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EDITORIAL COMMENT
Importance of Clinical Analysis
in the New Era of Molecular
Genetic Screening*

Wataru Shimizu, MD, PHD
F or the past 2 decades, a number of inherited
cardiac arrhythmia syndromes have been
shown to be linked to mutations in genes

encoding cardiac ion channels or other membrane
components. These include congenital and acquired
long-QT syndrome (LQTS), Brugada syndrome (BrS),
progressive cardiac conduction defect, catecholamin-
ergic polymorphic ventricular tachycardia (CPVT),
short-QT syndrome, early repolarization syndrome,
and familial atrial fibrillation (AF) (1). In congenital
LQTS, 13 genotypes have been identified in approxi-
mately 75% of subjects with clinically diagnosed
congenital LQTS (1,2), and genotype-phenotype
SEE PAGE 66
correlations have been investigated in detail. Thus,
genetic testing is now a gold standard for diagnosing
congenital LQTS, enabling risk stratification of cardiac
events and better patient management (1). Mutations
in the RyR2 gene or calsequestrin gene can be identi-
fied in approximately 60% of typical patients with
CPVT associated with bidirectional and/or multifocal
ventricular tachycardia (1,2). However, the yield asso-
ciated with disease-specific genetic testing is far short
of 100%, even in congenital LQTS or CPVT. Moreover,
causative mutations have been identified in a small
number of patients with other inherited arrhythmia
syndromes (1). The yield of disease-specific genetic
testing is only 20% to 30% in BrS and is still unknown
in progressive cardiac conduction defect, short-QT
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syndrome, early repolarization syndrome, and famil-
ial AF (1,2).

In BrS, the first mutation was identified in an alpha
subunit of a sodium channel gene, SCN5A, in 1998 (3).
Subsequently, genetic studies have identified 13
responsible genes on chromosomes 1, 3, 7, 10, 11, 12,
17, and 19 (1). Among 13 genotypes, more than 300
mutations have been identified in the major player,
SCN5A (>75% of genotyped cases); however, a
worldwide cohort reported that SCN5A accounts only
for 11% to 28% of clinically diagnosed patients with
BrS (4). Moreover, the majority of mutations were
found in a single family or a small number of families.
Therefore, a genotype-phenotype correlation is not
available in most cases (1,5).

The relatively lower yield of disease-specific ge-
netic testing except for congenital LQTS or CPVT is due
mainly to the technology of genetic testing. Candidate
gene analysis has long been used to identify a causa-
tive mutation in a gene, which is expected to relate to
the pathophysiology of each inherited arrhythmia
syndrome, such as cardiac ion channel genes. How-
ever, causative mutations do not always involve genes
of ion channels or membrane components. Innovative
advances in molecular genetic testing are overcoming
this issue with the advent of more powerful molecular
genetic screening tools, including genome-wide as-
sociation study (GWAS) using gene array, as well as
targeted, whole-exome and whole-genome next-gen-
eration sequencing techniques.

Several recent GWASs have disclosed significant
association of numerous loci in some genes with
electrocardiographic markers or arrhythmia syn-
dromes. Arking et al. (6) first identified NOS1AP
(CAPON), a regulator of neuronal nitric oxide synthase,
as a gene that is significantly associated with QT-
interval variation in a general population derived
from 3 cohorts (6). Subsequently, 2 groups conducted a
meta-analysis of the GWAS and observed associations
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of single-nucleotide polymorphisms (SNPs) in several
genes in addition to NOS1AP with QT interval, sug-
gesting that these genes are candidate genes for LQTS
or sudden cardiac death (7,8). Several GWASs also
identified associations of SNPs in several genes,
including SCN10A, with cardiac conduction parame-
ters, such as QRS duration and PR interval (9–11).
Regarding associations with cardiac arrhythmias,
some SNPs in several genes, including ZFHX3 and
KCNN3, have been reported to be associated with
AF (12–14). The association of a SNP in CXADR with
ventricular fibrillation in acute myocardial in-
farction also has been reported (15). However, no
responsible mutations have thus far been reported
in these candidate genes in patients with clinically
diagnosed inherited arrhythmia syndromes, such as
congenital LQTS, familial AF, and familial conduction
abnormalities.

Bezzina et al. (16) recently conducted a GWAS in
312 patients with BrS with type 1 electrocardiographic
pattern and 1,115 controls. They detected 2 significant
association signals at the SCN10A intronic locus
(rs10428132) in chromosome 3p22 and near the HEY2
gene (rs9388451) in chromosome 6q22 with BrS.
SCN10A, which encodes the sodium channel isoform
Nav1.8, was originally reported as highly expressed in
cardiac neurons. Recent evidence indicates that
SCN10A also is expressed in the working myocardium
and the specialized conduction system, indicating a
possible role for Nav1.8 in cardiac electrical function.
HEY2 is involved in patterning Nav1.5 (SCN5A)
expression across the ventricular wall. In an experi-
ment using HEY2 knockout mouse, Bezzina et al. (16)
suggested that loss of HEY2 might affect the trans-
mural expression gradient of sodium channel impli-
cated in BrS.

In this issue of the Journal, Hu et al. (17) report on a
clinical analysis and direct sequencing of SCN10A and
all known BrS genes in 150 unrelated patients with
BrS and 17 family members, as well as more than 200
ethnically matched healthy controls. They identified
17 SCN10A mutations in 25 of 150 patients with BrS
(a yield of 16.7%). Twenty-three of the 25 (92.0%)
displayed overlapping phenotypes, such as early
repolarization syndrome and cardiac conduction
defect. Patients with BrS with SCN10A mutations
were more symptomatic and displayed significantly
longer PR and QRS intervals than SCN10A-negative
patients with BrS. Heterologous coexpression of
SCN10A mutants (R14L and R1268Q) with wild-type
SCN5A caused 79.4% and 84.4% reductions in so-
dium channel current, strongly implicating SCN10A
as a major susceptibility gene for BrS. This study
provides the first major step forward in more than
16 years in the identification of new BrS susceptibility
genes, advancing the yield for detection of a geno-
type to more than 50%.

New molecular genetic screening technologies,
such as GWAS and whole-exome and whole-genome
next-generation sequencing, are promising tools for
identifying new candidate genes responsible for
inherited arrhythmia syndromes. However, no res-
ponsible mutations have been reported in the candi-
date genes identified by GWAS in patients with
clinically diagnosed inherited arrhythmia syndromes.
To the best of my knowledge, the SCN10A is the first
gene to be suggested as a BrS susceptibility gene
by both GWAS and direct sequencing techniques.
Direct sequencing using the Sanger technique com-
bined with a detailed clinical analysis, including
genotype-phenotype correlation and functional
expression studies, continue to play an important role
in molecular genetic testing, even in the new era in
which gene arrays and next-generation sequencing are
available. The importance of a detailed clinical anal-
ysis including genotype-phenotype correlation as well
as functional expression studies cannot be over-
emphasized. Even in GWAS and whole-genome or
whole-exome studies, clinical misdiagnosis can
contribute to confounding genetic noise. A detailed,
precise clinical diagnosis is therefore a prerequisite for
the identification of new potential candidate genes.
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