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1. Introduction

Letx, y, z be distinct elements in a finite set X. A triple {x, y, z} (or cyclic triple (x, y, z), or transitive triple (x, y, z))on X is a
set of three unordered pairs {x, y}, {y, z}, {z, x} (or ordered pairs (x, y), (v, ), (z, x), or ordered pairs (x, y), (¥, z), (x, z)) of
X. For these (classical) triples, the elements in each pair and triple must be distinct. When this restriction is broken, we have
the so-called extended unordered pair (or ordered pair) and extended triple (or extended cyclic triple, or extended transitive
triple), which were firstly introduced by Johnson and Mendelsohn in 1972, see [5].

An extended Steiner (or Mendelsohn, or directed) triple system ESTS(v) (or EMTS(v), or EDTS(v)) is a pair (X, ), where
X isav-setand 4 is a collection of extended triples (or cyclic triples, or transitive triples) on X, called blocks, such that every
extended unordered (or ordered) pair of X belongs to exactly one block of «4. A large set of ESTS (v) (or EMTS (v), or EDTS (v)),
denoted by LESTS (v) (or LEMTS (v), or LEDTS (v)), is a collection {(X, +4y)}x, Where X is a v-set, each (X, 4y) is an ESTS(v) (or
EMTS (v), or EDTS(v)) and these 4 form a partition of all extended triples (or cyclic triples, or transitive triples) on X. The
types of extended triples (or cyclic triples, or transitive triples) and the extended pairs contained in them are listed in the
following table.

System Forms of triple Pairs covered by Number of triples in a Number of systems in a
triple v-set large set
S1:{x, x, x} {x, x} v
ESTS  Sy:{x,x,y} {x, x}, {x, y} v(v —1) v
S3 : {X7y9z} {x’y}v {ysz}v{zax} v(v—])(v—2)/6
Mi @ (X, X, X) (x, x) v
EMTS M : (x,x,¥) *,9),©,%,*x  v-1) v
Ms:(x,y,2) *,¥),1,2),(z,x) vw-1{-2)/3

(continued on next page)
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System Forms of triple Pairs covered by Number of triples in a Number of systems in a
triple v-set large set
D1 : (x,x,X) (x, x) v
D2 . (X5 X’y) (X7X)5 (X,y) U(U_ 1)
EDTS D3 :(x,y,y) *,¥), ¥, y) v(v—1) 3v—2
D4 . (X,y,x) (va)7 O’ax)7(X7X) U(U_ 1)
D5 . (X,y,Z) (X,y), (y,Z),(X,Z) U(U— 1)(U_2)

The existence problem of extended Steiner triple system and extended Mendelsohn triple system have been solved in
[1,2,5]. The existence problem of extended directed triple system with some additional conditions has also been discussed
in [3,4]. In this paper, we will discuss the existence problems for the large sets of ESTS, EMTS and EDTS. For the last designs,
i.e., LEDTS (v), our conclusion is: there exists an LEDTS (v) for any even v except v = 4. The existence of LEDTS (v) with odd
order v will be discussed in another paper, we are working at it.

Theorem 1.1. There exists an LESTS (v) for any integer v > 1.

Proof. For v = 1, 2 mod 3, the collection {(Z,, 4Ax) : X € Z,} forms an LESTS (v), where
Ao = {{i,j, k} :i+j+ k=0 mod v}, Ay = Ao+ X, XELZ,.

For v = 0 mod 3, the collection {(Z,, #4sx) : X € Z,/3, 0 <s < 2} forms an LESTS(v), where
Aso={{i,j,k}:i+j+k=smodv}, 0<s<2

Asxy = {B+ X : B € Aso}, where (i,j,k) +x = (i + x,j + x, k + x) fori,j, k € Z,, the addition is taken modulo v,
X€Z,30=<s<2. n

In [9], Wang gave the existence spectrum for LEMTS (v). Here, we give a simpler proof.

Theorem 1.2. There exists an LEMTS (v) for any integer v > 1.

Proof. Let {(Z,, 4Ay) : x € Z,} be an LESTS (v). Replace each (S5 type’s) extended triple {x, y, z} in 4y by (M3 type’s) extended
cyclic triples (x, y, z) and (z, y, x). As well, by replacing each (S; and S, type’s) extended triples {x, x, x} and {x, x, y} by
(M; and M, type’s) extended cyclic triples (x, x, x) and (x, x, y), the triple system {(Z,, Ay) : X € Z,} will become an
LEMTS(v). ®

In this paper, we shall focus on the existence of LEDTS (v) with even orders v. Let k, g, n be positive integers. A k-GDD(g")
is a triple ('V, 4, B), where 'V is a gn-set, § is a partition of 'V, which consists of n subsets (called groups) with size g, and
B is a family of some subsets (called blocks) of 'V such that if B € B, then |B| = k and every pair of distinct elements of V
occurs in exactly one block or one group but not both.

Let K be a set of positive integers, t, v, g1, ..., &, 1, ..., N, be positive integers, s be a non-negative integer and
Zf;l n;g; = v — s. A candelabra t-system (t, K)-CS(v : s) or (t, K)—CS(g;llg;z ---g'r 1 s),see [7],is a quadruple (X, S, §, A)
that satisfying the following conditions:

(1) X is a v-set (called points), S is its s-subset (called a stem);

(2) g is a partition of X \ S, which consists of n; subsets with size g; (called groups);

(3) « is a family of some subsets of X, each member (called block) has the size from K;

(4) Every t-subset T of X is contained in exactly one block if TN (SUG)| < t, VG € §,orinno blockif T € S U G for some
Geg.

Especially, a (t, K)-CS(1" : 0) is just a t-wise balanced design S(t, K, v), briefly denoted by t-BD, and a (¢, k)-CS(1" : 0) is
just a t-design S(t, k, v).

F(3, 3,g") is a triple (X, 4, ) where X is a gn-set of points, g is a collection of n non-empty subsets (called groups) of
size g of X which partition X, + is a collection of all triples satisfying each triple intersects any given group in at most one
point and + can be partitioned into gnAy, x € G € § such that each (X \ G, § \ {G}, #,) isa 3-GDD(g"™ ).

Let v be a positive integer, X be a v-set, § be a partition of X, and Kj, . .., K;, K+ be sets of positive integers. Suppose
that 81, ..., Bs and T are collections of some subsets of X with size from Ki, ..., K; and K respectively. An s-fan design
s-FG(3, (K1, K>, ..., K¢), v) is an (s 4+ 3)-tuple (X, §, B1, Ba, ..., Bs, T), where (X, §) isa 1-BD, (X, § U B;) is a 2-BD for
each1 <i <s,and (X, § U (Ui_; 8;) UT)is a3-BD.

Below, I, is an n-set, Z, is a residual ring module n and F, is a finite field of order q. Denote Z = Z, \ {0} and F; = F;\ {0}.
Denote extended transitive triple by (a, b, ¢) or abc. For a family of extended transitive triples 4 on Z, (or Fy) and x, m € Z,
(or Fy), denote

A+x={(@+x,b+x,c+x):(a,b,c) e A}, ms = {(ma, mb, mc) : (a, b, c) € A},
—o = {(—a,—b, —c) : (a,b,c) € A} and A~'={(c,b,a): (a,b,c) € A}
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Definition 1.1. For positive integers n; and g;, 1 < i < r, a directed group divisible triple system DGDD(gln t...gl)is a trio

(X, g, 4) satisfying the following conditions:

(1) X is a set containing Y ;_, n;g; points;

(2) g is a partition of X, which consists of n; subsets of size g; (called groups);

(3) o is a family of some transitive triples of X (called blocks) suchthat ANG| < 1, VA€ 4, G€ §;

(4) Each ordered pair on X from distinct (or same) groups is contained in exactly one (or no) block.

