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1. Introduction and preliminaries

Consider the following semilinear stochastic differential equation with additive noise

dX(t) = (AX() + (—A)? F(X()))dt+dW,, t=>0, (11)
X(0)=x

on a separable real Hilbert space H. Here, (A, D(A)) is a self-adjoint operator of negative type,
F:D(F) C H— H is a vector field and (W;);»0 is a cylindrical Wiener process on H, defined on
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a filtered probability space (§2, F, (Ft)t>0,P). The precise assumptions on A and F are given in the
hypotheses (Hp)-(H3) below. For general reference on stochastic differential equations with additive
noise, together with their corresponding Kolmogorov equations, let us mention the monographs by
Da Prato [4], Da Prato, Zabczyk [10-12] and Cerrai [2]. Eq. (1.1) can be seen as an abstract generaliza-
tion of the stochastic Cahn-Hilliard equation

4 2

du(t,x) = (—Wu(t,x) — ;?f(u(t, x))) dt +dWe(x), (t,x) eRy x [0, 7], (1.2)

on the Hilbert space H = {u € L?([0, ) | J udx =0} considered in [6].
Let Lr denote the Kolmogorov operator associated with (1.1). Clearly, Lr admits the representation

Lrgp() = LX) + (F(x), (~A)ZDp(x)), ¢ € FCX(D(A)), xe H, (13)

where
1 2
Lo®x) = 5TrD @) + (x, ADp(x))
denotes the Ornstein-Uhlenbeck operator associated with the linear operator A,
FCH (D) =9 e CGG(H). o = f((x.en)..... (xem)), feCh(R™)}

is the associated space of cylindrical test functions, and D¢ (resp. D?¢) denotes the first (resp. sec-
ond) Fréchet derivative.

The first goal of this paper is to prove the existence of infinitesimally invariant measures for L, i.e.,
probability measures ;4 on the Borel subsets B(H) of H satisfying Lrg € L1 (H, ) and fLFgo du=0
for all ¢ € _7-'C§(D(A)). This implies in particular that L is dissipative on the space L'(H, ), hence
in particular closable, and it is then our main purpose to give sufficient conditions on the coefficients
A and F that imply that Lf is essentially m-dissipative, i.e., the closure of (Lf, }'Cﬁ(D(A))) generates
a Co-semigroup (of contractions) on the space L(H, w). In this case we say that Lr is L!-unique.

In the case of Kolmogorov operators associated with semilinear stochastic differential equations
with Lipschitz continuous nonlinearity, L!-uniqueness is well known (see [12, Section 11.2], [3]). Re-
cently, in the paper [16], the global Lipschitz assumption was relaxed to local Lipschitz continuous
nonlinearities. Similar uniqueness results have also been obtained in [8] for Kolmogorov operators
associated with dissipative nonlinearity. However, none of these assumptions are satisfied for the Kol-
mogorov operator associated with the stochastic Cahn-Hilliard equation (1.2). Nevertheless, using the
fact that in this particular example the drift term is of gradient type, hence an infinitesimally invari-
ant measure y is explicitly known, Da Prato et al. prove in [6] the L'*#-uniqueness of the associated
Kolmogorov operator for all 8 € [0, 1]. In [17], a similar result is shown for the Kolmogorov operator
associated with the semilinear stochastic differential equation

2

du(t,x) = (;7““”‘) —u(t,x) + %F(u)(t, x)) dt +dWe(x), (t,x) e Ry x [0, 2], (1.4)

for some continuously differentiable vector field F.

Since both equations are of type (1.1), our main result concerning L!-uniqueness of Ly (see Theo-
rem 3.2) complements the above mentioned results. We emphasize that in (H3) we only assume that
F is dissipative, but not (—A)%F. and that our method does not require the explicit knowledge of
an infinitesimally invariant measure . Only a priori estimates on certain moments of x and square
integrability of F w.r.t. i are needed. Both can be checked in applications (see the example of the
stochastic Cahn-Hilliard equation in Section 4). Another key ingredient for our uniqueness result is
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the gradient estimate for the pseudo-resolvent associated with smooth approximations Lf, , of Lr
that are uniform w.r.t. o, 8 (see Theorem 2.2 below).

Results on existence and uniqueness of strong solutions for stochastic Cahn-Hilliard equation have
been obtained by Elezovi¢ and Mikeli¢ in [13] with nuclear noise and by Da Prato and Debussche in
[5] with space-time white noise. For Eq. (1.2) with multiplicative noise see the work [1] by Cardon-
Weber. Whenever an invariant probability measure p exists for the stochastic Cahn-Hilliard equation
(1.2), the associated transition probabilities induce a strongly continuous semigroup on the space
L'(H, ). The corresponding infintesimal generator has L as a realization on the space ]—'C,f(D(A)).
However, for the abstract equation (1.1) it is not known in general, whether, and in which sense,
Eq. (1.1) has a solution. Nevertheless, in the case of L'-uniqueness of the Kolmogorov operator L,
the abstract Cauchy problem corresponding to Ly in L'(H, u) is well-posed. In addition, the L!-
uniqueness of Lr implies the uniqueness of the solution of the martingale problem in the sense of
Definition 2.5 in [19]. In this case the uniquely determined semigroup, which is Markovian, is the one
induced by transition probabilities of the martingale solution of (1.1).

Let us now fix some notations and our main assumptions. Let (e;)nen be an orthonormal basis in
H consisting of eigenfunctions of A with eigenvalues {—Ap, 1; > 0}. For y € R let

Vy = (D((=A)), (-)y), where (x,y), =((—A)?x, (—A)y) forx,yeV,.

