Large sets of extended directed triple systems with even orders ${ }^{\star}$

Yuanyuan Liu, Qingde Kang*
Institute of Mathematics, Hebei Normal University, Shijiazhuang 050016, PR China

ARTICLE INFO

Article history:
Received 6 October 2008
Received in revised form 19 June 2009
Accepted 23 June 2009
Available online 10 July 2009

Keywords:

Extended triple
Extended triple system
Large set

Abstract

For three types of triples: unordered, cyclic and transitive, the corresponding extended triple, extended triple system and their large sets are introduced. The existence of LESTS (v) and LEMTS (v) were completely solved. In this paper, we shall discuss the existence problem of $\operatorname{LEDTS}(v)$ and give the following conclusion: there exists an $\operatorname{LEDTS}(v)$ for any even v except $v=4$. The existence of $\operatorname{LEDTS}(v)$ with odd order v will be discussed in another paper, we are working at it.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Let x, y, z be distinct elements in a finite set X. A triple $\{x, y, z\}$ (or cyclic triple $\langle x, y, z\rangle$, or transitive triple (x, y, z)) on X is a set of three unordered pairs $\{x, y\},\{y, z\},\{z, x\}$ (or ordered pairs $(x, y),(y, z),(z, x)$, or ordered pairs $(x, y),(y, z),(x, z))$ of X. For these (classical) triples, the elements in each pair and triple must be distinct. When this restriction is broken, we have the so-called extended unordered pair (or ordered pair) and extended triple (or extended cyclic triple, or extended transitive triple), which were firstly introduced by Johnson and Mendelsohn in 1972, see [5].

An extended Steiner (or Mendelsohn, or directed) triple system ESTS (v) (or $\operatorname{EMTS}(v)$, or $\operatorname{EDTS}(v)$) is a pair (X, \mathcal{A}), where X is a v-set and \mathscr{A} is a collection of extended triples (or cyclic triples, or transitive triples) on X, called blocks, such that every extended unordered (or ordered) pair of X belongs to exactly one block of \mathcal{A}. A large set of $\operatorname{ESTS}(v)$ (or EMTS (v), or EDTS (v)), denoted by $\operatorname{LESTS}(v)$ (or $\operatorname{LEMTS}(v)$, or $\operatorname{LEDTS}(v)$), is a collection $\left\{\left(X, \mathcal{A}_{k}\right)\right\}_{k}$, where X is a v-set, each $\left(X, \mathcal{A}_{k}\right)$ is an ESTS (v) (or $\operatorname{EMTS}(v)$, or $\operatorname{EDTS}(v)$) and these \mathcal{A}_{k} form a partition of all extended triples (or cyclic triples, or transitive triples) on X. The types of extended triples (or cyclic triples, or transitive triples) and the extended pairs contained in them are listed in the following table.

System	Forms of triple	Pairs covered by triple	Number of triples in v-set	Number of systems in a large set
ESTS	$S_{1}:\{x, x, x\}$	$\{x, x\}$	v	$v \quad$
	$S_{2}:\{x, x, y\}$	$\{x, x\},\{x, y\}$	$v(v-1)$	
	$S_{3}:\{x, y, z\}$	$\{x, y\},\{y, z\},\{z, x\}$	$v(v-1)(v-2) / 6$	
EMTS	$M_{1}:\langle x, x, x\rangle$	(x, x)	v	v
	$M_{2}:\langle x, x, y\rangle$	(x, y), ($y, x),(x, x)$	$v(v-1)$	
	$M_{3}:\langle x, y, z\rangle$	$(x, y),(y, z),(z, x)$	$v(v-1)(v-2) / 3$	

(continued on next page)

[^0]0012-365X/\$ - see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.disc.2009.06.025

System Forms of triple Pairs covered by Number of triples in a Number of systems in a
triple $\quad v$-set large set

EDTS	$D_{1}:(x, x, x)$	(x, x)	v	
	$D_{2}:(x, x, y)$	$(x, x),(x, y)$	$v(v-1)$	$3 v-2$
	$D_{3}:(x, y, y)$	$(x, y),(y, y)$	$v(v-1)$	
	$D_{4}:(x, y, x)$	$(x, y),(y, x),(x, x)$	$v(v-1)$	
	$D_{5}:(x, y, z)$	$(x, y),(y, z),(x, z)$	$v(v-1)(v-2)$	

The existence problem of extended Steiner triple system and extended Mendelsohn triple system have been solved in $[1,2,5]$. The existence problem of extended directed triple system with some additional conditions has also been discussed in $[3,4]$. In this paper, we will discuss the existence problems for the large sets of ESTS, EMTS and EDTS. For the last designs, i.e., $\operatorname{LEDTS}(v)$, our conclusion is: there exists an $\operatorname{LEDTS}(v)$ for any even v except $v=4$. The existence of $\operatorname{LEDTS}(v)$ with odd order v will be discussed in another paper, we are working at it.