Definition 1.2. For positive integersn, g, sands > 2,aPDGDD(g" : s) is a trio (X, 4, -) satisfying the following conditions:

(1) X is a set containing ng + s points;

(2) $ ={Go, Gy, ..., Gy} forms a partition of X, where G; = {a;; : j € I} is called group, i € Z,. |Go| = s and other |G;| = g;

(3) + consists of all transitive triples on X, intersecting each group in at most one points. And, 4 can be partitioned into
{B]j:i€l,jelg, T €l3}U{C:1<k<3(s—2)}, where each B; forms a DGDD(g"~'(s + 1)") on X \ (G; \ {a;;})
with the group set (4§ \ {Go. Gi}) U {Go U {a;;}}, and each €, forms a DGDD(g") on X \ Go with the group set § \ {Go}.

Definition 1.3. For positive integers n, g and s, an EDGDD(g"s') (extended directed group divisible triple system) is a trio
(X, g, ) satisfying the following conditions:

(1) X is a set containing ng + s points;

) 6 = {Go, Gq, ..., G,} forms a partition of X, where G; (i € Z,) is called group. |Gy| = s and other |G;| = g;

) A is a family of extended transitive triples of X (called blocks) such that A Z GU S forany A € A and G € §;

) Each ordered 2-subset (x, y) of X is contained in exactly one (or no) block of #4 if x, y in distinct (or same) groups;

) Each pair (x, x) is contained in exactly one (or no) block of 4 if x & Gy (or x € Gy).

Especially, an EDGDD(1"5s') = (X, §, ) is named as EDTS(n, s) = (X, Y, #), where the long group Gy = Y with size s is
called hole.

(2
(3
(4
(5

Definition 1.4. For positive integers w < v, let X be a v-set, Y be its w-subset. An LEDTS (v, w) is a collection {(X, Y, ;) :
1 <i < 3v—2}such that all extended transitive triples from X, not belonging to Y, are partitioned into #A;, 1 <i < 3v—2,
where each (X, Y, 4;) is an EDTS(v, w) for 1 < i < 3w — 2 or an EDTS(v) for 3w — 1 < i < 3v — 2. Obviously,
LEDTS (v, w) U LEDTS (w) = LEDTS(v).

Definition 1.5. For positive integers n, g and s, a PECS(g" : s) is a quadruple (X, S, , ) satisfying the following conditions:

(1) X is an (ng + s)-set, S is its s-subset (called stem);

(2) ¢ ={Gq, ..., Gy} partition X \ S, where each G; is a g-subset;

(3) A consists of all extended transitive triples from X, not belonging S U G, VG € §. » can be partitioned into {3{1 tie
In,jely,r € 3} U{Ck: 1<k < 3s— 2}, where each ;B[] forms an EDGDD(18™=D (g 4 s)) on X with the long group
G; U S, each G, forms a DGDD(g") on X \ S with the groups §.

Definition 1.6. For positive integers n, g and non-negative integer s, a PECS*(g" : s) is a quadruple (X, S, 4, +) satisfying

the following conditions:

(1) X is an (ng + s)-set, S is its s-subset (called stem);

(2) $ =1{Gq, ..., Gy} partition X \ S, where each G; = {a;; : j € I} is a g-subset, i € I,;

(3) A consists of all transitive directed triples (called blocks), not belonging S U G, VG € §. + can be partitioned into
{B];:i€ljel,r €3} U{C: 1<k < 3s+ 4}, where each B]; forms an EDGDD(15" V(g +s — 1)") on X \ {ay}
with the long group (G; U S) \ {a;;}, and each ¢, forms a DGDD(g") on X \ S with the groups §.

Definition 1.7. For positive integers n and g, a DF(g") is a trio (X, , ») where X is a gn-set of points, 4 is a partition of X
into n subsets (called groups) with size g, -4 is a collection of all transitive triples intersecting any given group in at most one

point, and 4 can be partitioned into 3gn A% such that each (X \ G, § \ {G}, A%) isaDGDD(g""!), wherex € G € ¢ andj € Is.
Lemma 1.1. There exists a DF (g") for positive integers g, n satisfying the following conditions:

(H)n=1,2mod 3; (2) 6|n and 3|g; (3)n=3mod6, n > 3and6|g.
Proof. By [8], there exists an OLDTS(n) if and only if n = 0, 1 mod 3, and if there exists an OLDTS (n) then there exists a
DF(g"*1). So we can get the conclusion (1).

From [6], there exists an F(3, 3, g") = (X, 4, ») for 2|gn, 3|g(n — 1)(n — 2) and n > 3, n # 5. By the definition, + can
be partitioned into gnA,, x € G € §, such that each (X \ G, § \ {G}, 4) is a 3-GDD(g"'). For x € G € §, define

Al ={(a,b,c),(c,b,a): (a,b,c) € Ay},
A2 ={(a,c,b), (b,c,a): (a,b,c) € A,
A2 ={(b,a,c),(c,a,b):(ab,c) e Ay

It is easy to see thateach (X \ G, ¢ \ {G}, Ai) isa DGDD(g"~ ') and these A’,;, xeGeg,je I3 formaDF(g") on X with the
groups G. Thus, we can get the conclusion (2) and (3) for the case 3|n. ®
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2. Recursive construction

Theorem 2.1. If there exist a PECS(g" : s), an LEDTS(g + s, s) and an LEDTS(g + s), then there exists an LEDTS(gn + s).
Proof. Let PECS(g" : s) = (X, S, §, ), where |X| = gn+s, S| =5, § = {G; : i € I} and |G;| = g. 4 consists of all extended
transitive triples from X, not belonging any S U G;. + can be partitioned into {!B,. ielh,jelg,re}U{B:1<k=<
3s — 2}, where each :B[] forms an EDGDD(18"~V (g + 5)!) on X with the long group G; U S, each B, forms a DGDD(g") on
X\ S with the groups §.
By the assumption, there exists an LEDTS(g + s, s) on G; U S for eachi € I, \ {1}, which contains

3g disjoint EDTS(g +5) = (GiUS, C)), j€lg, 1 €135

3s — 2 disjoint EDTS(g +s,5) = (G;US, Di), 1<k <3s—2.
And, there exists an LEDTS(g + s) on G; U S which contains

3g disjoint EDTS(g +s) = (G; USS, @q’j), jelg, el

3s — 2 disjoint EDTS(g +s) = (G1 US, &), 1<k <3s—2.
Now, define

Fr = :Br uel

i iel,jelg, rels;

Ay = (U@tk) UsJ& 1=sk=<3s-2.
i=2

Then each F’ (x) or A forms an EDTS(gn 4+ s) on X U S, and they form an LEDTS(gn +s). H

Theorem 2.2. Ifthere exist e-FG(3, (Ko, K1, . .., Ke—1, K7), g"), PECS(m* : 1)V k € Ky, DF(m*) Vk € K7, and DF(m+1) V k; €
Kj, 2 <j < e, then there exists a PECS((mg)" : (e — 1)m + ).

