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In this paper, topological properties of Wijsman hyperspaces are investigated. We study the
existence of isolated points in Wijsman hyperspaces. We show that every Tychonoff space
can be embedded as a closed subspace in the Wijsman hyperspace of a complete metric
space which is locally R.
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1. Introduction

In this paper we consider the set 2X consisting of all non-empty closed subsets of a metric space (X,d), equipped with
the Wijsman topology τw(d) . In the following, we denote the Wijsman hyperspace (2X , τw(d)) of a metric space (X,d) by 2(X,d) .
The easiest way to describe the space 2(X,d) is through an identification: identify a non-empty closed subset S of X with the
distance function d(·, S). In this way 2X is identified with a subset of the function space C(X) and the Wijsman topology is
the topology of pointwise convergence on this subset.

We refer the reader to [1] and [2] for background on Wijsman hyperspaces.
Lechicki and Levi showed in [8] that the Wijsman hyperspace of a separable metric space is metrizable. There has been

a considerable effort to explore completeness properties of Wijsman topologies, and one line of research was completed
with the result of Costantini [4] that the Wijsman hyperspace of a Polish metric space is Polish.

Besides metrizability and various completeness properties, other topological properties of Wijsman hyperspaces have
not been widely studied. In this paper we give results which show that Wijsman hyperspaces of topologically simple non-
separable metric spaces can have very complicated topologies. The first result of this kind in the literature is an example,
due to Costantini [5] of an uncountable discrete complete metric space (X,d) such that 2(X,d) is not Čech-complete. In
Section 3 below, we give a general result which yields Costantini’s result as well as some later results as corollaries.
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2. Isolated points of Wijsman hyperspaces

In this section, we give three examples to demonstrate various possibilities on the existence of isolated points in Wijsman
hyperspaces.

The first example is due to Chaber and Pol [3, Remark 3.1].

Example 2.1. Let δ be the 0–1 metric on a set X . Then 2(X,δ) is homeomorphic to {0,1}X \ {0}, where {0,1} is discrete and
0 is the constant function with value 0. If X is infinite, then 2X has no isolated points.

The above example and well-known properties of the Cantor cube {0,1}X show that the Wijsman hyperspace 2(X,δ) of a
0–1 metric space (X, δ) is locally compact and satisfies the countable chain condition. Moreover, if |X | � 2ω , then 2(X,δ) is
separable.

The Wijsman hyperspace of an infinite metric space is non-discrete. Nevertheless, Wijsman hyperspaces may have many
isolated points.

Example 2.2. For every set X , there exists a discrete metric d on X such that every singleton subset of X is an isolated
point in 2(X,d) .

Proof. To avoid a triviality, let X be infinite. Express X as the union of a family of pairwise disjoint two-point subsets, that
is, write X = ⋃{Xα: α ∈ A}, where Xα = {x0

α, x1
α} with x0

α �= x1
α for each α ∈ A and Xα ∩ Xβ = ∅ whenever α �= β . Define

d : X × X → {0,1,2} by setting

d(x, y) =
{0, if x = y;

2, if {x, y} = Xα for some α;
1, otherwise.

It can be checked that d is a metric on X . Let α ∈ A and i ∈ {0,1}. Note that d(x1−i
α , xi

α) = 2 and d(x1−i
α , z) � 1 for every

z �= xi
α . As a consequence, we have {F ∈ 2X : d(x1−i

α , F ) > 1} = {{xi
α}}, and the set {{xi

α}} is thus open in 2(X,d) . �
Example 2.3. A discrete metric d on N such that every non-empty finite subset of N is an isolated point in 2(N,d) .

Proof. Define d by the formula d(n,k) = |2−n − 2−k| for all n,k ∈ N, and note that d is a discrete metric on N.
Let E ⊂ N be non-empty and finite. Set m = 2 + max E . The set

W = {
F ∈ 2N:

∣∣d(k, F ) − d(k, E)
∣∣ < 2−m−1 for each k � m

}
is a neighborhood of E in 2(N,d) . We show that W = {E}.

