closedness of F( Y, X) in F(X). 

The following two assertions [25,23] play an important role in our reasoning. 

Theorem 1.3. if X is metrizable and Y is a closed subspace in X, then A( Y, X) is 

naturally topologically isomorphic to A( Y). 

Theorem 1.4. If X is metrizable and Y is a closed subspace in X, then F( Y, X) is 

naturally topologically isomorphic to F( Y). 

For each subset @ in F(X) we define the carrier of @ in X as the set car Q, of 

all elements of X taking part in irreducible expressions of elements of @. In different 

words, car 0 is the minimal set B c X with the property @c F(B, X). We use 

similar definition (and similar denotation) for subsets in A(X). 

Recall that a subset 0 in a space Z is called bounded (in Z) if every real-valued 

continuous function on Z is bounded on @. If Z is Dieudonne-complete (in 

particular, if Z is paracompact), the closure of every bounded set in Z is compact. 

The spaces in which the latter condition holds are called p-spaces. 

The next theorem was obtained independently by Arhangel’skii and eoban. 

However, the proof presented in [S] is not quite correct, so we give its complete 

proof here. 

Theorem 1.5. If @ is a bounded set in F(X) (in A(X)), then car @ is bounded in X. 

We prove the theorem for F(X); the proof for A(X) is quite similar. 

Lemma 1.6. ff {x,: n E N} is a sequence of distinct points in X and f: X + R is a 

continuous function, then there exists a continuous function g : X + R such that 

(a) If(x)-g(x)lSl forallxEX, and 

(b) g(x,) # g(xj) whenever i # j. 

Proof. Define by induction a sequence {g, . . n E N} of real-valued continuous func- 

tions on X satisfying the following conditions: 

(1) jg,(x)lS$” forall XEX and nEN, 

(2) g,(x,)=O whenever i<j, 
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(3) .L+lCXi) +fn+ltxn+I ) for every i<n+l, where 

fn(x) =f(x) + ii, gitx)9 x E x, n E N. 

Put g,(x) = 4 for all x E X. Assume that functions g,, . . . , gk are already defined. 

Put fk(x) =f(x) +I:=, g,(X) and choose a COntinUOUS function gk+r :X --, R such 

that ]gk+,(x)l stk+’ for all x E X, gk+l(Xi) =O and gk+l(Xk+l) #h(Xi)-fk(Xk+l) 

whenever is k. Clearly, the sequence {gi : i E N} thus obtained satisfies conditions 

(l)-(3). 
Put g(x)=cp,,f;(x) for all XEX. The function g(x) is obviously continuous, 

If(x)-g(x)lc 1 f or all x E X and g(x,) # g(x,) for all i #j, i, j E N. 0 

Proof of Theorem 1.5. Put B = car @ and assume that the set B is not bounded in 

X. Take a continuous function f: X + R which is not bounded on B and choose a 

sequence {b, : n E N} of points in B such that f(b”) 2 n for all n E N. 

For each b, fix an irreducible word h, E @ such that b, E K, where K, = car {h,} 

is the set of all “letters” participating in h,. Put A = IJ {K, : n E N}. Arrange elements 

of A into a sequence: A = {x, . * n E N}, where xi # xj whenever i # j. 

We have {b, : n E N} c A, hence the function f is unbounded on A. By Lemma 

1.6 there exists a continuous function g: X + R such that If(x) -g(x)] G 1 for all 

x E X and g(x,) # g(x,) whenever i f j. 

Clearly, g is unbounded on A. Take the continuous homomorphism g : F(X) + 

F(R) extending the function g. Put @, = g(O) and A, = g(A) = g(A). The set A, is 

unbounded in R because g is unbounded on A. 

The mapping g 1 A : A + A, is a bijection and K, is a subset in A. Hence the images 

of distinct points in K, are distinct points in A,. Since K, is the set of all “letters” 

in an irreducible word h, E @, g(K,,) is the set of all letters in an irreducible word 

g^(h,) E z( 0). Hence A, = IJ {g( K,): n E N} is in car ~9,. 