Note that, since A has a compact resolvent, the embedding V,, < H is compact. In the following || -
|lus denotes the Hilbert-Schmidt operator norm on the space H. We shall formulate our assumptions:

(Ho) A is self-adjoint and ||| < e~“! for certain @ > 0.
(Hi) There exists v € ], [ such that for all t > 0

t

[51e pds <.

0

(Hy) F is a continuous map from Vi into V; and leaves V' invariant. There exist a > 0, r > 1 such
4 4 2
that

||F(x)H3T <a(1+ |\x||;), xeVi.
(H3) F is m-dissipative:
rg(I — F)=H, (F(u)—F(v),u—v)<0, u,ve v%.

We remark that hypothesis (H3) can be replaced by a weaker assumption on F (see Remark 3.3 for
precise conditions). Let us set up now the framework for our investigation. For « > 0, consider the
Yosida approximation of F defined by

Fo(X) =F(Ja(®), where Jo(x) = (Id —aF)~'(x), xev%.

For the sequence F, we have the following:

(i) For any o > 0, F, is dissipative and Lipschitz continuous.
(ii) |Fo(x)| < |F(x)| for any x € V.
s



A. Es-Sarhir, W. Stannat / ]. Differential Equations 247 (2009) 424-446 427

Note that the function F, is not differentiable in general. Therefore we shall consider a C!-
approximation as in [12]. For «, 8 > 0 we set

Fop(X) = / ePAFy (ePAx + y) No. g, (dy)
H

where /\/'O,Qf3 is the Gaussian measure on H with mean O and covariance operator defined by

Qp = [Oﬂ e?Ads. Then, Fy.p is dissipative and by the Cameron-Martin formula it is C* differen-
tiable. Moreover, as «, 8 — 0, Fy g — F pointwise. The following lemma gives an estimate for Fq g
which will be useful later.

Lemma 1.1. There exists a positive constant ¢y g > 0 such that
[Fapofy <cap(l+1x), xeV,. (15)

Proof. Let x € V 1. We have

||F0[,,3(x)||‘lt = H(-A)% /eﬁApa(eﬂAx+y)No,Qﬁ(dy)H < ;—ﬁ]/ [Fa )] Nesax,q,@Y)
i)
H H

c

C . .
< ﬂloz f(] + |y|)./\feﬁAX,Qﬂ(dy) (Fy is Lipschitz on H)
yy
H

B
< Cap(1+1x1).

This yields the proof. O

We now introduce the following approximation problem

{ X5 (0) = (AXe g (6) + (—A) 2 Fyy (X p (D)) dE +dW;, €30, .
Xa.5(0) = x.

For T > 0 and é > p > 2 we denote by Hp 1 the Banach space of all adapted processes in
LP(£2,C([0,T], H)) endowed with the norm

Y157 =E sup (YOI).

Definition 1.2. A mild solution of Eq. (1.6) is an F¢-adapted process in Hp r which satisfies the
following integral equation

t t
xa,,g(t)=e“‘x+/(—A)%e“*”AFa,ﬁ(X(s))ds+/e“*”" dWs, t>0. (1.7)
0 0

Note that in our case hypothesis (H;) implies that the stochastic convolution

t
Wa(t) ;= / =94 dw,
0
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is well defined in H and by [10, Proposition 7.9] there exists a constant c,(T) > 0 such that

T

P
2
_ 2
521 s

0

t

P
IE( sup (fe“‘”"‘ dWS) ) <cp(T)
tel0.71\ o

Since Fy g is global Lipschitz one can prove by using a standard Banach fixed point theorem on the
space H,, r the following theorem.

< Q.

Theorem 1.3. Under hypotheses (Hp), (H1) and (Hy), for any x € V%, Eq. (1.6) has a unique mild solution
Xa,p(,x) € Hp 1.

The transition semigroup Pf"ﬁ corresponding to (1.6) is defined by

PP () = Ep(Xap(t, %), >0, ¢ € By(H),

where B, (H) denotes the space of bounded real valued Borel functions on H. An invariant measure
for (1.6) is a Borel probability measure (q,4 0n H such that

(Pf"‘s)*ua,ﬁ =la,p forallt>0,

where (Pf"ﬂ)* denotes the adjoint of Pf"ﬁ. We recall that the semigroup (Pf"ﬂ)t>o has the Feller

property if for any ¢ € Cp(H) and t > 0, we have that Pf"ﬁgo € Cp(H). Here, Cp(H) is the space of
all bounded real valued continuous functions on H equipped with the supremum norm || - | . Since
Fy p is Lipschitz it is straightforward to prove that the process Xy g(t, )r>0 associated to (1.6) is

Feller, hence to obtain the existence of an invariant measure iy g for (Pf“ﬁ )e>o it is sufficient to

check tightness of the set of probability measures {ur := %fOT HXg p(t0) dt, T > 1}. Here, HXg p(t0)
denotes the distribution of Xy g(t, x), t > 0. Indeed, using [11, Theorem 3.1.1] any limit point (iy,g of
some weakly convergent subsequence of ()71 will be an invariant measure for (1.6).

The following lemma is essential for the proof of the existence and a priori estimate of an invariant
measure for (1.6).

Lemma 1.4. Assume hypotheses (Hp), (H1) hold. Then we have
o0
M :=supE(|Wa)|}) :/ |(—A)ietA |2 dt < oo.
t>0 4 5

In particular,

supE(| WA(t)Hg) <00, and supIE(es”WA“)”g) <00, forallse [0, —}, € < L (1.8)
>0 >0

Proof. We write
k+1

[ leate fa=3 [ eatet
0

k=0 1}
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M

1
[1emterd i S e / Iy [
0

k=

=
Il
<)

Mg

=

o

1
e [ [ mte? e
0

Z —20k [H tA/ZH dt < co. (Using hypothesis (Hy).)