Let F ∈ W . To show that F = E , we first show that F ∩ [1,m] = E ∩ [1,m]. Let k � m. Since F ∈ W , we have |d(k, F ) −
d(k, E)| < 2−m−1. Thus, if k ∈ E , then d(k, F ) < 2−m−1. Since

d
(
k,N \ {k}) = d(k,k + 1) = 2−k − 2−k−1 = 2−k−1 � 2−m−1,

it follows that k ∈ F . On the other hand, if k /∈ E , then

d(k, E) � d
(
k,N \ {k}) = 2−k−1 � 2−m−1

and it follows that

d(k, F ) > d(k, E) − 2−m−1 � 2−m−1 − 2−m−1 = 0,

which implies that k /∈ F . Hence, we have shown that F ∩ [1,m] = E ∩ [1,m].
To conclude the proof of F = E , it suffices to show that F ⊆ [1,m]. Assume on the contrary that there exists k ∈ F with

k > m. Then we have that

d(m, F ) � d(m,k) = 2−m − 2−k < 2−m.

Since m = 2 + max E , we have that

d(m, E) = 2−m+2 − 2−m > 2−m+1,

and it follows that∣∣d(m, F ) − d(m, E)
∣∣ > 2−m+1 − 2−m = 2−m.

This, however, is a contradiction since F ∈ W . �
Question 2.4. Does there exist an uncountable metric space (X,d) such that every non-empty finite subset of X is an
isolated point in 2(X,d)?
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3. On subspaces of Wijsman hyperspaces

In this section, we investigate those topological spaces which can be embedded as closed subspaces in Wijsman hyper-
spaces of various metric spaces. We start with a simple observation.

Proposition 3.1. A T1-space T is zero-dimensional and locally compact if, and only if, T embeds as a closed subspace in 2(X,δ) for
some 0–1 metric space (X, δ).

Proof. Sufficiency follows immediately from Example 2.1. To prove necessity, let T be a zero-dimensional and locally com-
pact T1-space. The one-point compactification T ∗ = T ∪ {∞} is zero-dimensional and compact. There exists an embedding
ϕ : T ∗ → {0,1}κ for some cardinal κ . The compact set ϕ(T ∗) is closed in {0,1}κ , and it follows that ϕ|T is an embedding
of T onto a closed subspace of {0,1}κ \ {ϕ(∞)}. By homogeneity of {0,1}κ and Example 2.1 again, {0,1}κ \ {ϕ(∞)} is
homeomorphic to the Wijsman hyperspace 2(X,δ) of a 0–1 metric space (X, δ). �

To obtain some deeper results on embeddings, we first establish the following key lemma.

Lemma 3.2. Let {(Xα,dα): α ∈ A} be a family of mutually disjoint complete metric spaces such that for each α ∈ I , the set Eα =
dα(Xα × Xα) is a subset of the closed unit interval I. Then there exists a compatible complete metric d on the free sum X = ⊕

α∈A Xα

such that the product space
∏

α∈A 2(Xα,dα) embeds as a closed subspace in 2(X,d) . Moreover, d(X × X) ⊆ ⋃
α∈A Eα ∪ {2}.

Proof. Set Y = ∏
α∈A 2(Xα,dα) . Equip X with the metric d defined by

d(x, y) =
{

dα(x, y), if x, y ∈ Xα for some α ∈ A;
2, otherwise.

It is easy to see that d is a compatible complete metric for X and the inclusion d(X × X) ⊆ ⋃
α∈A Eα ∪{2} holds. To complete

the proof, we show that Y embeds as a closed subspace in 2(X,d) . To this end, we define a mapping ϕ : Y → 2(X,d) by the
formula

ϕ
(〈Fα〉α∈A

) =
⋃

{Fα: α ∈ A}.
Denote by Z the subspace ϕ(Y) of 2(X,d) . Note that we have Z = {F ∈ 2X : F ∩ Xα �= ∅ for every α ∈ A}. The mapping ϕ

has an inverse ϕ−1 : Z → Y defined by the formula ϕ−1(F ) = 〈F ∩ Xα〉α∈A . As a consequence, ϕ is one-to-one. Next we
verify that ϕ is a homeomorphism Y → Z .