Construction. Let e-FG(3, (Ko, K1, ..., Ke—1,K7),g") = (X, §, #Aq, A1, ..., Ae_1, T ), Where § is a partition of the gn-set
X into n groups with size g. Denote g4 = {{x} x I, : x € A}and A’ = A X I,, where A C X. Let Sp, S1, ..., Se—1 and
X x I, be pairwise disjoint sets, where So = {00} x Z;, S; = {(o0, 7 + (t — 1)m), ..., (00, r +tm — 1)}, t € Z}. Denote
S= UteZe S, XX =X xIn)US, ¢ =G x Iy, G € §.By assumption, we can give the following designs (1)-(3):

(1) PECS(m"! = 1) = (A" U So, So, §a, Ba) for each A € g, where B, can be partitioned into 3m|A]| disjoint B ;(A) and
3r — 2 disjoint By(A), X €A, i € I, j € I3, 1 < k < 3r — 2, such that each 8], ;(A) forms an EDGDD(1™=D (m + 1)) on
A’ U So with the long group ({x} x I;) U So, and each By (A) forms a DGDD(m"!) on A’ with the groups G,. ‘

(2) DF(mAHT) = (A'US;, §aUS;, Ca) foreach A € #,, t € Z}, where C, can be partitioned into 3m|A| disjoint €}, ;(t, A)
and 3m disjoint CJ(t, A), X € A, i € I, j € I3, such that each G)’;,i(t, A) forms a DGDD(m") on ((A\ {x}) x I;;) US; with the
groups §a\(x U {S¢}, and each €!(t, A) forms a DGDD(m'!) on A’ with the groups §a.

(3) DF(m) = (A, G4, D,) foreach A € T, where D, can be partitioned into 3m|A| disjoint i))’(’i(A), xeAiely,jels,
such that each D ,(A) forms a DGDD(mI~1) on (A \ {x}) x I, with the groups g\ (.

Now, forxeX i€lp,jel, 1<k<3r—2andt € Z}, define

(LJ MOU U eea U(U w)

XeAeAg XEAE AL, tEZE XeAeT

= s
AcAg
= cle.A.

A€ At

Then, # = {}‘){,,x € X,i € In,j € BYU{F,1 < k < 3r — 2} U{F ”,l € In,j € I, t € Z}} forms a desired

PECS((mg)" : (e — 1)m + r) on X’ with the groups {G’ : G € 4} and the stem S.

Proof. (1) Each 7/ i (x € X,i € In,j € I5) forms an EDGDD(1™"~V (mg + 5)!) on X’ with the long group G’ U S, where

xeGeg.In fact, any extended ordered pair P = {(«, a), (8, b)} ¢ G’ U S occurs exactly one block of SC'){,,-:
* Case o0 € {«, B}.If¢ = 00 (B = oo is similar). Then (¢, a) € Sand 8 € G.
When (&, a) € Sy, there exists the unique block A in A containing x and 8, since g forms a GDD(g") on X. Then, there

exists the unique block in 3’ .(A) containing P, since £] .(A) forms an EDGDD(1™AI=D (m + r)!) on A’ U Sy with the long
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group ({x} x Iip) U So. Further, let us show the uniqueness for the block containing P. Suppose that there exists another
block C € }‘){’i containing P. Since (e, a) € So, C must belong (J,cac 4, :Bf(,i(A). Then, there must be some A; € #q such that

Ce Bf;y,-(Ao and {x, 8} C A;.Since 4 forms a GDD(g") on X and {x, 8} C A,we haveA; =A,ie., C € (Bf;.i(A). However, in

£f“.(A), the block containing P is unique.

‘When («, a) € S (t € Z}), there exists the unique block A € A, containing x and S, since 4, (t € Z}) forms a GDD(g")
on X. Then, there exists the unique block in €, ;(t, A) containing P, since €y ;(t, A) forms a DGDD(m'"') on ((A\ {x}) x In) US;
with the groups G\ U {S}. Similarly, we can show the uniqueness for the block containing P.

*Case oo ¢ {a, B} Ifa = Bora = x(B = xis similar), then 8 ¢ G. Since there exists the unique block A € g
containing x and B, there exists the unique block in Bi’,-(A) containing P.If o« # B and x ¢ {«, B}, then {x, «, B} is contained
in the unique block A € (U, ¢z, #¢) U 7. Then,

A € Ay —> there exists the unique block in i)’fm-(A) containing P.

A € A (t € Z}) — there exists a unique block in @f“-(t, A) containing P.

A € T —> there exists the unique block in D/ ;(A) containing P, since ((A\ {x}) X Zn, a\(y D, ;(A)) is a DGDD(mAI=1),

The uniqueness for the block containing P can be similarly shown. '

(2) Each ?flft orFy(i €lp,je s, t €Z,1 <k < 3r —2)forms a DGDD((mg)") on X X I. In fact, for any ordered pair
P = {(«, a), (B8, b)} from distinct groups, ‘

* There exists the unique block A € A, containing «, 8. And, by the construction, (9{ (t, A) forms a DGDD(m'!) on A’ with
the groups 44. So, there exists the unique block in Of(t, A) C T‘i{t containing P.

* There exists the unique block A € 4 containing «, 8. And, by the construction, B;(A) forms a DGDD(m"') on A’ with
the groups 44. So, there exists the unique block in By(A) C ¥ containing P.

(3) Any extended transitive triple T = {(«, a), (8, b), (y,¢)} ¢ G US, VG € 4, belongs . In fact,

*a = oo (oroco € {B, y}). Then (o, a) € S and B, y are in distinct groups. When («, a) € Sy, there exists the unique
block A € s containing 8 and y. And, by the construction, 8, forms a PECS(m"! : r) on (A x I;) USy,s0T € B, C F.
When (o, a) € S; (t € Z]), there exists the unique block A € 4, containing B and y. And, by the construction, C, forms a
DF(m"+1) with group set g4 US;, 50T € C4 C F.

* oo ¢ {a, B, y}. By the definition of e-FG(3, (Ko, K1, ..., Ke_1, K7), g"), there exists A € (U[ezg A¢) | T such that
{a, B, ¥} C A. Therefore, T € B4UCLUDL C F. N1

Theorem 2.3. If there exist 2- FG(3, (Kg, Ke, Kp), g"), PECS*(m* : 1)V k € Kg, PDGDD(m* : s) Vk € Ke and DF(m*) V k
Ko, then there exists a PECS((mg)" : r + ).

Proof. Let 2-FG(3, (Kg, Ke, Kp), g") = (X, 4, B, C, D), where § is a partition of the gn-set X into n groups with size g.
Denote G4 = {{x} x I, : x € A} where A C X.LetR, S and X X I, are pairwise disjoint sets where |R| = r, |S| = s. By
assumption, we can give the following designs (1)-(3): '

(1) PECS*(m* : 1) = ((AxI;n)UR, R, §4, Ba) foreachA € B, where B, can be partitioned into 3m|A| disjoint B, ;(A) and
3r + 4 disjoint Bx(A), x €A, i € I, j € I3, 1 < k < 3r + 4, such that each B, ;(A) forms an EDGDD(1"A=D(m +r — 1))
on ((A x In,) UR) \ {x;} with the long group (({x} x (I, \ {i}))) UR, and each 8B(A) forms a DGDD(m"!) on A x I, with the
groups 94. .