The set @r is an image of the bounded set @ in F(X) under continuous mapping 

g, hence bounded in F(R). The space F(R) is Lindelof, therefore Dieudonne- 

complete, which implies compactness of the closure 4, of @r in F(R). Since R is 

a k,-space, one can find a E R such that F([-a, a], R) I$,I@, (see [14]). Then 

A, c car @, c [-a, a] which contradicts unboundedness of A, in R. The proof of 

Theorem 1.5 is complete. 0 

The following fact is well known (see e.g. [22]). 

Theorem1.7. IfKisacompuctsetinA(X) (inF(X)), thenKisinA,(X)(inF,,(X)) 

for some n E N. 

Corollary 1.8. IfX is Dieudonnk-complete and 4 is a compact set in A(X) (in F(X)), 

then there exist a compact Zc X and n E N such that @ is a continuous image of a 

subspuce in Z”. 
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The Frkhet-Urysohn fan of cardinality K, [2] is the space V(b3,) = 

{ama : m E N, a < o,}u (t3) in which all points a,,, rn E N, (Y <w, are isolated 

and a set U c V(h’,) is a neighbourhood of point 13 iff for every (Y < w, the set 

{m E N: a,,,= 6 Cl} is finite. In different terms, V(K,) is the quotient space obtained 

from the sum of K, many converging sequences by identifying limit points. It is 

convenient to assign to each function cp : o, + N a subset 

in V(K,); obviously, {O(q): cp E N”I} is a base of V(h’,) at point 8. Clearly, V(K,) 

is a paracompact FrCchet space. The following assertion is obvious. 

Proposition 1.9. A space Z of cardinality K, is homeomorphic to V(K,) @there exists 

a generating covering {C, : a < w,} of Z and a point Z~E Z such that 

(a) C, n C, = z,, whenever a # p, CY, /3 < w, , 

(b) each C,, a <w,, is a converging sequence with the limit point zO. 

Applying Proposition 1.2(ii) and (iv) we get: 

Proposition 1.10. A space Zof cardinality K, is homeomorphic to V(h’,) #there exists 

acovering y={Ca:~<~,} ofZandapointz,EZsuch that 

(a) C, n C, = z0 whenever a # p, a, p < w, , 

(b) each C,, CY<W,, is a converging sequence with the limit point zO, 

(c) the covering yO = {LJ y’: y’ c y, y’ jnite} is generating. 

The proof for the next fundamental theorem was found by Malyhin (and is 

presented here with his kind permission). 

Theorem 1.11. Tightness of the product V(K,) x V(K,) is uncountable. 

Proof. As shown in [20, 131, there exist two families d = {A,: a < w,} and 633 = 

{B,: (Y <w,} of infinite subsets in N such that 

(a) A, n BP is finite for any CY, /3 <w,, and 

(b) there exists no A c N such that all sets A,\A, B, n A, (Y < w, are finite. 

Fix a pair Sa, 93 of such families and put 

X = {(a,,, a,+) E V(K,) x V(k4,): m E A, n BP}. 

We are going to verify that the point (0, ,i, s a limit point for X but not for a 

countable subset in X, which proves uncountability of tightness of V(K,) x V(K,). 

Take an arbitrary neighbourhood U of point (8, 0) in V(K,) x V(K,). It is no 

loss of generality to assume that U = 0( cp) x 0( cp) where I,C : w, + N is a function. Put 

A:={n~A,:n~cp(cu)}, B& = {n E B, : n 2 p(a)}. 

IfwehadA&nBb=0forall(Y<w,,P<w,,wewouldhave 

(U {AL: (Y < w,}) n (IJ {B&: (Y < w,}) = 0 
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and, putting A = U {Ah: a -C w,}, come to a contradiction with condition (b). Hence 

one can find (Y < w, and p < w, such that Ah n Sk Z 0. Choose n E Ah n Bb. Now 

(ana, a,p)EXn(O(cp)xO(cp))=Xn u, 

and X n U # 0. Thus (19, 0) is a limit point for X. 

Let K be an arbitrary countable subset in X. There exists an ordinal y < w1 such 

that 

K = {(a,,, anp): a, P < Y, n E N. 

It is convenient to renumerate families A and B in such a way that y = w,, = N. 

For each k E N define a function pk : N + N such that for every k E N there exists 

rk E N such that Cp(f) S (P&.(l) for aI1 13 rk. Now put 

cCI(I)=max{cp(l),max(U{B,: m<r,}nA,)+l} 

and U = 0( +) x 0( 1,4). 