=0

This finishes the proof of the first estimate in (1.8). The second estimate follows from [10, Proposi-
tion 2.16]. O

From the estimates in (1.8) we have in particular sup;>oE|W4 (t)]? < oo. This gives the following
estimate for the process Xy g(-)

sup ]E|Xa,ﬁ(s,x)}2 < Crap(1+1x%), forany t >0, (1.9)
0<s<t

for some positive constant C¢ o g depending on t, o and B.
Indeed, for t > 0 we use (1.8), to obtain

t

/ (—A)ze(t=9A Fo.8(Xa,p(s))ds
0

2

E|Xe p(t, %)|° <2[x? +4E +4supE|Wa(0)|?
£>0

t
<21x)? +8\/E/JE\|Fa_ﬁ(xa,ﬁ(s)) Hz% ds+4sggE|WA(t)\2
[>]
0

(use estimate (1.5)) < 2|x|? +8t%Ca,/3(] + sup E[ X, (s, %) H2> +4supIE|WA(t)|2.
0<s<t >0

Hence for ty > 0 small enough we find

sup E|Xgp(s,0|° < Crgap(1+ XP).
0<s<ty

For general t > 0 the estimate now follows by iteration.
Using again estimate (1.8) we can find a positive constant c, independent of «, and 8 such that

[ Fa.p®) | < c(1+IIxII" ), XeVy. (1.10)

Indeed, we have by (1.8) that the Gaussian measure ./\/;_,ﬁAX,Qﬁ has finite moments of any order with

respect to the | - || 1 -norm. Hence hypothesis (Hy) and a straightforward computation yields the esti-
1

mate.



430 A. Es-Sarhir, W. Stannat / J. Differential Equations 247 (2009) 424-446

Proposition 1.5. Under hypotheses (Ho), (H1), (H2) and (H3), there exists a unique invariant measure i, g

for the transition semigroup (P;x b )t>0- Moreover there exist some constants 6 > 0 and « > 0, independent of
o and B, such that

f ||x||§ua,ﬁ<dx><e and [ Ix11* o, g (dx) < k. (111)
H H

Proof. The existence and uniqueness of (g was proved in [14]. Let us next prove the moment
estimates.
We set

Yo p(t) = Xa,p(t) — Wa(D).
Uniqueness of [1q,4 implies ergodicity of (q 4 and hence

T

Jim %/E(q;(xa,ﬂ(s,x)))ds=/<p(x)ua,,3(dx) for all ¢ € L*(H, [ta.p)- (112)
0 H

If we set ur := %/OT HXg p(t.0) dt, T > 1, where HXg p(t.0) denotes the distribution of Xy g(t, %), t >0,
then (1.12) can be written as

TETOO/qJ(x),uT(ch) =/g0(x) Ue.p(dx) for all g € L2(H, Lo p)-
i H

For p > 1 define ¢p(x) := 1{”"“21 <) ”XHZ%' Then for any p > 1, ¢p € L2(H, jtq,p) and ¢p(x) < ||x||2}l for
1

x € H. Hence for a sequence (Ty)rey With T <2725 400 it holds

/ £ (%) fha.p(d0) = lim f £ (%) 17, (@) < lim / I3 (). (113)
k— o0 k—o00 7
H H H

On the other hand

Tk

1 2
[ 1413 im0 = = [ E( X0 ds
H 0

Tk Ty
2 2
< Tfk/]E(||ya,ﬂ(s)}|23_l)ds+ T—k/IE(HWA(s)HE)ds. (1.14)
0 0

We now claim that there exists C > 0 such that for large k > 1

Ty
1 2 1
E(T_k()/”yw(snuds) <c<1+T—k).
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Indeed, since the semigroup generated by A is analytic, (Yy g(t))¢>0 is differentiable on V' for t >0
3
with derivative

Y}, 5O = AYa 5O + (—A) 2 Fa p(Ya s (0) + Wa®), £ 0.

Let t > 0. Using the dissipativity of Fy g and (1.10) we have

2dt||( A5 (Yo p0) | = (AYe 50 + (—A) 2 Fo g (Y s (6) + WAD), (—A) "2 (Yo (D))
=(—(=A)2 Yy 4 (6) + Far p (Yo 5 (6) + Wa(D), Ve p(0))

<= [Yap O +(Fap(Wa®). Ya,p0)
1 r
< Yap Ol +0 Vs + g1+ [Wa 7).

Since ||y||2 > Jol|/y||?, we obtain
i

d -1 o 1 .
A up0) ) < =(1- ) sl + 1+ [Waol])

N —

Therefore

t
1 1 o
A s + (1= ) [ sl o
0

t

1
< §||(—A)_%x||2% +n/ HWA(S)H ds +nt (1.15)
0

where 7 := %cz. Using the estimate

1 2 1 2
lwid lwid
1) =@3rM)'e 1

1
v

||w||§r < (3rMe

and (1.8) we obtain

supE(|Wa(t) Hzf) <K, for some K >0,
t>0 4

so that
(/ ||wA(s)y|1 ds) /IE(”WA(s)Hz}_")dsg K-t. (116)
Choosing o > 0 such that p:=1— % > 0 and taking expectation in (1.15), we obtain that

t
1 .
51&3(” (—A)—%(ya,ﬂ(t))Hz +,0/ [Ya,p(s) HEds) <CE+1)
0

for t >0, and some constant C > 0.
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Thus
Ti
1 1
IEI(T— / Yaps)|3 ds) < C(] + T—) for k > 1, and some constant C > 0. (117)
I 4 k
"0
Hence putting estimates (1.16) and (1.17) together in (1.14) we get
2 1
x5 mr, (dx) <cq-C{1+ — ) +c2- K.
4 Tk
H
Therefore by (1.13)
/cp(X) Ha,p(dx) < lim /||x||2l Ur,@dx)=c1-C+c2-K.
k—o00 7
H