(2) PDGDD(m* : s) = ((A x I;) US, G4, C4) for each A € €, where G4 can be partitioned into 3m|A| disjoint @f(’i(A) and
3(s — 2) disjoint Cx(A), X € A, i € Iy, j € I3, 1 < k < 3(s — 2), such that each €} ;(A) forms a DGDD(m"!~'(s + 1)) on
((A\ {x}) x In) US U {x;} with a (s + 1)-group S U {x;} and |A| — 1m-groups {y} x I,,y € A\ {x}, and each C,(A) forms a
DGDD(m') on A x I, with the groups Ga. ‘

(3) DF(m) = (A X I, G4, Da) for each A € D, where D, can be partitioned into 3m|A| disjoint DA, xeAice
I, j € I3, such that each D}, ;(A) forms a DGDD(m*I=") on (A \ {x}) x I, with the groups G (x)-

Now, define

Fli= ( U Bf;,,.(A)> U ( U @;'.,,(A)> U( U :oigA)), X€EX, i€l jels;

XEAEB XEAEC cAeD
U:Bk(A) 1<k<3r+4
\f{:‘ — AeB
Tl Cesa@® 3r+5<k<30+s) - 2.
AeC

Then, the collection{?’ii, xeX,iely,je L U{F, 1<k <3(r+s)—2}formsaPECS((mg)" : r+s)on (X xI,) U(RUS)
with the groups {G x I, : G € §} and the stemRUS. B

Theorem 2.4 ([9]). If there exists an LEDTS (v) then there exist an LEDTS (3v) and an LEDTS(3v, 3) for v > 3 and v # 6.
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3. Structure equations and orbits

For a given order v, an EDTS(v) may contain distinct amount of triples, and an LEDTS(v) may consist of EDTS (v) with
distinct structure. In order to construct a large set of disjoint EDTS (v), or to show its non-existence, we have to consider the
structure of possible EDTS(v) and LEDTS (v). For example,

(1) How many D;-triples may be contained in an EDTS(v) for 1 <i < 57?

(2) What structure each EDTS (v) in an LEDTS (v) has?

By the enumeration of the pairs (x, y) for x = y and x # y, we have two equations:

[D1| + |D2| + |Ds| + |Ds| = v, [Dz| + D3| + 2|D4| + 3|Ds| = v(v — 1).

Let x = |Di|,y = |D3| + |D3|, z = |D4| + |Ds|. Adding the two equations, we obtain x + 2y + 3z = v? andx +y < v, for
v > 3. As well, in [3], Huang gave the further necessary conditions to exist an EDTS (v):

|D,| 4+ |D3| mod 3 (ifv =0, 1 mod 3)

ID2| + D3| # 1 and |D4|E{|D2|+|D3I+1mod3 (if v = 2 mod 3).

Structure equation for EDTS (v): x + 2y + 3z = v?, wherex +y < vandy # 1.

Suppose it has m non-negative integer solutions (x;, ¥;,z;)), 1 < i < m. Each solution (x;, y;, z;) will give a possible
EDTS (v), which consists of x;D-triples, y;D,- or Ds-triples and z;D4- or Ds-triples. The EDTS(v) is called (x;, y;, z;)-type’s.
Suppose an LEDTS (v) consists of w; (x;, y;, zi)-type’s EDTS(v)s, 1 < i < m. Of course, Z,’":] w; = 3v — 2. These parameters
w; will be determined by

Structure equation system for LEDTS (v):

w1

X1 X2 0 Xm wo v
Yyi Y2 - Ym Dl =12vv—-1)
Z1 Zp o Inm : v(v — 1)?

Wm

Take Z, as the point set. Under the action of the automorphic group Z,, all ordered pairs from Z, can be partitioned into v
differences:

(d) ={(x,x+d):xe€Z2,)}, deZ,

where (0) = {(x, x) : x € Z,} is a special difference only for extended triple systems. Under the action of the automorphic
group Z,, all extended transitive triples can be partitioned into orbits:

od,dy={(x—d,x,x+d):xeZz)}, ddez,

which covers three differences (d), {(d’) and (d + d’) (one may equal to another), so the orbit O(d, d’) is denoted by
[d, d’, d + d'] sometimes. Among these orbits, there are

one D-orbit 0(0, 0) = {(x,x,x) : x € Z,};

v — 1D,-orbits 0(0, d') = {(x,x, x +d) : x € Z,}, d €Z};

v — 1D3-orbits 0(d, 0) = {(x — d, x,x) : x € Z,}, deZ};

v — 1Dg-orbits O(d, —d) = {(x —d, x,x —d) : x € Z,}, deZ];

(v—1)(v —2)Ds-orbits 0(d, d) = {(x —d, x,x+d) :x € Z,}, d,d €Z! d # —d.
Each orbit covers one difference ({0) for Dy-orbit), or two differences ({0), (d’) for D,-orbits, {0), (d) for D3-orbits) or three
differences ({0), (d), (—d) for D4-orbits, (0), (d), (d') for Ds-orbits).

Furthermore, if v is a prime power ¢, and g is a primitive element of F, the index set of all non-zero elements in F; is
denoted by Z,_;. Under the action of the multiplicative group of Fg, all orbits on F; can be partitioned into the following orbit
families.

one D;-orbit family : @; = {0(0, 0)}, one D,-orbit family : O, = {0(0,g") :i € Z; 1},
one Ds-orbit family : @3 = {0(g',0) :i € Z,_1},  one Dy-orbit family : O4 = {0(g', —g') : i € Z,_1},

qg—1
q — 2Ds-orbit families : @s(k) = {g' - 0(1, 8" : i € Z,_1}, ke {21\ { 2 } for odd q
Zi for even q.
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4. LEDTS (v) of small orders

Lemma 4.1. There exists no LEDTS(4).
Proof. The structure equation for EDTS (4)

X+2y+3z=16, (x+y<4andy#1)

has four non-negative integer solutions (x, y, z) = (0, 2, 4), (1, 0, 5), (1, 3, 3), (4, 0, 4). But, the structure equation system
for LEDTS (4)

01 1 4 w 4
2 0 30 w2 = (24
4 5 3 4 3 36
W4
has unique solution (w1, wa, w3, ws) = (6,0, 4, 0). Let the unique possible LEDTS(4) be {(Zs, Ax) : 1 < k < 6}
{(Z4, Br) : 1 < k < 4}, where
ID4| = 0, |D, UDs| =2, D4 UDs| =4 for each Ay,
ID1] =1, |D, U D3| = 3, D4 UDs| =3 foreach B.
Since | [ J{D; : 1 < i < 4}| must be 4. Consider these #y only, it is easy to see that |D4| = |Ds| = 2 in each «. However, if
an EDTS (4) contains two Ds-triples: (a, b, ¢) and (d’, b/, ¢’), there are two cases:

(1) {a, b, c} U {d’, b, c'}| = 4. Then, among the remaining arcs in K; (the complete symmetric directed graph of order
4), there is only one pair of opposite arcs (x, y) and (y, x). The EDTS(4) cannot contain two Dy-triples, since each D,-triple
covers a pair of opposite arcs.

(2) Ha, b, cy U {d, b, c'}| = 3,ie,{a,b,c} = {d, b,c}. Let the other vertex in K be d, then two D,-triples in the
EDTS(4) should be (x, d, x) and (y, d, y), where x # y € {a, b, c}, i.e,, they have the same middle element d. However, it is
impossible to partition all 6 x 2 = 12D4-triples into six parts in this form, because, for any element x € Z,, there are just
three Dy4-triples with the same middle element. =

Lemma 4.2. There exist an LEDTS(2) and an LEDTS(6).