Theorem 1.1. There exists an $\operatorname{LESTS}(v)$ for any integer $v \geq 1$.
Proof. For $v \equiv 1,2 \bmod 3$, the collection $\left\{\left(Z_{v}, \mathcal{A}_{x}\right): x \in Z_{v}\right\}$ forms an $\operatorname{LESTS}(v)$, where

$$
\mathcal{A}_{0}=\{\{i, j, k\}: i+j+k \equiv 0 \bmod v\}, \quad \mathcal{A}_{x}=\mathcal{A}_{0}+x, \quad x \in Z_{v} .
$$

For $v \equiv 0 \bmod 3$, the collection $\left\{\left(Z_{v}, \mathcal{A}_{s, x}\right): x \in Z_{v / 3}, 0 \leq s \leq 2\right\}$ forms an $\operatorname{LESTS}(v)$, where

$$
\mathcal{A}_{s, 0}=\{\{i, j, k\}: i+j+k \equiv s \bmod v\}, \quad 0 \leq s \leq 2
$$

$\mathcal{A}_{s, x}=\left\{B+x: B \in \mathcal{A}_{s, 0}\right\}$, where $(i, j, k)+x=(i+x, j+x, k+x)$ for $i, j, k \in Z_{v}$, the addition is taken modulo v, $x \in Z_{v / 3}, 0 \leq s \leq 2$.

In [9], Wang gave the existence spectrum for $\operatorname{LEMTS}(v)$. Here, we give a simpler proof.
Theorem 1.2. There exists an LEMTS (v) for any integer $v \geq 1$.
Proof. Let $\left\{\left(Z_{v}, \mathcal{A}_{x}\right): x \in Z_{v}\right\}$ be an $\operatorname{LESTS}(v)$. Replace each (S_{3} type's) extended triple $\{x, y, z\}$ in \mathcal{A}_{x} by (M_{3} type's) extended cyclic triples $\langle x, y, z\rangle$ and $\langle z, y, x\rangle$. As well, by replacing each (S_{1} and S_{2} type's) extended triples $\{x, x, x\}$ and $\{x, x, y\}$ by (M_{1} and M_{2} type's) extended cyclic triples $\langle x, x, x\rangle$ and $\langle x, x, y\rangle$, the triple system $\left\{\left(Z_{v}, \mathcal{A}_{x}\right): x \in Z_{v}\right\}$ will become an LEMTS (v).

In this paper, we shall focus on the existence of $\operatorname{LEDTS}(v)$ with even orders v. Let k, g, n be positive integers. A $k-G D D\left(g^{n}\right)$ is a triple $(\mathcal{V}, \mathcal{G}, \mathscr{B})$, where \mathcal{V} is a gn-set, \mathscr{g} is a partition of \mathcal{V}, which consists of n subsets (called groups) with size g, and \mathscr{B} is a family of some subsets (called blocks) of \mathcal{V} such that if $B \in \mathscr{B}$, then $|B|=k$ and every pair of distinct elements of \mathcal{V} occurs in exactly one block or one group but not both.

Let K be a set of positive integers, $t, v, g_{1}, \ldots, g_{r}, n_{1}, \ldots, n_{r}$ be positive integers, s be a non-negative integer and $\sum_{i=1}^{r} n_{i} g_{i}=v-s$. A candelabra t-system $(t, K)-\operatorname{CS}(v: s)$ or $(t, K)-\operatorname{CS}\left(g_{1}^{n_{1}} g_{2}^{n_{2}} \cdots g_{r}^{n_{r}}: s\right)$, see [7], is a quadruple $(X, S, \mathcal{G}, \mathcal{A})$ that satisfying the following conditions:
(1) X is a v-set (called points), S is its s-subset (called a stem);
(2) \mathcal{G} is a partition of $X \backslash S$, which consists of n_{i} subsets with size g_{i} (called groups);
(3) \mathcal{A} is a family of some subsets of X, each member (called block) has the size from K;
(4) Every t-subset T of X is contained in exactly one block if $|T \cap(S \cup G)|<t, \forall G \in \mathcal{G}$, or in no block if $T \subseteq S \cup G$ for some $G \in g$.

Especially, a $(t, K)-C S\left(1^{v}: 0\right)$ is just a t-wise balanced design $S(t, K, v)$, briefly denoted by $t-B D$, and a $(t, k)-C S\left(1^{v}: 0\right)$ is just a t-design $S(t, k, v)$.
$F\left(3,3, g^{n}\right)$ is a triple $(X, \mathcal{G}, \mathcal{A})$ where X is a $g n$-set of points, g is a collection of n non-empty subsets (called groups) of size g of X which partition X, \mathcal{A} is a collection of all triples satisfying each triple intersects any given group in at most one point and \mathcal{A} can be partitioned into $g n \mathcal{A}_{x}, x \in G \in \mathcal{G}$ such that each $\left(X \backslash G, \mathcal{G} \backslash\{G\}, \mathcal{A}_{x}\right)$ is a 3-GDD $\left(g^{n-1}\right)$.