The right-hand side does not depend on p, so that Fatou’s lemma implies

f X113 pt,p(dx) < liminf/ Ep(X) pop(dx) <c1-C+ca- K.
3 p—+o0
H H

To prove that fH ||x||4,ua,,3(dx) <k we use again the dissipativity of Fy g and a similar argument as
above, so we write

A7 (Ya s 0)]

Q.lm_

1
4
= [Yas O 3 (AYap© + (A Fap(Yas O + Wa®©), (A7 (Ya p0))
= [Yap O] 1 (~ (A2 Yas O + Fap (Yo s O + Wa®), Ya5(0)
< Yap® 2 [Yas O + [Yap O 1 {Fas (Wa©). Ya s 0)

< Yap O+ Fap(Wa@) [ Yas O (using full® < jull_y lull,)-

Hence by using (1.10) and Young’s inequality we obtain

1d 1 -
271D Vs ) < [Ya s 0 + 0 |Yap 0] + O @) (1 4 [Wa]T).
Thus,
1d \
27| A Vs ®) <=1 = o) |Yap 0] + O ) (1 + [Wa]]).

Now the same argument, used to estimate f y |x||1 Ma,p(dx), yields

/ ||x||4ua,,g(dx) <k for some x > 0 independent of @ and B. O
H
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According to estimate (1.11) and the compact embedding V1 < H we have that the family of

measures ({lq,g)a,p>0 is tight. Hence we have in particular the 4tightness of (a)a>0 corresponding
to Eq. (1.6) with 8 =0 and Fy g = Fy. Therefore there exists a subsequence ({tq,)n>1 that converges
weakly to some probability measure . Since the estimates in (1.11) are independent of @ and g,
a straightforward application of Fatou’s lemma implies that

/ XI5 p¢(dx) <6 and / Ix11* f2(dx) < . (1.18)
i
H H
We will show in the next proposition the infinitesimal invariance of the measure p for our starting
operator Lr under the additional hypothesis:

(Hg) There exists G : V% — H such that for all @ >0
[F(X) - Fa@)| <a|G)[, xeVy,

and

/|G(x)}u(dx)+su1(3)/|G(x)|ua(dx)<oo.
H

H

Proposition 1.6. Let 1 be any limit of some weakly convergent subsequence ((La, )n>1 for limy_ ooty = 0.
Under hypothesis (Hy) it follows that 4 is infinitesimally invariant for Lp, i.e., Lpg € L' (1) and SLrpdpn =0
for all g € FCH(D(A)).

For the proof of the proposition we need some preparation. To this end let us define the Banach
space Cp2(H) to be the space of all ¢ : H— R such that the mapping x — 1ﬁ(|}>(<)\2 is uniformly con-
tinuous and bounded endowed with the norm

lp(x)|
H1+ X2

l@llp,2 sup

The following lemma shows the weak convergence of the sequence (iq,)n>1 to u on the space
Cp,2(H).

Lemma 1.7. For any ¢ € Cp »(H) we have that

;1310 / ©X) po (dx) = / @) pu(dx).
H

H

Proof. Let ¢ € Cp »(H). We write

[onaan = [ 24 +|X|2 (14 42) pra (@)
H

H

_ (0169)] X)) 5

—/71“)('2 ua(dXH/H'Xlzlxl Mo (dX).
H H
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Hence it is enough to show that

lim f VI e (dr) = / YO, ¥ e Co(H).
H H

Take ¢ € Cp(H) and ¢ > 0. We write

‘ f VP o (dX) — / 0 lx? p(dx)
| x|? | x|?
vm a0 - x/z() L
x4
w) T

| %2 | %2
w<> oz M@0 - ¢<> 7 @

| X[
w T M @) +

+ 2ekc|[ || oo.

Hence the conclusion follows by letting o and ¢ — 0. O
We are now ready to proof Proposition 1.6.

Proof of Proposition 1.6. We show first that (Hy) implies Lrg € L1(H, ) for all ¢ € ]—'Cﬁ(D(A)).
Indeed, suppose that ¢ admits the representation

e =g((x.e1)..... (x.en). geC(R"),

then
(~A)Dg(x) = Z\/—A ((xe1), . (x, en))er

which implies that
(—A)ZDg € Cy(H) and sup [Py <+oo. (1.19)
xeH
Since in addition Fy is Lipschitz for o > 0, hence at most of linear growth, we have that

[FO| < [FX) = Fa )] + |[Fe )| < |G|+ C(1+ IxI) € L' (H, ).

Consequently,

|ILrox)| < C+ |((—A)%F(x), Dp(x)|<C+ SUEHD(/J(X) I ; |[Feo| e L'(H, p).

