
THEORETICAL & APPLIED MECHANICS LETTERS 1, 032007 (2011)

Two-fluid oscillatory flow in a channel
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Abstract The validity of Navier’s partial slip condition is investigated by studying the oscillatory
flow in a coated channel. The two-fluid model is used to solve the unsteady viscous equations
exactly. Partial slip is experienced by the core fluid. It is found that Naviers condition does not
hold for an unsteady core fluid. c© 2011 The Chinese Society of Theoretical and Applied Mechanics.
[doi:10.1063/2.1103207]
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Apparent partial slip for viscous flow over solid sur-
faces occurs in many important applications. In all
cases the bulk or core fluid experiences partial slip due
to surface conditions. These include flow of rarefied
gasses,1 flow past rough or porous surfaces,2 chemically
treated hydrophobic surfaces and micro-hydrophobic
surfaces,3 dense particulate fluids such as emulsions,
suspensions, foam and polymer solutions,4 including
blood. The partial slip condition, originally proposed
by Navier,5 states that the slip velocity u′s is propor-
tional to the local shear stress

u′s = Nτ ′ns, (1)

where N is a constant. Equation (1) is experimentally
established for rarefied gasses and can be proven the-
oretically for the apparent slip of a steady bulk fluid
bounded by minute grooved surfaces2 and also easily
proven for lubricated surfaces using two fluid layers.
Navier’s condition is thus firmly established for steady
partial slip problems.

Recently, Naviers slip condition was also used by
some authors for unsteady viscous flows.6–12 But can
Navier slip condition be applied to unsteady flows?

In order to address this question, we turn to a
counter example of oscillatory viscous flow in a surface
coated channel. Owing to the lowered viscosity of the
coating, the bulk fluid appears to experience apparent
partial slip. We shall use a two-fluid model which has
successfully predicted apparent partial slip of particu-
late solutions,4 especially blood.13

Figure 1 shows a channel of width 2L with axes
x′, y′ placed on the center plane of the channel. The
core fluid (of thickness 2λL) has higher viscosity than
the fluid layers along the walls. Let subscript 1 de-
note the core fluid and subscript 2 denote the boundary
fluid. For long channels, the unsteady Navier-Stokes
equations are reduced to

u1
′
t′ = −p′x′/ρ1 + ν1u1

′
y′y′ , (2)

u2
′
t′ = −p′x′/ρ2 + ν2u2

′
y′y′ . (3)

a)Corresponding author. Email: cywang@mth.msu.edu.

Here is u′ the axial velocity, t′ is the time, ρ is the
density and ν is the kinematic viscosity. The oscillatory
pressure gradient is given as

−p′x′ = G cos(ωt′), (4)

where G is a constant and ω is the frequency. Normalize
all lengths by L, the velocities by GL2/(ρ1ν1) and drop
primes. Equations (2) and (3) become

s2u1t = eit + u1yy, |y| ≤ λ, (5)

β2s2u2t = γβ2eit + u2yy, λ ≤ |y| ≤ 1. (6)

Here s2 = ωL2/ν1 is a non-dimensional parameter rep-
resenting unsteadiness, β2 = ν1/ν2, ρ = ρ1/ρ2, i =

√−1
and only the real part of any physical quantity is rele-
vant. The boundary conditions are that u2 is zero on the
walls and that the velocities and shear stresses match
between the two fluids

u1(λ, t) = u2(λ, t), γβ2u1y(λ, t) = u2y(λ, t). (7)

Let

u1 = eitf1(y), u2 = eitf2(y). (8)

The solution to Eq. (5) which is even in y is

f1 = −i/s2 + C1 cosh(
√
isy). (9)

The solution to Eq. (6) which is zero on the wall is

f2 = −iγ(1− e
√
isβ(y−1))/s2 +C2 sinh[

√
isβ(y− 1)].

(10)

The complex constants C1, C2 are determined by Eqs.
(7) and(8). We find

C1 = i
{
γ − (γ − 1) cosh[β(λ− 1)s

√
i]
}·{

s2{cosh[β(λ− 1)s
√
i] cosh(λs

√
i)−

βγ sinh[β(λ− 1)s
√
i] sinh(λs

√
i)}

}−1

, (11)
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Fig. 1. Coated channel

C2 =
{
−iγ{eβ(λ−1)s

√
i cosh(λs

√
i)}−

β[1− (1− eβ(λ−1)s
√
i)γ] sinh(λs

√
i)
}
·{

s2{cosh[β(λ− 1)s
√
i] cosh(λs

√
i)−

βγ sinh[β(λ− 1)s
√
i] sinh(λs

√
i)}

}−1

. (12)

After the velocity is obtained, the instantaneous flow
rate, normalized by GL3/(ρ1ν1), is

Q =

∫ λ

0

u1dy +

∫ 1

λ

u2dy =

eit

{
−iλ
s2

+ C1
sinh(λs

√
i)

s
√
i

+

C2
1− cosh[β(λ− 1)s

√
i]

βs
√
i

−

iγ

s2

[
1− λ− 1− eβ(λ−1)s

√
i

βs
√
i

]}
. (13)

The velocity magnitudes and the flow rate decrease
rapidly as the frequency parameters increases.

Owing to the coated walls, apparent partial slip is
experienced by the core fluid. The normalized slip ve-
locity and the local shear stress of the core on the core
boundary are

V = u1(λ, t), τ = u1y(λ, t). (14)

Figure 2 shows typical results for a complete period of
time. The slip velocity and the shear stress are al-
most in phase for low frequencies but they are quite
out of phase for higher frequencies. Even more reveal-
ing is the ratio V/τ which should be a constant if the
Naviers condition were valid. Figure 3 shows that the
ratio is somewhat constant for s = 1 but varies dra-
matically for s = 10. In fact only in the steady flow
limit (s < 0.01) does the ratio remain truly constant.
Thus with the surface dynamics (in our case, Region 2
viscous layer) ignored, Naviers condition cannot be ap-
plied to a core fluid in unsteady slip flow problems. Our
analysis can be applied to oscillatory or pulsatile flows
in microchannels.3,10

Fig. 2. Normalized slip velocity (solid line) and local shear
stress (dashed line) of the core fluid.

Fig. 3. The ratio of slip velocity to local shear stress of the
core fluid.
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