Let v be a positive integer, X be a v-set, \mathcal{g} be a partition of X, and $K_{1}, \ldots, K_{s}, K_{\mathcal{T}}$ be sets of positive integers. Suppose that $\mathscr{B}_{1}, \ldots, \mathscr{B}_{s}$ and \mathcal{T} are collections of some subsets of X with size from K_{1}, \ldots, K_{s} and $K_{\mathcal{T}}$ respectively. An s-fan design $s-F G\left(3,\left(K_{1}, K_{2}, \ldots, K_{\mathcal{T}}\right), v\right)$ is an $(s+3)$-tuple $\left(X, \mathcal{G}, \mathscr{B}_{1}, \mathscr{B}_{2}, \ldots, \mathscr{B}_{s}, \mathcal{T}\right)$, where (X, \mathcal{G}) is a $1-B D,\left(X, \mathcal{G} \cup \mathscr{B}_{i}\right)$ is a 2-BD for each $1 \leq i \leq s$, and $\left(X, \mathcal{Q} \cup\left(\cup_{i=1}^{s} \mathscr{B}_{i}\right) \cup \mathcal{T}\right)$ is a 3-BD.

Below, I_{n} is an n-set, Z_{n} is a residual ring module n and F_{q} is a finite field of order q. Denote $Z_{n}^{*}=Z_{n} \backslash\{0\}$ and $F_{q}^{*}=F_{q} \backslash\{0\}$. Denote extended transitive triple by (a, b, c) or $a b c$. For a family of extended transitive triples \mathcal{A} on Z_{n} (or F_{q}) and $x, m \in Z_{n}$ (or F_{q}), denote

$$
\begin{aligned}
& \mathcal{A}+x=\{(a+x, b+x, c+x):(a, b, c) \in \mathscr{A}\}, \quad m \mathcal{A}=\{(m a, m b, m c):(a, b, c) \in \mathcal{A}\}, \\
& -\mathcal{A}=\{(-a,-b,-c):(a, b, c) \in \mathcal{A}\} \quad \text { and } \quad \mathcal{A}^{-1}=\{(c, b, a):(a, b, c) \in \mathcal{A}\} .
\end{aligned}
$$

Definition 1.1. For positive integers n_{i} and $g_{i}, 1 \leq i \leq r$, a directed group divisible triple system $D G D D\left(g_{1}^{n_{1}} \ldots g_{r}^{n_{r}}\right)$ is a trio $(X, \mathcal{G}, \mathcal{A})$ satisfying the following conditions:
(1) X is a set containing $\sum_{i=1}^{r} n_{i} g_{i}$ points;
(2) g is a partition of X, which consists of n_{i} subsets of size g_{i} (called groups);
(3) \mathcal{A} is a family of some transitive triples of X (called blocks) such that $|A \cap G| \leq 1, \forall A \in \mathcal{A}, G \in \mathcal{G}$;
(4) Each ordered pair on X from distinct (or same) groups is contained in exactly one (or no) block.

Definition 1.2. For positive integers n, g, s and $s \geq 2, \operatorname{arDGDD}\left(g^{n}: s\right)$ is a trio $(X, \mathcal{G}, \mathcal{A})$ satisfying the following conditions:
(1) X is a set containing $n g+s$ points;
(2) $g=\left\{G_{0}, G_{1}, \ldots, G_{n}\right\}$ forms a partition of X, where $G_{i}=\left\{a_{i, j}: j \in I_{g}\right\}$ is called group, $i \in Z_{n} .\left|G_{0}\right|=s$ and other $\left|G_{i}\right|=g$;
(3) \mathcal{A} consists of all transitive triples on X, intersecting each group in at most one points. And, \mathcal{A} can be partitioned into $\left\{\mathcal{B}_{i, j}^{r}: i \in I_{n}, j \in I_{g}, r \in I_{3}\right\} \cup\left\{\mathcal{C}_{k}: 1 \leq k \leq 3(s-2)\right\}$, where each $\mathscr{B}_{i, j}^{r}$ forms a $\operatorname{DGDD}\left(g^{n-1}(s+1)^{1}\right)$ on $X \backslash\left(G_{i} \backslash\left\{a_{i, j}\right\}\right)$ with the group set $\left(\mathscr{G} \backslash\left\{G_{0}, G_{i}\right\}\right) \cup\left\{G_{0} \cup\left\{a_{i, j}\right\}\right\}$, and each \mathcal{C}_{k} forms a $D G D D\left(g^{n}\right)$ on $X \backslash G_{0}$ with the group set $\mathcal{G} \backslash\left\{G_{0}\right\}$.