To show the infinitesimal invariance fix ¢ € fle(D(A)). We can write
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/wa(x)u(dx) = / Lro(x) = LF,, 9 (x) p(dx) + / Lo, () p(dx) = J1 + J2,
H H H

where

1 =fLF¢(x)—LFan¢(x)M(dX) and JZZ/LFQH(P(X)M(dX)-
H H

Since F,, is Lipschitz, it follows that Lr,¢ € Cp, (H), hence
Jo= lim / Loy @1t
m—o00

by Lemma 1.7. Invariance of pq,, for the semigroup (Pf"”)t>0 implies infinitesimal invariance for Lf, ,
so that

- ‘/(Fan — For (—A)2 D@)djtar,

(/Lpanwduam = )/LFanw—LFamwduam

< (atn + ) sup || Do(x) || 1 sup / |G| p(dx),
xeH 2 >0

thus

|J2| < ansup| Do) 1 sup/ |G(x)| pep(dx)
xeH 2 B>0

which implies that limy_ « J2 = 0. Similarly,
1= [(F = Fay. )% Dg)dua| < awsupl Do ] [ [600] i,
Xe

hence lim;_» J1 =0. O

As consequence of the above proposition we obtain that the operator (Lp,fCi(D(A))) is dissipa-
tive on L'(H, ), in particular closable. In Section 3 we will discuss its maximal dissipativity.

2. Gradient bound for the resolvent

In this section we prove an estimate for the resolvent associated to (1.6). This estimate will be im-
portant to prove the well-posedness of the Kolmogorov equation associated with our starting operator
(1.3) in Section 3. We start by proving a simple lemma for the process (Xg,g(t))>0-

Lemma 2.1. Assume that hypotheses (Hp), (H1) and (Hs) hold. Then for the mild solution of (1.6) we have
¢ 2
(/ [ Xer.8(s, %) — X85, ¥) ”2% ds) < %Hx— yll_y forallx, yeV,. (21)
0
Proof. We write

1/d 2
3 (a [Ya.p€ %) = Ya p(t,y) ||,%> =(A(Yo.p(t,0 = Ya g6, 1)), Ya g (6.0 = Yo p (6, )

_1
4

+ <F()l,ﬂ (X()l,ﬂ(t7 X)) - FO{,ﬂ (XO(,ﬂ (t7 y))7 X()(,ﬁ(t’ X) - X(X,ﬁ(tv J’))H

<[ Yap.0 = Yap@. 0|3
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Consequently
t
2 1
[Yo.p(5.%) = Ya 505, )| 1 ds < Slx=yl_y.
0

Since Xo p(-,X) — Xa,p(-, ¥) = Yo p(-,X) — Yo g(-, ¥), the proof of the lemma follows. O

Theorem 2.2. Let @ : V 1= R be a bounded Lipschitz continuous function with Lipschitz constant L. Then
the function G, @ defined by

+00
Ge®(x) := / e U'E(P (Xa,p(t,x))dt, ¢ >0,
0

is Fréchet differentiable and it holds

|DG:® (x| <L\/iL
FOLS A

Proof. Since the function Fy g is regular, it follows by a result from [7] that Pfl’ﬂq) € Cg (H). Hence by
taking the Laplace transform, the differentiability of G, & follows. Let us prove the gradient estimate
for G;&. For x € Vi, h e H we write

(DG @ (0. h)= lim %(G;(b(x—i— eh) — G, o).

From the estimate in (2.1) we obtain

|Ge@(x+eh) — G, @(x)| = | e “"E(®(Xa,p(t, x+ €h)) — D (Xa,p(t, X)) dt

o0
< L¢/e*“JEy|xa_ﬁ(t,x+eh) — Xa,p(t, X) \|3_1dr
0

o] t

:L¢E<§feft/ ||xa,ﬂ(s,x+sh)—xu,,,g(s,x)”%dsdt)
0 0

1

o] t 3
<L¢]E<§‘[e—§f\/f(/‘|}Xa.5(s,x+8h)—Xa,ﬂ(s,x)||ids> )
0 0

o0
1
< L¢ﬁ{/e_“«/fdt-s||h||_%.
0

Consequently

1
|(DG;¢(X),h>| < m\/§l¢ : ||h||_%-
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Hence we deduce

[DG:® x| <LﬁL O
LIV

Remark 2.3. The proof of Theorem 2.2 shows also that G, & is in addition Lipschitz continuous w.r.t.
the V_1-norm.
7

3. The Kolmogorov operator Lf

Throughout the whole section let 1 be an infinitesimally invariant measure for Lg satisfying the
moment estimates (1.18) and the following additional hypothesis

(Hs) [IFlly e L%*(H, ) and
. _ _ . 2
a,l}}mOHF(x) Fa,,g(X)H}_‘ =0 in L2(H, ).

Here, F,, denotes the Yosida approximation of F introduced in Section 1. We will also need its regular
approximation Fg g of Section 1.

Our main goal in this section is to prove that the operator (Lr, FCp°2(D(A))) is essentially m-
dissipative on L'(H, w). This is equivalent to prove that L is dissipative, hence in particular closable,
and its closure (Lr, D(LF)) generates a strongly continuous semigroup on L'(H, ). Dissipativity of
Lr follows from the infinitesimal invariance of w (see for example Lemma 3.2 in [16]).

Recall the definition of the Banach space Cp(H) from Section 1. Let (R¢);>o be the Ornstein-
Uhlenbeck semigroup corresponding to (L, D(L)) on the space Cp »(H). For any h > 0 we set

1
App = E(Rhfp —¢), @eCpa(H).

It is then well known from [18] that the generator D(L) can be defined as

D(L) = {</7 € Cpa(H): Y € Cp2(H), hirgg App(X) =¥ (%),

Vxe H, sup [[Ap@llp2 < +°°}~
he(0,1]

We now fix o, 8 > 0 and for f € .7-'C§(D(A)) consider the following elliptic problem

(A — Lpa.ﬂ)%(,;; =f, A>0.