Construction. LEDTS(2) = {(Z,, #4;) : 0 < i < 3}, where
Ap : 000 101; A1 : 111 010; Ay : 110 001; A3 1011 100.
LEgTS(G) = {(Zs, Ax) 1 x € Zg} U ((Zs, Bx) : x € Zsg} U {(Zs, Gj) : 1 < j < 4}, where A, = A¢ + X, By = Bo + X, X € Zg,
an
Ap : 000 112 221 544 455 303 150 051 523 325 134 431 024 420;
Bo : 003 330 115 551 422 244 012 210 504 405 352 253 413 314;
(The first two triples of 8y + 3, By + 4 and By + 5 need to be replaced by their inverse.)
C1: 010 121 202 313 424 505 235 532 340 043 451 154;
G, : 020 101 242 323 404 545 125 521 341 143 503 305;
C3 : 040 151 232 343 454 535 502 205 013 310 124 421;
G4 : 050 131 212 353 434 515 014 410 230 032 452 254.

Proof. The correctness for LEDTS(2) is obvious. Next, checking the appearance of each ordered pair, we can show that each
Ao, Bo and C; forms an EDTS(6). Further, checking the appearance of each extended transitive triple (or each block orbit for
Ap and By), we can prove that all Ay, Byand G, x € Zg, 1 <j < 4,forms an LEDTS(6). M

Lemma 4.3. There exist an LEDTS(8) and an LEDTS (8, 2).

Construction. Let g be a primitive element of the finite field Fs, and g = 1 + g. Construct three families of extended
transitive triples on Fg as follows, where ;s = RUS, R= {0, 1,g, g3}, S = {g°, g%, g°, g%).
40 :(0,0,0), (¢, 0,8), @, g, g, @2, %, "), jez.
A1:(0,0,8°)+x,xeF; (1,0, +x, (g%0,8°% +x forxeR;
(g%,0,gY +x, (22,0,8)+x forxes.
Az (g°,0,0) +x,xeF;  (1,0,83) +x,(g%,0,8% +x forxes;
(g%,0,g" +x,(g2,0,8)+x forxeR.
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Let By = Ag+x, C = gXA1, Dy = g¥A,, wherex € Fgandk € Z;. Then, {(Fs, By) : x € Fs}U{(Fs, Cx) : k € Z;YU{(Fs, D) :
k € Z;} forms an LEDTS (8). Furthermore, define

By =B\ {(0,0,0),(8°,0.8")),  Bys =B \{(g°.8°.8).(0,8°,0)} and B, =B, forotherx e F;
Cy=Co\{(0,0,8°),(g°,£° 0} and ¢, =¢ forkeZy;

Dy = Do\ {(0,2°,8°), (g% 0,0} and D, =D, forkeZ.
Then, {(Fs, By) : x € Fs} U {(Fs, C}) : k € Z;} U {(Fs, D) : k € Z;} forms an LEDTS(8, 2).

Proof. (1) g forms an EDTS(8) on Fg. In fact, it is easy to see that each of the ordered pairs (x, x), (0, g'), (¢, 0) and (g/, g*%),
x € Fg, j € Z;, k € Z, appears once in 4. Furthermore, each 8B, or :8; xeFg, yeF\ {g°}, is also an EDTS(8) on Fs. And,

B (and 3;5) is an EDTS(8, 2) on Fs with the hole {0, g°}.
(2) 1 forms an EDTS(8) on Fg (similarly, for #,). In fact, by the additive table

+ 0 gO gl g2 g3 g4 gS g6
0 0 gO gl g2 g3 g4 gS gG
g’ 1g” 0 g g® g' g g g
g' g g8 0 g' g% g° g g
g’ [g? & g* 0 g gl g g .
glg g' g g o0 g g* gt
g'lg" g g g g o0 g g
glg g' g g g g o0 g
g g% g g gt g g o

we can knowthat R+ R=R=S+S, R+S=S =S+ Rand

(0,00€(0);  (1,0,(8%8% € ”; (1.g). 0,8 eg"); (%0 e (g?);
0,83, g% 0 eg; (0,8Y &2 e 0g)elE’ (05%, g g" e

Obviously, the pairs in the orbits (0) and (g°) are filled. For the other orbits, we have
xeR (1,0) € R,R) — (14+x,x) € (R,R) (g%):
Xe€R (g25g6)e(sas) — (g2+x,g6+x)€(5,5) ’

xeR (1,8 e R R (1+xg+x e ®R (e):
xeS (0,g) € (R,R x,g+x) €(S,S) &)

xeR (g% 0) e S, R (g®+x,x) € (S,R) =
xesS (g2,0)€ S, R @ +xx)e®S)| ¥
xeR (0,g®) e ®RR
xeS (0 e ®RR
xeS (0,gH € R,S)
xeS (g°,8) € S.R
xeR (0,25 €e®S)
xeS (g8gHheRS)

(Xa g3 +X) € (R, R) < 3).
@ +xx)e@ s &
(x,.g*+x € (S, R (2%):
@ +xg2+x€e®S) ’
(x,8°+x) € (R,S) (")
@ +xg*+x) € (6,R '

ppbE bl

Therefore, the system +; forms an EDTS(8) on Fg indeed. Furthermore, each Gy, Dy or €}, D/, k € Z;, r € Z7,is also an
EDTS(8) on Fg. And, G, (and D) is an EDTS(8, 2) on Fg with the hole {0, g°}.
(3) {(Fs, By) : x € Fg} U {(Fg, Cx) : k € Z;} U {(Fg, Dy) : k € Z7} forms an LEDTS(8). In fact,
@ g g =d@g—1.g.g+g) g 0.8 €05,
@2 g0 g =@ - 1.8%¢ +¢°) g - 0(1.8%) € 055),
(1+xx8 +x €0(1,g)) € 053), (& +xx8 +x g’ 0(1,8") € 05(4),
@ +xxg'+xeg’- 01,8 e05(1), (g+xxg+x g’ 001,2°% € 05(6).

Therefore, the Ds-triples in g, #4; and +4, appear in all Ds-orbit families Os(k), k € Z7.For 1 < i < 4, the D;-triples in
A, 1 and 4, appear in all D;-orbit families O;.
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(4) {(Fs, By) : x € Fg} U {(Fs, Cp) : k € Z;} U {(Fg, Dy) : k € Z7} forms an LEDTS(8, 2). In fact, the distinction between
the collections (4) and (3) lies only in removing two blocks for each procedure

Bo—> By, By —> By,  Co—>Cp Do —> Dy
However, the removed eight blocks form just an LEDTS(2) on the hole {0, g°}. =

Lemma 4.4. There exists an LEDTS(10).

Construction. Construct an LEDTS(10) on X = Zy U {u} as follows, where u ¢ Zg is a fixed element.

Ay uuu 055 Oud4 028 031(mod9)

Ag: Ouu u00 171 422 233 544 355 666 737 818
78u 24u 36u 15u u62 u41 u53 u87 651 321 134 570 825
380 160 405 843 012 568 746 063 286 647 752 207 048

Bo: ulu 070 112 226 335 484 551 663 767 828
38u 74u 20u 65u u45 u68 u03 u72 785 564 247 580 713
187 215 086 831 610 052 416 423 537 014 340 362

C: uu4 00u 110 822 343 744 5u5> 266 771 886
7u8 1u3 3u6 6u2 4ul 2u0 8u7 172 854 705 021 037 450
156 427 657 325 763 046 614 830 381 518 523 608 248.