Clearly, CJ is a neighbourhood of the point (0, 0). We are going to check that 

U n K = 0. Note that for all k, I E N, (It(I) 5 max( Bk n A,) + 1. Hence if (a,,, a,&) E K, 

then G(l) > n (n E A, n Sk by definition of X) and (a,,, ank) G U. 

Thus (0, 0) is not a limit point for arbitrary countable subset K in X and the 

proof is complete. 0 

Corollary 1.12. The product V(K,) x V(K,) is not a k-space. 

Indeed, every compact set in V(K,) and hence in V(K,) x V(K,) is countable. 

2. Countability of tightness and k-property in free Abelian topological groups over 

metrizable spaces 

Proposition 2.1. Let X be a metrizable space. If the tightness of A(X) is countable, 

then the set X’ of all nonisolated points in X is separable. 

Proof. If X’ is nonseparable, one can choose an uncountable discrete in X family 

{U Lt : a <co,} of open sets in X each of which contains a point x, E X’. For each 

(Y < w, choose a nontrivial sequence C, c U, converging to -u, (we assume x, E C,) 

and put 

Y=U{C,: (Y<w,}, Y,={x,: (Y<o,}. 

Clearly, Y is closed in X and is homeomorphic to the product C x D(R,) where 

C is a converging sequence and D(Ec,) is the discrete space of cardinality K,. 

Consider the quotient space 2 obtained by identifying to a point the subset Y0 in 

X and the subspace 2, = p( Y) in Z where p: X + Z is the projection. Clearly, p is 

closed. Hence the restriction p 1 Y is quotient and therefore Z, is homeomorphic to 

V(K). 
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Assume that the tightness of A(X) is countable. The homomorphism p:X+ 2 

extending quotient mapping p : X + Z is open [5]. Hence the tightness of A(Z) 

must be countable. To get the contradiction we need only to refer to Theorem 1.11 

and the fact that A(Z) contains a homeomorphic copy of Z x Z [19]. Cl 

Proposition 2.2. Let X be a metrizable space, X’ the set of all nonisolated points in 

X. Then the tightness of A(X) does not exceed the weight of X’. 

Proof. Denote by T the weight of X’. It suffices to prove that if the unity e of A(X) 

is a limit point for a set M c A(X), then e is a limit point for a subset M’c M the 

cardinality of which does not exceed T. 

Choose an external base 3 of X’ in X of cardinality <r and put 

Assign to each Op E Jtl an entourage of the diagonal A in X x X of the form 

V(&)={UxU: UE&}UA. 

Clearly, each V(d), & E .& is a neighbourhood of A in X x X; metrizability of 

X implies V(Dp) being an element of the universal uniformity on X. Since 

{V(a): &’ E .4} is a base for X x X at the set J, this family of sets is a base for the 

universal uniformity on X. 

It is natural to identify M with a subset in the set D3 of all functions from 53 

to D={O, 1) by assigning to each do 11 its characteristic function. Equip D with 

the discrete topology, D.* with the product topology and M with the topology of 

subspace in Da. Clearly, the weight of this topology does not exceed T. 

Now consider the space S = Ju N equipped with the product topology. Clearly, 

the weight of S does not exceed T. Assign to each element s = (d,, . . . , d,,, . . . ) of 

S the set G, of all elements a in A(X) which can be represented in the form 

where ke IV, (Xi, yi) E V(di) for all i s k. The description of neighbourhoods of 

unity in free Abelian topological groups given in [21] (see also [18]) implies the 

family {Gs : s E S} being a base at unity e in A(X). 

Lemma 2.3. For each a E A(X) the set P, = {s E S: a & G,} is closed in S. 

Proof. Fix a E A(X) and assume a E Gs, for some s, E S, s,, = (&y, . . . , dpp”,, . . . ). We 

are going to find a neighbourhood W of s0 in S such that W n P, =8. 

By definition of G,, a can be represented in the form 
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where k E N, (xi, yi) E V(Ay) for all i Sk. Put L={isk:xi#yi} and for each iE L 
choose a set Ui in .& containing both xi and yi. Thus we obtain a finite set {U, : i E L} 

of elements in B. Now put 

W={s=(& I,..., d” ,... ) E S: U, E A, for each i E L}. 