It is well known that this equation has a solution ¢y g and can be writing in the form ¢y g =
R(A, pr)f, where

+00

R(x, L, 5) = f e ME(f(Xa,p(t, %)) dt
0

is the pseudo-resolvent associated with Lf, ,. Thus we have

AP, pllcc <Nl flloo, (3.1)
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and using Theorem 2.2 we also have

D= sup [(—~A)3 Doy s)|* < +00, xeH. (3.2)
a,f>0

The following lemma will be useful in the sequel.
Lemma 3.1. We have ¢y g € D(Lr)NDL)N C; (H) and

Eﬁﬂa,ﬂ(x) =L@y g(x) + (F(X)» (—A)%Dwa,ﬂ(x», Xe V}; .

Proof. We first prove that ¢y g € D(L) ﬂC;(H). Note that by Theorem 2.2 we have ¢y g € Cg (H). This
implies in particular ¢y g € Cp 2(H). For the semigroup (R¢);>0 we can write

Re(@a,p)(x) =E@q g(Z(t, X)),

where

t t
Z(t, x):e‘Ax—i—/e(t’s)A dWs = X (L, x)—/e(H)A(—A)%Fa,ﬁ(xa,ﬁ(s,x))ds.
0 0

For any h > 0, we have

(Rnap (%) — Pup (%))

S| o=

1
= HIEI((/)O[,ﬂ (Z(h, ) = ¢ap(x))
h

= %(wa,ﬁ (xa,ﬁm,x) - / e“‘—”’*(—m%Fa,,s(xa,ﬁ(s,m)ds) - goa,,soo)

0

1
= 1 E(0e.p(Xap (h. X)) = gap(0)
h
_ %E<<(_A)lDgou,ﬂ(Xa,ﬂ(h,x))a/e(hS)A(—A)‘l‘Fa,ﬂ(xa’ﬂ(s’x))ds» +o(h)

0

1
= EE(soa,ﬁ(xa,ﬂm,x)) — o, p(X) + I(h,x) +o(h).

Consider now 0 < h < 1. By estimates (1.5), (1.9) and (3.2) we have

h
/ e =9A(_A)iF, , (Xap(s,%))ds
0

2

1, 1
||I(h,x)||<§D +E—7

1, 1
<5D*+SE sup |[Fap(Xas(s. )|
2 2 0<s<1 3

1 1 2
<57+ Ec;,ﬂ(1 —HEOgg] | Xap(s. %) )

1 1
< 5D2 + icé,ﬁ(l + Crap(1+ 1x1%)).
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Consequently, we have

sup [[I(h, )], 5 <+o0
he(0.1] '

and letting h tend to 0 we find that ¢4 g € D(L) and
1
Lu.p = LFy s %a.p — ((—A)2 Fu p(0), Dy g (X)), Xx€ Vi
Let us now prove that ¢y g € D(Lf). We consider the space £4(H) consisting of real and imaginary

part of all exponential functions e!"¥) x € H, with h € D(A). Since @a,p € D(L), it follows by a result
from [9, Proposition 2.7] that there exists a sequence ¢, € £4(H) such that

Lm eonX) =@ep(®). M Lon()=L1gap®).  lim Den®)=Dgap®)  (3.3)

and a positive constant C(gq,g) independent of n such that

{ 1% )| + [Lgn (X)] + [Dgn (X)]

ey }< C(@ap)- (34)

sup

xeH

We recall from [15, Lemmas 3.1-3.3] that for ¢ € C,(H) we have DR:¢(x) € D(—A)z"l and D(A» —

LD lpx) e D((—A)%) for any A > 0, x € H. Moreover, using the Cameron-Martin formula and similar
calculation as in [12, Proposition 11.2.5] we have

1
[(=A)2DRp(x)| < t’3/4sup lpx)]

1+ |x|2 = xeh 1+ 1x]? ’
1
I(—A)aD( — L)~ lpx)] 1 lp ()]
< A4 (1/4)su .
T+ 10 LA/ b

This implies in particular that Dgy g(x) € D((—A)%) for all x. Set f, := Agp — Le,. By using the
estimate above we have

sgg|(—A)%D<pn(x)< < C(@ap)(1+1XP). (3.5)

Hence for any x € V%, ((—A)zlngon(x))@l converges weakly to (—A)%Dwa,ﬁ(x) in H, by using (3.3)

and the fact that (—A)% is a closed operator, hence in particular weakly closed. In particular,
lim_((—A)TF(). (~A)T Dgn(x)) = {(~A) T F()., (~A) T Dga s (X)), x€ V1,
n—+o0o 4
and consequently

Jim Lrgn(x) = Lrga,p (). (3.6)

The assertion @y g € D(LF) now follows from dominated convergence, since estimates (3.4) and (3.5)
yield

[Lr@n ()] < C(gap) (14 X) (14 [ FOo 1) € LT (H, )

by (1.18) and hypothesis (Hs). O
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The following theorem is our main result in this section.

Theorem 3.2. The closure (Lr, D(LF)) of (LF, ]-'C,f (D(A))) generates a Co-semigroup of contractions (Tt)[>0
on L1(H, ).