Define A, = A¢ + k, Bx = Bo + kand G, = @y + k, where k € Zg. Then, {(X, Ax), (X, Br), (X, Ck) : k € Z1o} [ J{(X, #4u)}
is an LEDTS(10) desired.

Proof. First, itis not difficult to check that 4Aq (or By, Co, A, ) forms an EDTS (10). Furthermore, in order to show the collection
{(X, AK), X, Br), X, C) : k € Z1o} U{(X, Ay)} forms an LEDTS(10) indeed, we list the following two tables. The first table

shows the orbits of the triples containing u in every block set.

Dy~ D4 (u, x, x + d) (x,x+d,u) (x, u, x +d)
=AM (u7 uv u) d=4
Ao Ck,u, 1), (U, *, %) d=5,6,7,8 d=1,2,3,4
Bo (U, *,u) d=1,2,3,4 d=5,6,7,8
Co (%, %,u), (U, u, %), (*,u, %) d=1,2,3,5,6,7,8

The second table shows the orbits of the triples not containing u in every block set, where A, (or #Aq, 8y, Co) in the position
(i, j) means that there exists some block in A, (or #q, 8By, Cy) belonging to the orbit O(i, j).

0 1 2 3 4 5 6 7 8

cONOOY UL DA WN = O
S
o
S
(=]
o
o
o
o
s
o
®
o
o
o
o)
o
®
o

Proof. Suppose 0, 1,2,3,4 ¢ Zg where 0 is only an auxiliary symbol. Let us construct an LEDTS(10,4) on X = Zg U

{1, 2, 3, 4} with the hole {1, 2, 3, 4} as follows. Define
So=1{(1,2),3,49,65,0}, $={0,49,(1,5,23)} S%={20,61),45}
S$3=1{(4,2),(.3),0, D}, S4={(1,4,(2,5),(0,3)}.
Fori € Z} and j € Zs, denote
iS5 =1{0,x%y), 0, : &y eS), i ={Gy,%, (xy,D):(xy) €S},
05 = {(X,%,Y), 0, ¥, : (,y) €S}, 05/ = {(x,y,9), ¢, %,%) : (x,y) € Sj}.
Then, define ten families of extended transitive triples on X where the subscripts are taken in Zs.

By = {iSiyk 11 € Zs}, B, ={iS], i €Z}, keZs.
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And, construct three families of extended transitive triples on X:

322 033 444 300 211 212 433 144 535 012 313
gg? 122 2§Z 410 220 531 340 212 315 411 323
432 213 524 134 044 013 245 342 150 052 431
221 332 444 030 111 223 334 442 515 120 134
233 245 340 412 122 435 042 321 531 241 032
143 015 224 331 443 014 250 354 213 410 532
252 Elg Zog 959 111 222 343 4%4 555
123 154 243 214 334 013 320 332 243 231 351
342 412 453 012 135 531 054 140 241 520 425.

Ag:

Ag

A%:

BDl= =] == N =
N OB BRI, N =] =
—_ N =] N = W U N

Let A{( = A{) + xforx € Zg and j € Zs. It is not difficult to check that each Ai forms an EDTS(10) on X, and each By (or

B,) forms an EDTS(10, 4) on X with the holes {1, 2, 3, 4}. So, the collection {(X, A 1 x € Zg,j € ZshU{X, By 1 k €
Zs} U{(X, B;) : k € Zs} is an LEDTS(10, 4) desired. ®

Lemma 4.6. There exists an LEDTS (12).
Proof. We construct an LEDTS(12) on X = Z;o U {u, v}.

Ag: ubu v4v 000 511 227 3v3 144 559 466 677 8u8 299
ulv 07u u57 2u4 9u2 3u0 1u9 4u3 238 805 583 372 490
v5u 60v v87 8v9 9v1 5v2 2v0 7v6 781 695 341 170 745
963 864 098 621 256 012 135 036 482 739 168 947 504

A(l,: uu3 vv6e 020 114 252 331 445 55u 668 77v 887 909
uv2 34u 80u 69u 71u u40 u85 ul9 u76 046 158 073 423
2vu 36v 94v 51v 08v v01 w59 v38 v74 610 839 291 862
172 248 926 841 657 305 750 327 564 953 798 163 497

Aé: 6uu 9vv u00 151 202 393 414 545 866 727 v88 099
B3uv O5u 84u 97u 21u u56 u92 u71 u38 128 573 374 698
vu4 78v 46v 52v 10v v91 v03 v62 v75 430 580 429 823
631 904 081 067 965 136 264 179 859 325 760 487

Bo: uuu vuv 006 Oud4 Ov5 013 310 (mod 10);
By: vvv uvu 044 Ou5 Ov6 023 320 (mod 10);
By: uuv vvu 055 O0u6 Ov4 029 031 (mod 10);
B3: uvv vuu 007 Oul Ow3 082 095 (mod 10).

Let A{( = Aﬁ+x forx € Zipandj € Zs.Itis not difficult to check that each A{; (or By, k € Z4)forms an EDTS(12) on X and they
are pairwise disjoint. Therefore, the collection {(X, 4%) : x € Zig,j € Zs} | J{(X, By) : k € Z4} is an LEDTS(12) desired. m

Lemma 4.7. There exists an LEDTS (14).
Proof. We construct an LEDTS(14) on X = Z;5 U {u}, where 10, 11, 12 are written in 0, 1, 2.
Ay: uuu Ou0 034 057 750 430 (mod 13).
AQ:(i) uOu 000 141 282 373 414 565 686 747 838 979 060

131 212
(i) 3u4 2u5 9ul 8u0 7ul 6u2 036 900 259 182 012 726
135 392 161 105 230 072 422 504 694 857 048 918
017 120
(ili) {cba : abc € (ii)}
Ag:(i) uwuO 00u 110 227 339 446 558 664 772 885 993
112 221
(i) 24u 37u 16u 25u 81u 90u 480 780 928 016 459 128
560 341 250 672 232 471 021 240 571 683 790 692
030 012 911 351
(iii) {cba : abc e (ii)}
A= (=Ag) "

ol
ol
—
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Let ,A,f( = A{) + x for x € Z13 andj € Z3. It is not difficult to check that each ,AJ,; (or 4, ) forms an EDTS(14) on X and they are
pairwise disjoint. Therefore, the collection {(X, A}) : x € Z13,] € Z3} (U{(X, #,)} is an LEDTS(14) desired. W

Lemma 4.8. There exists an LEDTS(16).
Proof. We construct an LEDTS(16) on X = Z;5 U {u}, where 10, 11, 12, 13, 14 are writtenin 0, 1, 2, 3, 4.

Ay:uuu 055 0u0 034 068 430 860 (mod 15).