Clearly, W is open in S, S,,E W and a E G, for all s E W, i.e. W n P, = @. 0 

Lemma 2.4. For every subset H in A(X) the set Pu = {s E S: G, n H =P)} is closed 

in S. 

This follows directly from Lemma 2.3 and the equality Pn = n {P, : a E H}. 

Now assume that the tightness of A(X) exceeds r. Then there exists a set M in 

A(X) such that e is in the closure of M but is not in the closure of any subset H 

in M of cardinality ~7. Then for each subset H in M of cardinality ~7 there exists 

a neighbourhood of e disjoint with H, hence Pu # 8. Then the family { Pn : H c M, 
1 HI < r} has the r-intersection property. All sets in this family are closed in S by 

Lemma 2.4 and the weight of S does not exceed 7. Hence the intersection P,,, = 

n{P,: Hc M,IHIsr} is not empty. Choosing an element s in Ph, we obtain a 

neighbourhood G, of e disjoint with M which contradicts the assumption that e is 

in the closure of M. The proof is complete. Cl 

Combining Propositions 2.1 and 2.2 we get the criterion: 

Theorem 2.5. Let X be a metrizable space. Then the tightness of the free Abelian group 

A(X) is countable if and only if the set X’ of all nonisolated points in X is separable. 

Problem 2.6. Is it true that for X metrizable the tightness of A(X) always coincides 

with the weight of the set X’ of all nonisolated points in X? 

Now we turn to studying the k-property in A(X). From Corollary 1.8, Proposition 

1.2(iv) and Proposition 2.1 readily follows: 

Proposition 2.7. Zf X is metrizable and A(X) is a k-space, then the set X’ of all 
nonisolated points in X is separable. 

Proposition 2.8. Zf X is metrizable and A(X) is a k-space, then X is locally compact. 

Proof. Assume that a point X~E X has no neighbourhood with compact closure in 

X. Choose a countable base {V, : n E N} at point x0 such that all sets B, = V,\ V,,,, , 

n E N are noncompact. For each n E N fix a closed discrete in X infinite set 

{&n” : m E N} c B,. Clearly, all points of the set M = {x,, : m E N, n E N} u {x0}, 

except point x0, are isolated in M. By Theorem 1.2, A(M) is homeomorphic to a 

closed subgroup in A(X). To end the proof of the proposition we need to apply 

the following lemma proved by Gul’ko by Pestov’s request. 
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Lemma 2.9. The free Abelian group A(M) over the dejned above space M is not a 

k-space. 

Proof. Assign to each pair k, I of positive integers an element 

in A(M) and consider sets Hk = { hkl: I> k}, k E N and Ef = IJ { Hk : k E N}. We are 

going to check that intersection of H with any compact set in A(M) is closed (in 

fact, finite) and nevertheless H is not closed in A(M). 

First of all, observe that the length of hkl equals 2k + 2, i.e. Hk = A( M)\A2k+Z( M). 

Fix a compact set K = A(M). By Theorem 1.7, K is in A,(M) for some n E N. 

Hence K intersects only finitely many sets Hk and it suffices to check that K n Hk 

is finite for each ke N. 

The set xk = {x,,,~ : m E N} is closed and discrete in M. Clearly, & n car{ hk,} = 

{x(21,k,x c21+llk}-note that these sets are disjoint. Hence for every infinite H’c Hk 

the intersection xk near H’ is infinite, therefore unbounded in M. Theorem 1.5 

implies now that no infinite subset of H is bounded in A(M). Hence K n Hk is 

finite and K n H is finite. 

Clearly, eE H. We shall show that e is a limit point for the set H. To that end 

we are going to use the description of neighbourhoods of unity in free Abelian 

topological groups given in [21,18]. 

For each n E N put 

V,, ={xk,: f>n, i, ke N}u{xo}. 

The family {V, : n E N} is a base of M at point x0. Hence the family {U, : n E N} 

where 

Un=(Vnx V”)UA 

is a base of M x M at diagonal A. As M is metrizable, {U, : n E N} is a base for 

the universal uniformity on M. 

Assign to each sequence P = (p, , . . . , pn, . . . ) of naturals a set GP of all elements 

in A(M) of the form y, - z, + * * * fy, -z,, where r E N, (yj, zi) E U,C, i = 1,. . . , r. 