Proof. For the proof it suffices to show that (A — Lg)(D(Lf)) is dense in L'(H, ) for some A > 0. Let
a,A>0, fe }"Cﬁ(D(A)) and consider the approximation equation

()\_LFmﬁ)(ﬂa,ﬂ:f! A>0. (37)

By Lemma 3.1 we have ¢4 g € D(L) N C;(H) and hence using the approximating sequence (¢n)nen as
in the proof of Lemma 3.1 and the identity L(p,% = 2¢nLeyy, we can see that goé g € D(L)N Cg (H) and

Lr (92 ) = 20a.pLFQa.p + (D@a.p. D@u.p)-

Integrating this inequality with respect to the invariant measure implies

1 _
E/<D¢a,ﬂ(x),D¢a,ﬂ(x)>M(dx):*/LF(/’a,ﬂ(X)(/’a,ﬂ(x)li(dx)- (3.8)
H H

Let us prove that (¢u g)a~0 is a Cauchy sequence in L*(H, 11). To shorten notation let %f,i =Qup—
@y fora,B,y,8>0.
Eq. (3.8) implies that

1 _
2 / (625 00) i) + 5 / (D@l (0. Dol (0) p(d) = / (= LE)pl, (00l 5 () 1a(d).
H H H

But

/ O = L@l 50 9l 5 (0 1u(dx) = / (=A% (Fa,p(0) — F®). (~A)7 Dgar s (0 () 14(dx)
H H

- f (=A)3 (Fy5(0) — F(). (~A)3 Dy 5(0)pL 5 (0) ju(dx)
H

£ !
2D A3 Fap = P 2

Ifll i
+2DT°° l=A3Fys =B 24,0,

and due to hypothesis (Hs) the right-hand side of the above inequality converges to 0 as
o, B,y,6§ = 0.
Let ¢ € L?(H, 1) be the limit of (¢u.g)a,g=0- Clearly, limy g0 ¢a.p =@ in L1(H, ) and thus

J— 1
Lr@a.p =LFy s Pa.p + (F — Fap. (—A)2 D@y p)

1 [a,—0]
=Apa,p — f+(F — Fap. (—A)2D@g g) —4 >

LU (H. 0 rp— f.
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It follows that ¢ € D(LF) and (A — Lr)¢ = f. We have thus shown that
FCE(D(A)) € (n — Lp)(D(LF)).
Since .7-'C§ (D(A)) is dense in L1(H, i), the proof is complete. O
We close this section by the following remark.
Remark 3.3. All the proofs and results of the previous sections hold if the Yosida approximation Fy

is replaced by any sequence of dissipative Lipschitz continuous vector fields Fy such that ||[Fy (x)| <
a(1+ ||x||",), for some constant a > 0 independent of «, x € V1. For the existence of an infinitesimal
3 4

invariant measure for the operator (LF,}'Cg(D(A))) only the first approximation by F, is needed.
The sequence Fy g was introduced to prove the regularity of the resolvent of transition semigroups
corresponding to (1.6).

4. Stochastic Cahn-Hilliard equations

Let I =[0,1] C R be a bounded interval and A = —% be the bi-Laplacian with Neumann bound-
ary conditions. Clearly, A is a negative definite self-adjoint operator on H with domain

C 4 dv dv
D(A):={ve HNHYD: 2 (0 ="22(0 =0, x=0.1,

where

1
H:= {v e L*(D): [v(x)dx:O}.
0

Denote by uy = m2k? k > 1, the eigenvalues of the negative Laplacian —A subject to Neumann
boundary conditions and let (y)ren denote the complete orthonormal set of corresponding eigen-
functions, Yy = coskmx. Then the sequence —(//,ﬁ)@] is the sequence of eigenvalues of the operator

A with eigenfunctions (yy)ken. Let f(t) = —t> and consider the following stochastic Cahn-Hilliard
equation
4 d2
du(t, x) = (—Wu(t,x) — Wf(u(t, x))) dt+n(t,x), (,x)eRy xI, (4.1)

where n(t,x) = dW;(x) and (W;) is a cylindrical Wiener process on H. It is well known that
D((—A)?) = Vy={ue H2(1), 2(0) = 94 (1) = 0} and hence vy = H'(I) (domain of the square root
of the Neumann Laplacian on H) endowed with the norm

2 2
Il = I
Define the nonlinear operator on the space V1
3
Fa)x) =-ulkx), ue Vi

This definition makes sense since the fractional space Vi is a Banach algebra under the pointwise
2
multiplication. This property is also true for V; (see [20]). Hence F satisfies (Hp). Clearly the map F
2
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is dissipative with respect to the |- ||y-norm and hence to use Remark 3.3, we introduce the following
sequence

—t3
Fo) := fe(u), uce V‘l‘, where fy(t) = Tral
Note that this definition makes sense on V% and V% is invariant under F,. Indeed, this follows

from the fact that the real function f, is Lipschitz with f,(0) =0 and its derivatives f/ and f/ are
bounded. Moreover, there exists a constant ¢, > 0 such that

HFa(x)H% <clXly, xeV. (4.2)

On the other hand, it is straightforward to see that F, is global Lipschitz on H and dissipative.
Moreover by the Sobolev embedding theorem it is not difficult to see that ||Fy (x)|| < a(1+ ||x||7), for

4
some constant a > 0 independent of «, x € V1. Thus the sequence F, satisfies Remark 3.3.

s
We shall apply our previous result to the Kolmogorov operator associated with (4.1). To this pur-
pose we consider the approximate equation

4 2
—ﬁuox(t,x) vl

dug (t, x) = < Fy (ua(t,x))) dt +dW,, (t,x)eR, x 1. (4.3)

To check hypothesis (Hy) we have [[eS4 |2, =07 | e~2M5, so that

t o)

o0 00 o0
/S_ZV e ||12~1st < Z/S_Zve_zﬂgsdsz F(211j23V) Z ’u21—4u < CZ n418v <
0 n=1

0 n=1 n=1n

ifv< % and hence hypothesis (Hy) is satisfied.
It remains now to check hypotheses (H4) and (Hs).