Ag:() uu7 Ou0 411 622 133 144 505 266 277 488 979 000
311 22u 323 844 7u2

(i) 1u5 3u9 4u6 8ul 3ud4 Ou2 564 343 292 452 683 234
014 024 136 915 023 474 078 812 319 032 712 041
069 621 357 713 894 035 258 101 490 380 067 412
(iii) {cba : abc € (ii)}.
Ag:(i) udu 010 141 212 313 414 595 766 677 898 991 200
119 022 343 444
(i) 34u 79u 26u 51u 03u 18u 02u 225 712 050 173 012
438 074 801 456 682 921 457 239 469 930 370 904
135 036 233 244 583 278 048 160 141 613 342 240

(iii) {cba : abc € (ii)}.
Ag: (i) Tuu 006 115 229 353 444 551 660 770 858 992 007

ull 223 332 444
(i) 21u 73u 50u 49u 4
071 140 827 119 27
200 522 394 231 3

140
(iii) {cba : abc € (ii)}.

u §§u 5@3 ogi 034 612 382 018
4 038 124 937 716 574 059 331
1 603 968 403 645 432 148 624

Let ,Afc = A{] + x for x € Z5 andj € Zs. It is not difficult to check that each A{( (or 4, ) forms an EDTS(16) on X and they are
pairwise disjoint. Therefore, the collection {(X, 4%) : X € Z15,] € Z3) ({(X, #,)} is an LEDTS(16) desired. m

Lemma 4.9. There exists an LEDTS(18).
Proof. Construct an LEDTS(18) on X = Z;g U {u, v}, where 10, 11, 12, 13, 14, 15 are written in 0, 1, 2, 3, 4, 5.

005 110 224 313 442 575 626 707 883 909

Ay (1) u7u vlv
001 114 222 338 441 550
(i) 45u 02u 30u 61u 39u 42u 18u 5uv 435 419 452 585
68v 25v 34v 90v 21v 40v 37v 050 303 672 012 074
235 344 564 511 914 135 925 135 036 048 012 223
369 480 173 579 201 461 892 247 823 560 178

(iii) {cba : abc € (ii)}
Ag:(i) luu Ovv u00 w11l 822 3v3 484 5u5 366 177 288 499
060 711 212 633 944 565 ulv v8u O0u8 8v0
(i) 2u3 6u9 7u2 4ul Ou4 3u5 033 241 015 024 042 051
7v0 3v2 1v2 4v6 4v5 v95 215 250 473 927 594 009
857 130 544 311 432 461 615 836 735 825 502 174
180 392 483 340 706 918 553 139 262
(iii) {cha : abc € (ii)}
Ag (i) uwu7 wvv9 200 141 022 313 444 551 656 77u 818 99uv
050 115 522 433 344 255
(i) u68 u03 u93 u54 u22 u45 u01 1vu 061 171 135 003
v81 v02 v34 v05 v75 v63 v42 014 489 045 082 259
901 152 583 695 805 133 126 079 324 535 624 238
270 460 392 723 412 745 367 478 521 491 430
(iii) {cha : abc € (ii)}
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Bo: uuv vvu 008 Oub Ov§ 013 049 310 940 mod 16;
By: uvv vuu 088 0Ov6 OuO0 023 059 320 950 mod 16;

B:() wuu 19u 20u 3Tu 42u 53u 64u 75u u80
vuv u91 u02 ul3 u24 u35 u46 u57 O08u
(i) Ov4 002 017 025 710 520 mod 16;

B3:(1) vvv 91u 02u 13u 24u 35u 46u 57u u08
uvu ul9 u20 u31 ud42 u53 u64 u75 80u
(i) Ov2 004 067 035 530 760 modI16.

Let AJ,; = A{) + x for x € Zig and j € Zs. It is not difficult to check that each Aﬂ; or each By (k € Z,) is the block set of an

EDTS(18) on X and they are pairwise disjoint. Therefore, the collection {(X, Afc) 1X € Z16,J € Z3} U{(X, By) : k € Zy} isan
LEDTS(18) desired. ®

5. Existence of LEDTS (6t + 2)

Lemma 5.1 ([10]). There exist a PDGDD(33 : 2) and a PDGDD(3 : 2).

Lemma 5.2. There exists a PECS*(33 : 0).

Proof. Let g be the primitive element of the field Fo, and g = 1 4 2g. We will construct a PECS*(32 : 0), which consists of
(1) 27EDGDD(2'1%)s, denoted by A{(, x € Fo,j € Z3, where A{( = A{) + x;
(2)4DGDD(3%)s, denoted by By, k € I4.

Now, construct these A{) and By as follows.

(1) For each ,Aﬁ, the point set is Fq \ {0}, the long group is Gy = {g, g°}, and the blocks are listed as follows, where the
point g% is briefly denoted by its index a.

Ag: 050 252 353 454 656 757 076 210 136 670 012
631 403 732 642 304 237 246 147 741

Ag,: 003 422 733 440 266 776 146 613 341 712 307
435 362 201 064 025 247 170 523 560 754 657

Ag = (Ag) .

Clearly, each .A,{} will be on Fy \ {x} with the long group Gy + X, x € Fo.
(2) For each B, the point set is Fg, the group set is {{x, x + g, x +g°} : x = 0, 1, g}, and the blocks are listed as follows.

81 =1{0,1,8)+i,0,g" g") +iicF) B ={0,1¢g%+i(0,g°g") +iiecF)
B3=1{0,8%,8)+1i,(0,8% g ) +iieF);  Bs=1{0,¢,8%+i (0,g%g") +i,ieF)
It is not difficult to verify that each ,A’]b forms an EDGDD(2'1°) on Fy \ {0}, each B forms a DGDD(3?) on Fy, and all ,Ai and
By (x € Fo,j € Z3, k € 1) are mutually disjoint. Therefore, these designs form the desired PECS*(3% : 0) indeed. ®
Lemma 5.3. There exists a PECS*(3° : 0).
Proof. Take Z;5 as the points. We will construct a PECS*(3° : 0), which consists of
(1)45EDGDD(2'1'%)s, denoted by A/, x € Z;5,j € Z3, where Al = Al + x;
(2)4DGDD(3%)s, denoted by By, k € I,.

Now, construct these Ai) and By (j € Z3, k € 1) as follows.
(1) Each A’O is on Z;5 \ {0} with the long group Go = {5, 10}. The blocks in Ag and Aﬂ) are listed as follows, where

1 212 353 454
7 378 168 439 490
8 270 804 792 602

AJ:(i) 121 242 323 454 646 757 818 939
(i) 123 246 147 159 512 232 413 011
691 341 348 244 033 356 289 673

(iii) {cba : abc € (ii)}

N =] =
oo W



Y. Liu, Q. Kang / Discrete Mathematics 309 (2009) 6515-6529 6527
Ad:(i) 211 422 133 644 466 377 988 899 311 122 733 244
(i) 261 382 144 119 724 349 238 126 017 792 786 133 252
594 374 148 135 240 458 635 392 069 801 412 634 034
320 715
(iii) {cba : abc € (ii)}.

Clearly, each Ai will be on Z;5 \ {x} with the long group Go + x, x € Z;s.
(2) For each By, the point set is Z;s, the group set is {{x, x + 5, x + 10} : 0 < x < 4}, and the blocks are listed as follows.

Bi: 037 013 064 ogT (mod 15); B,: 047 02? O§Z ogT (mod 15);
B3: 032 071 064 018 (mod15); Bs: 091 042 034 028 (mod15).

It is not difficult to verify that each A{) forms an EDGDD(2'1'?) on Z;5 \ {0}, each B forms a DGDD(3”) on Z;5, and all A];(
and By (x € Zs5,j € Z3, k € 1) are mutually disjoint. Therefore, these designs form the desired PECS*(3> : 0) indeed. m
Lemma 5.4. There exists a PECS(6* : 2) for any integer k > 3.