The space Y has a subbase consisting of sets of the form

Γν,x,a,b = {〈Fα〉α∈A ∈ Y : a < dν(x, Fν) < b
}
,

where ν ∈ A, x ∈ Xν and a,b ∈ R.
Note that if x ∈ Xν and F ∈ Z , then d(x, F ) = d(x, F ∩ Xν) = dν(x, F ∩ Xν). It follows that we have

ϕ(Γν,x,a,b) = {
F ∈ Z : a < dν(x, F ∩ Xν) < b

} = {
F ∈ Z : a < d(x, F ) < b

}
.

The relative Wijsman topology of Z has a subbase consisting of sets of the form {F ∈ Z : a < d(x, F ) < b}, where x ∈ X
and a,b ∈ R. Hence we have shown that the one-to-one mapping ϕ transforms a subbase of Y onto a subbase of Z . As
a consequence, ϕ is a homeomorphism Y → Z .

Finally, we verify that Z is a closed subspace of 2(X,d) . Let F ∈ 2X \ Z . Then F ∩ Xα = ∅ for some α ∈ A. Pick a point
x0 ∈ Xα , and put

U = {
B ∈ 2X : d(x0, B) > 1

}
.

Then U is an open neighborhood of F in 2(X,d) such that U ∩ Z = ∅. �
Lemma 3.3. If d is a finite-valued metric on a non-empty set X , then 2(X,d) is zero-dimensional.

Proof. Let d(X × X) = E . Then 2(X,d) embeds in C p(X, E) ⊆ E X , where E is equipped with the discrete topology. Thus, the
conclusion follows. �

A metric space (X,d) is uniformly discrete if X is ε-discrete for some ε > 0.

Question 3.4. Can we replace “finite-valued” in Lemma 3.3 by “discrete” or “uniformly discrete”?

We only have the following partial answer to Question 3.4. Following [6], we call a topological space X totally disconnected
if every quasi-component of X is a singleton.
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Proposition 3.5. Let (X,d) be a discrete metric space. Then 2(X,d) is totally disconnected.

Proof. Let x ∈ X . Let rx = 1
2 d(x, X \ {x}) and note that rx > 0. The set

Gx = {
F ∈ 2X : d(x, F ) < rx

} = {
F ∈ 2X : x ∈ F

}
is open in 2(X,d) , and it is also closed, because 2X \ Gx = {F ∈ 2X : d(x, F ) > rx}.

The family {Gx: x ∈ X} of clopen sets separates the points of 2X and hence 2(X,d) is totally disconnected. �
Theorem 3.6. A T1-space T is zero-dimensional if, and only if, T embeds as a closed subspace in the Wijsman hyperspace 2(X,d) of
a metric space (X,d) with a 3-valued metric d on X.

Proof. Sufficiency follows immediately from Lemma 3.3. To prove necessity, suppose that T is zero-dimensional. Take a base
B = {Bα: α < κ} consisting of clopen subsets. It is well known that T embeds in {0,1}κ by the mapping ϕ : T → {0,1}κ
defined by ϕ(x) = χAx , where χAx is the characteristic function of the set Ax = {α < κ: x ∈ Bα}. So, we can assume that
T ⊆ {0,1}κ . Let T̃ = {0,1}κ \ T . For every y ∈ T̃ , let Y y = {0,1}κ \ {y}. By homogeneity of {0,1}κ and Example 2.1, for each
y ∈ T̃ , there exists a 0–1 metric space (X y,dy) such that Y y is homeomorphic to 2(X y ,dy) . We can choose the sets X y , y ∈ T̃ ,
to be mutually disjoint. It follows from Lemma 3.2 that there exists a 3-valued metric d (with values 0, 1, 2) on the free sum
X = ⊕{X y: y ∈ T̃ } such that the product space