The description of neighbourhoods of unity in A(M) [21,18] implies the family 

{Gp: PE NN} being a base of A(M) at unity e. To end the proof it suffices to show 

that each G, contains a point from H. 

Fix a P=(p ,,..., p “,.. . ) E NN. Choose naturals k and 1 in such a way 

that k>p, and I> max {k, pz, . . . , pk}. Then (X[Z,)k, +,+l)k) E u, = U,, and 

Cx(2i-l)I, *(Zi)l ) E CJ,c U,,, for each iS k. Hence hkl is in GP and the lemma is 

proved. Cl 

Proposition 2.10. If X is a locally compact metrizable space and the set X’ of all 

nonisolated points in X is separable, then A(X) is homeomorphic to a product of a 

k,-space with a discrete space and therefore is a k-space. 
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Proof. Choose a countable covering y of X with open sets having compact closures 

in X and put X0 = U { 0: CJ E y}. Clearly, X0 is a k,-space and X, = X\X,, is closed 

and open in X discrete. Hence we have A(X) = A(X,,) x A(X,) [12], A(X,) is a 

k,-space by Theorem 1.1 and A(X,) is discrete. •! 

Combining Propositions 2.7, 2.8 and 2.10 we get: 

Theorem 2.11. Zf X is metrizable and X’ is the set of all nonisolated points in X, then 

the following conditions are equivalent: 

(a) A(X) is a k-space, 

(b) A(X) is homeomorphic to a product of a k,-space with a discrete space, 

(c) X is locally compact and X’ is separable. 

Corollary 2.12. The free Abelian topological group A(Q) over the space of rationals 

Q is not a k-space. 

3. Tightness and k-property in free topological groups over metrizable spaces 

The free Abelian topological group A(X) is an image of the free topological 

group F(X) under an open mapping-the canonical projection. Hence F(X) being 

a k-space implies A(X) being a k-space and the tightness of A(X) does not exceed 

the tightness of F(X). This together with Propositions 2.1 and 2.8 gives: 

Proposition 3.1. Let X be metrizable and X’ be the set of all nonisolated points in X. 

Zf the tightness of F(X) is countable, then X’ is separable. Moreover, if F(X) is a 

k-space, then X’ is separable and X is locally compact. 

Denote C = {x, : n E N} u {x,} a converging sequence with the limit point x0 and 

D the discrete space of cardinality K, . 

Proposition 3.2. The free topological group F(X), where X = COD, is not a k-space 

and the tightness of F(X) is uncountable. 

Proof. Assume first that the tightness of F(X) is countable. Then the covering 

{F( CBA, X): A c D, A is countable} of F(X) must be generating because the set 

car B is countable for every countable set B c F(X). Each element of this covering 

is a k,-space (this follows from Theorems 1.4 and l.l), hence F(X) must be a 

k-space. Thus, the assumption that tightness of F(X) is countable implies F(X) 

being a k-space. 
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Now assume that F(X) is a k-space. Obviously, every bounded set in X = C 0 D 

is contained in a set of the form C 0 A, where A c D is finite. Applying Theorem 

1.5 and Proposition 1.7(iv) we get: the covering 

y={F(COA,X):AcD,Aisfinite} 

is generating. 

Put C, = {a-‘x,‘xa: x E C} for each a E D and Y = IJ {C, : u E D}. Clearly, each 

C, is homeomorphic to C and C, n C, = {e} whenever u # b, a, b E D. For each 

finite set A c D the set YA = Y n F( C 0 A, X) = U {C, : a E A} is compact, therefore 

closed in F( C 0 A, X). The covering y being generating, Y must be closed in F(X). 

Hence the covering yy = { YA : A c 0, A is finite} of Y must be generating. Using 

Proposition 1.10 we claim: Y is homeomorphic to V(Es,). Thus, the assumption 

that F(X) is a k-space implies the existence of a closed subspace in F(X) homeo- 

morphic to the FrCchet-Urysohn fan V(EE,). 

Now Corollary 1.12 implies F(X) x F(X) not being a k-space. But F(X) is 

homeomorphic to F(XOX) (this readily follows from the results of [12]) and 

F(XOX) allows an open mapping onto F(X) x F(X) (see [ 161). Since the k- 

property is preserved by open mappings we conclude that F(X) is not a k-space. 