Proof. From [6], for k > 3, there exists a 2-FG(3, ({3, 5}, {3, 5}, {4, 6}), 2¥). Furthermore, takingm = 3,g = 2,r = 0,5 = 2
and using Theorem 2.3, since

3PECS*(3¥: 0) fork € {3,5} by Lemmas 5.2 and 5.3,
3PDGDD(3¥ : 2) fork e {3, 5} by Lemma 5.1,
3IDF(3%) fork € {4, 6} by Lemma 1.1,

we can geta PECS(6%:2). =

Theorem 5.1. There exists an LEDTS (6k + 2) for any integer k > 0.

Proof. For k = 0, 1, 2, there exists an LEDTS(6k + 2) by Lemmas 4.2, 4.3 and 4.7. For k > 3, there exist a PECS(6¥ : 2), an
LEDTS (8, 2) and an LEDTS(8) by Lemmas 4.3 and 5.4. Therefore, there exists an LEDTS(6k 4+ 2) by Theorem 2.1. W

6. Existence of LEDTS (6t + 4)

Lemma 6.1. There exists a PECS(33 : 1).
Proof. Let g be the primitive element of the field Fg, and g = 1+ 2g. Take u ¢ Fs. We will construct a PECS(33 : 1), which
consists of

(1) 27EDGDD(4'1%)s, denoted by A/, x € Fo,j € Zs, where A, = A} + x;

(2) one DGDD(3%), denoted by B.

Now, give the constructions for these A{) and By, as follows.

(1) For each Aﬁ, the point set is Fg U {u}, the long group is Gy = {0, g, g°, u}, and the blocks are listed as follows, where
the point g% is briefly denoted by its index a and the point 0 is denoted 8, but the point u is kept.

=>408: 080 282 313 414 616 787 Ou6 2u3 3u2 4u7 6ul0 7u4
834 736 638 564 024 267 357 425 530 652 017 120
705 403 721 486

Aé: 003 224 330 442 667 776 u60 u23 u74 06u 32u 47u
804 826 837 408 628 738 461 057 163 435 271 654
520 314 725 170 536 012

Ag: 400 622 233 744 066 377 u30 u24 u67 03u 42u 76u
820 863 384 052 645 543 468 728 087 356 570 275
261 471 160 173 014 312.

Clearly, each Ai will be on Fg U {u} with the long group Gy + X, x € Fy. Obviously, Gy +0 =Gy +g =Gy +g°, Go+ 1=
Go+g>=Go+g’and Go + g°> = Go + g* = Go + g°.
(2) For B, the point set is Fo, the group set is {{x, x + g, x + g°} : x = 0, 1, g3}, and the blocks are
B8=1{0,g",8"+1,(0,g°, 1) +i:ie ko).

It is not difficult to verify that each A{) forms an EDGDD(411%) on Fy U {u}, the 8 forms a DGDD(3?) on Fo, and all 4} and B
(x € Fg,j € Z3) are mutually disjoint. Therefore, these designs form the desired PECS(3> : 1) indeed. m
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Lemma 6.2. There exists a PECS(3° : 1).

Proof. Take Z;5 U {u} as the points, where u ¢ Z;5. Denote Gy = {0, 5, 10} and Gy = Gp + X, 0 < x < 4. We will construct
a PECS(3° : 1), which consists of

(1) 45EDGDD(4'1'%)s, denoted by A, x € Zi5,j € Z3, where Al = A}, + x;
(2) one DGDD(3%), denoted by B.

Now, construct these A@ (j € Z3) and B as follows.
(1) Each A]O ison Z;5 U {u} with the long group Go U {u}, and the blocks are listed as follows, where 10, 11, 12, 13, 14 are
writtenin 0, 1, 2, 3, 4.

AJ:(i) 141 242 303 434 646 717 848 909 181 282 313 434
(i) 6u9 2u3 3u7 2u8 4ul 4ul 323 309 245 012 389 257
168 792 911 583 120 143 102 404 467 603 048 942
780 262 459 234 012 135 036 173 074 561
(iii) {cba : abc € (ii)}
Ag:(i) 117 229 334 446 664 771 881 992 118 223 332 443
(i) 91u 42u 37u 34u 68u 12u 041 348 140 894 381 127
613 242 726 249 564 352 474 933 403 159 451 73
825 311 802 907 021 036 069 078 261 014 023
(iii) {cba : abc € (ii)}
Ag:(i) 711 922 433 644 466 177 188 299 811 322 233
(i) 19u 24u 73u 43u 86u 21u 483 492 813 948 079
136 271 410 422 113 401 523 612 744 339 034
591 210 258 028 357 514 690 780 140 230 320
(iii) {cba : abc € (ii)}.

o
w w
N o

N Wl W
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N U O Wb

Clearly, each .A{( will be on Z;5 U {u} with the long group Gz, 0 <X < 4, x = xmod 5.
(2) For B, the point set is Z;s, the group set is {Gg, G1, G2, G3, G4}, and the blocks are

B8 =1{(0,3,4), (4,3,0), (0,6, 8), (8,6,0) mod 15}.
It is not difficult to verify that each A{J forms an EDGDD(4'1'?) on Z;5 U {u}, the B forms a DGDD(3?) on Z;5, and all A],} and
B (x € Zy5,] € Z3) are mutually disjoint. Therefore, these designs form the desired PECS(3° : 1) indeed. ®
Lemma 6.3. There exists a PECS(6* : 4) for any integer k > 3.

Proof. From [6], for k > 3, there exists a 2-FG(3, ({3, 5}, {3, 5}, {4, 6}), 2¥). Furthermore, takingm = 3,g = 2,r = 1and
using Theorem 2.2, since

3PECS(3*: 1) fork e {3, 5} by Lemmas 6.1 and 6.2,
3 DF(3k+1) fork € {3,5}and 3 DF(3") for k € {4, 6} by Lemma 1.1,
we can geta PECS(6% : 4). m

Theorem 6.1. There exists an LEDTS (6k + 4) if and only if k > 1.

Proof. For k = 0, there does not exist LEDTS(4) by Lemma 4.1. For k = 1, 2, there exists an LEDTS (6k + 4) by Lemmas 4.4
and 4.8. For k > 3, there exist PECS(6¥ : 4), LEDTS(10, 4) and LEDTS(14) by Lemmas 4.5, 4.7 and 6.3. Then, there exists an
LEDTS(6k + 4) by Theorem 2.1. W

7. Existence of LEDTS (6t)

Theorem 7.1. There exists an LEDTS(6k) for any integer k > 1.

Proof. Let6k = 3'm,wheret > 1, m = 2, 4mod 6. By Theorems 5.1 and 6.1, there exists an LEDTS (m) for any integer m > 2
and m # 4. Using Theorem 2.4, we can get an LEDTS (3'm) for (t, m) # (1, 2), (1, 4), (2, 2). However, from Lemmas 4.2, 4.6
and 4.9, we can get

LEDTS(3! - 2) = LEDTS(6), LEDTS(3' - 4) = LEDTS(12) and LEDTS(3? - 2) = LEDTS(18).
So, there exists an LEDTS (6k) for any integerk > 1. W
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8. Conclusion

Theorem 8.1. There exists an LEDTS (v) for any even v except v = 4.

Proof. We can get the conclusion by Theorems 5.1,6.1 and 7.1 and Lemma 4.1. ®
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