Lemma 4.1. Let (4, be the invariant measure for Eq. (4.3). Then for any m > 1 we have
/ [v™ Hzl Ha(dv) <8, forallveVi, (4.4)
i 3

for some positive constant & independent of ct.
Proof. We write
X () =Ya () + Wa().

For the process Y, (-) we have the following

|

1
5 (1Ya @™ ) =—m{(=A)2Ya(®). Ya®™ )+ m{Fo (Xa (). Y271 (1))
4

Qu

t

<—-mQ2m-—1) /(axya (t))2 Yo ()P 2 dx+m[ Fy (xa(r))y(im‘](t) dx

= _me—l /(8;(1/21(1'))2 dx—{—m/ Fa(Xa(t))Yém_l (t)dx.
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We now claim that there exists a constant Cp, > 0, independent of «, such that
2m+2
/ Fo(Xa®)Y2™ 1 (0)dx < Cn [Wa (D) || (4.5)

Indeed, we have

2m—1 _ Xa(t)3 y2m—1
/Fa(Xa(t))Ya O dx = /1+axa(t)2 am=1(t) dx

/ yZm2 ) J /3Ya<t>2m“wA<t>
__ [ Lm0 [ 2O WA®

1+ o X (t)2 14 aXq ()2
B /3va<t>2mwf\<r> e /Ya(t)z'“—lw/i(o
Trax,)? X Tt aX,()?

Y§m+2 03 e / Wf\m+2 0]
m

1
Young’s inequality) < — = | —F——dx P ——
(Young’s inequality) < —3 / 1+ aXa(0)? 1+ aXa(0)?

<Cm / W22 (1) dx.

Hence by the Sobolev embedding theorem we deduce (4.5).
Consequently,

2m—1

1d m m m
21"y ) <= [ (eriio) e awa |7

From

o ||f1,1 :/(axyy(t))zdx

we deduce that for T >0

/ gl d< < |vrol, / [wa 7"+ . (46)

.;;

From the multiplicative property of the space VJ-; it follows

m
[Xg®], <Y eme|vaOWR o],
k=0

m
—k
<Ci %kaﬂyﬁ(t)”% waoly

(vl ol

k=0

for some constant C > 0. Hence by making use of (4.6) we obtain
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1 moyp 1 [
2 2 2 2
;/r|xz1<r>n;dt<ck2(:);/|\v5<r>»|1dr+c [(waol 3
0 = 0 0

T

1w 2 1 m2

<cr L Itoly+ep [ (waol]™
= 0

By taking the expectation in the last inequality we obtain

m

J el uratn <2 Ss(vb ) +con+n
k=0
1 m
= ¥Z||x’<|| 1+ C(M+1).
k=0

Recall from Section 1 that iy can be obtained as a limit point of some weakly convergent subse-
quence ({iq,T,)n>1. Hence an application of Fatou’s lemma yields

/ X7 (@) = lim / X% A K pady)
3 K— 400 3
H

K—+4o00n—400
H

< liminf lim /meué AK W1y 0 (dX) <CM +1) := 3.

This finishes the proof of the lemma. O
Now it is not difficult to check hypothesis (Hg). In fact, an application of the estimate (1.11) in

Proposition 1.5 (with 8 =0) and the compact embedding V 1> H gives the tightness of the family

of measure ((4q)q>0. Let p be the limit point of any subsequent of ((q)y=0. Then by (4.4) in the
above lemma and Fatou’s lemma as in the proof above we deduce

/ %3 ) < oo. (4.7)

H

This estimate yields

/HF(X) Hz% 1 (dx) < +oo.
H

We now write

|Fa(u>—F<u>|:']—2

where G(u) = u°. Therefore estimates (4.4) and (4.7) yield hypothesis (Hy).
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Let us now prove hypothesis (Hs). Using (4.2) we write

||Fa,,q(u)||‘ll = H(—A)}l/eﬁAFa(v)./\/’eﬁAu,Qﬂ(dv) </ }|Fa(v)||%AfeﬁAu’Qﬂ(dv)
H H

< /Ca ||V||3T/\/;ﬁAu,Qﬂ(dv) <Co(1+ IIUII%) (4.8)
H
o ~ . . . 1 1
for a positive constant ¢, independent of 8. Since limg_.o(—A)% Fy g(u) = (—A)1 Fy(u) we have by

the dominated convergence theorem that limﬂ_)o(—A)zlt Fop= (—A)zl‘xFa in L%(H, p). This yields in
particular

;Ln})/||Fu,ﬂ(u)—F(u)||iu<du)=/||Fa(u)—F(u>||§u<du).
H H

But
5 3
ou au 2 5
Fq(u) — F(u) = = “u”=hy ) -us,
o) —Fu) o 12 a(U)
where hy(2) = % Since hy has a bounded derivative, independent of o, we can find a constant

K > 0, independent of « > 0, such that
lha @] <Klull;, ueVs.
1 3 i

Now by the multiplicative property of V% and Lebesgue’s theorem hypothesis (Hs) holds.
Hence making use of the result from the previous sections we deduce the following theorem.

Theorem 4.2. The family of measure (L )q~o0 iS tight. Let i be any limit point of some weakly convergent
subsequence of (e )a>0.- Then w is an infinitesimal invariant measure for the operator Lg. In particular,
(L, }'Cg(D(A))) is closable on L1 (H, (). Moreover, u satisfies the moment estimates (1.18) and the closure of
(L, }"Ci(D(A))) in L'(H, 1) generates a Markov Co-contraction semigroup.

Remark 4.3. The last example can be generalized to any nonlinearity F of the form F(u) = —u?P*1,
. S _y2ptl ;

p > 1, by just considering the sequence Fyu = 1fa—i;1" o > 0, and using the same argument as above.
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