∏{Y y: y ∈ T̃ } embeds as a closed subspace in 2(X,d) . Finally, it is routine
to check that the diagonal

 =
{
〈ay〉y∈T̃ ∈

∏
{Y y: y ∈ T̃ }: ay = ay′ for all y, y′ ∈ T̃

}
is a closed subspace of

∏{Y y: y ∈ T̃ } which is homeomorphic to T . Therefore, we conclude that T embeds as a closed
subspace in 2(X,d) . �

Note that Proposition 3.1 and Theorem 3.6 explain why Costantini was able to use a 3-valued but not 2-valued metric
in his example of a complete metric space whose Wijsman hyperspace is not Čech-complete. Let us also note that as
a consequence of Theorem 3.6, we can give a “3-valued solution” to Zsilinszky’s problem in [10]. The original solution, by
Chaber and Pol [3], used a non-discrete metric space.

Corollary 3.7. The space Q of rationals embeds as a closed subspace in 2(X,d) for some 3-valued metric space (X,d). Consequently,
there exists a 3-valued metric space whose Wijsman hyperspace is not hereditarily Baire.

We close the paper with an embedding result for Tychonoff spaces. It provides a generic solution to problems dealing
with closed-hereditary properties of Wijsman hyperspaces, and hence it extends some earlier results such as those by
Costantini, Chaber and Pol mentioned above.

Theorem 3.8. Every Tychonoff space can be embedded as a closed subspace in the Wijsman hyperspace of a complete metric space
which is locally R.

Proof. Let T be a Tychonoff space. By a classical result, there exists an infinite cardinal κ such that T can be embedded
into the Tychonoff cube Iκ . Hence, we may assume that T ⊆ Iκ .

We show that for every y ∈ Iκ , there is a locally R and complete metric space (Z y,dy) such that Iκ \ {y} embeds as
a closed set in 2(Z y ,dy) . Since Iκ is homogeneous (see [7] and [9]), it suffices to show that the assertion holds for y = 0.
Let I be the open interval (0,2) in R. Since I is completely metrizable, it admits a compatible complete metric ρ which is
bounded by 1. Consider the set Z0 = ⋃

α<κ(I × {α}), and define a metric d0 of Z0 by the formula

d0
(〈x,α〉, 〈y, β〉) =

{
ρ(x, y), if α = β;
2, otherwise.

Then (Z0,d0) is a complete metric space, which is locally R.
We show that Iκ \ {0} embeds as a closed subspace in 2(Z0,d0) . Consider the mapping ϕ : Iκ \ {0} → 2Z0 defined by the

formula

ϕ(y) =
⋃{

(0, yα] × {α}: α < κ
}
.

It is easy to see that ϕ is one-to-one and the set ϕ(Iκ \ {0}) is closed in 2(Z0,d0) . Like in the proof of Lemma 3.2, we can
show here that ϕ transforms a subbase of Iκ \ {0} onto a subbase of the subspace ϕ(Iκ \ {0}) of 2(Z0,d0) . As a consequence,
ϕ is an embedding.

Let T̃ = Iκ \ T . By the foregoing, we know that for every y ∈ T̃ , there exists a locally R and complete metric space
(Z y,dy) such that Y y = Iκ \ {y} embeds as a closed subspace in 2(Z y ,dy) . Applying Lemma 3.2, we see that there exists
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a locally R and complete metric space (X,d) such that the product space
∏{Y y: y ∈ T̃ } embeds as a closed subspace

in 2(X,d) . As in the proof of Theorem 3.6, we see that T is homeomorphic with the closed subspace  of
∏{Y y: y ∈ T̃ }.

This completes the proof. �
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