Thus, the assumption of countability of tightness or a k-property in F(X) leads 

to contradiction, which proves the proposition. 0 

Corollary 3.3. Zf X is a nondiscrete nonseparable metrizuble space, then F(X) is not 

a k-space and the tightness of F(X) is uncountable. 

Indeed, every nonseparable nondiscrete metrizable space X contains a closed 

subspace homeomorphic to the sum of the converging sequence C and the uncount- 

able discrete space 0, and we have only to refer to Theorem 1.4 and Proposition 3.2. 

To get a criterion we are left now to check two simple assertions following directly 

from results in [14,3]. 

Proposition 3.4. If X is separable metrizuble, then the tightness of F(X) is countable. 

Proposition 3.5. If X is locally compact separable metrizable, then F(X) is a k,-space. 

Summing up Propositions 3.1, 3.3-3.5 we get: 

Theorem 3.6. If X is metrizuble, then the tightness of F(X) is countable ifl X is 

separable or discrete. 

Theorem 3.7. Zf X is metrizuble, then the following conditions are equivalent: 

(a) F(X) is a k-space, 

(b) F(X) is a k,-space or discrete, 

(c) X is locally compact separable or discrete. 
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Corollary 3.8. The free topological group F( Z@ D) where I is a segment and D is 

uncountable discrete has uncountable tightness and no k-property. 

This gives a negative answer to Coban’s question raised in [24]. 

4. Free topological groups over separable metrizable spaces and k,-property 

If we restrict ourselves to the class of separable metrizable spaces, some results 

of the previous sections can be improved. The improvements are based on the notion 

of &,-space introduced by Michael in [ 161. A space X is called &-space [16] if 

there exists a countable k-network in X, which is a family S of subsets in X such 

that for every compact B c X and every neighbourhood V of I3 there exists P E S 

such that B c P c V All separable metrizable spaces are NO-spaces and all &-spaces 

are Lindelof and therefore Dieudonne-complete. 

Theorem 4.1. If X is a &-space, then F(X) and A(X) are &,-spaces. 

Proof. The product X” is a &-space for each n E N [23]. Fix a countable k-network 

S,, in X”. Denote +,, : (X@X-‘G(e))” + F,(X) the canonical mapping (multiplica- 

tion in F(X)). Since X is Dieudonne-complete for every compact @c F,(X) there 

exists a compact @, c (X0 X-‘O{ e})” such that (lr,( 0,) = @ (see Corollary 1.8). 

This together with continuity of I/I” implies that the family P,, = {r,!tn(A): AE S,} is 

a countable k-network in F,(X). But every compact @c F(X) is in F,(X) for 

some n E N. Hence P = IJ {P,, : n E N} is a countable k-network in F(X) and F(X) 

is a &-space. 

The proof of the analogous assertion for A(X) is quite similar. 0 

We also need the following assertion [4]. 

Proposition 4.2, If X is metrizable, then F(X) and A(X) are countable unions of 

their closed metrizable subspaces. 

Recall that a space X is called a k,-space if every real-valued function f on X 

is continuous provided that its restriction over any compact subspace in X is 

continuous. Clearly, all k-spaces are k,-spaces. The space Rx1 is an example of 

topological group which is a kn- but not a k-space. 

Theorem 4.3. Let X be separable metrizable. Then the group F(X) is a kn-space iflit 

is a k-space. The same holds for A(X). 

Proof. Assume that X is separable metrizable and F(X) is a k,-space. By Proposi- 

tions 4.2 and 4.3, F(X) is a &,-space which is a countable union of its closed 
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k-subspaces. By Michael’s theorem in [26] this implies F(X) being a k-space. The 

same reasoning proves the theorem for A(X). 0 

Theorems 4.3, 2.13 and 3.7 imply: 

Theorem 4.4. If X is separable metrizable, then the following conditions are equivalent: 

(a) A(X) is a k,-space, 

(b) F(X) is a k,-space, 

(c) A(X) is a k,-space, 

(d) F(X) is a k,-space, 

(e) X is locally compact. 

Corollary 4.5. The groups A(Q) and F(Q) where Q is the space of rationals are not 

k,-spaces. 
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