Definition 1.3. For positive integers n, g and s, an $\operatorname{EDGDD}\left(g^{n} s^{1}\right)$ (extended directed group divisible triple system) is a trio ($X, \mathcal{G}, \mathcal{A}$) satisfying the following conditions:
(1) X is a set containing $n g+s$ points;
(2) $g=\left\{G_{0}, G_{1}, \ldots, G_{n}\right\}$ forms a partition of X, where $G_{i}\left(i \in Z_{n}\right)$ is called group. $\left|G_{0}\right|=s$ and other $\left|G_{i}\right|=g$;
(3) \mathcal{A} is a family of extended transitive triples of X (called blocks) such that $A \nsubseteq G \cup S$ for any $A \in \mathcal{A}$ and $G \in \mathcal{G}$;
(4) Each ordered 2-subset (x, y) of X is contained in exactly one (or no) block of \mathscr{A} if x, y in distinct (or same) groups;
(5) Each pair (x, x) is contained in exactly one (or no) block of \mathcal{A} if $x \notin G_{0}$ (or $x \in G_{0}$).

Especially, an $\operatorname{EDGDD}\left(1^{n-s} s^{1}\right)=(X, \mathcal{G}, \mathcal{A})$ is named as $\operatorname{EDTS}(n, s)=(X, Y, \mathcal{A})$, where the long group $G_{0}=Y$ with size s is called hole.

Definition 1.4. For positive integers $w<v$, let X be a v-set, Y be its w-subset. An $\operatorname{LEDTS}(v, w)$ is a collection $\left\{\left(X, Y, \mathscr{A}_{i}\right)\right.$: $1 \leq i \leq 3 v-2\}$ such that all extended transitive triples from X, not belonging to Y, are partitioned into $\mathscr{A}_{i}, 1 \leq i \leq 3 v-2$, where each $\left(X, Y, \mathcal{A}_{i}\right)$ is an $\operatorname{EDTS}(v, w)$ for $1 \leq i \leq 3 w-2$ or an $\operatorname{EDTS}(v)$ for $3 w-1 \leq i \leq 3 v-2$. Obviously, $\operatorname{LEDTS}(v, w) \cup \operatorname{LEDTS}(w)=\operatorname{LEDTS}(v)$.
Definition 1.5. For positive integers n, g and $s, \operatorname{arCS}\left(g^{n}: s\right)$ is a quadruple $(X, S, \mathcal{G}, \mathcal{A})$ satisfying the following conditions:
(1) X is an $(n g+s)$-set, S is its s-subset (called stem);
(2) $g=\left\{G_{1}, \ldots, G_{n}\right\}$ partition $X \backslash S$, where each G_{i} is a g-subset;
(3) A consists of all extended transitive triples from X, not belonging $S \cup G, \forall G \in \mathscr{G}$. A can be partitioned into $\left\{\mathscr{B}_{i, j}^{r}: i \in\right.$ $\left.I_{n}, j \in I_{g}, r \in I_{3}\right\} \cup\left\{\mathcal{C}_{k}: 1 \leq k \leq 3 s-2\right\}$, where each $\mathcal{B}_{i, j}^{r}$ forms an $\operatorname{EDGDD}\left(1^{g(n-1)}(g+s)^{1}\right)$ on X with the long group $G_{i} \cup S$, each \mathcal{C}_{k} forms a $\operatorname{DGDD}\left(g^{n}\right)$ on $X \backslash S$ with the groups q.

Definition 1.6. For positive integers n, g and non-negative integer s, a $\operatorname{PECS}^{*}\left(g^{n}: s\right)$ is a quadruple $(X, S, \mathcal{G}, \mathcal{A})$ satisfying the following conditions:
(1) X is an $(n g+s)$-set, S is its s-subset (called stem);
(2) $\mathcal{G}=\left\{G_{1}, \ldots, G_{n}\right\}$ partition $X \backslash S$, where each $G_{i}=\left\{a_{i, j}: j \in I_{g}\right\}$ is a g-subset, $i \in I_{n}$;
(3) A consists of all transitive directed triples (called blocks), not belonging $S \cup G, \forall G \in \mathcal{G}$. A can be partitioned into $\left\{\mathscr{B}_{i, j}^{r}: i \in I_{n}, j \in I_{g}, r \in I_{3}\right\} \cup\left\{\mathcal{C}_{k}: 1 \leq k \leq 3 s+4\right\}$, where each $\mathscr{B}_{i, j}^{r}$ forms an $\operatorname{EDGDD}\left(1^{g(n-1)}(g+s-1)^{1}\right)$ on $X \backslash\left\{a_{i, j}\right\}$ with the long group $\left(G_{i} \cup S\right) \backslash\left\{a_{i, j}\right\}$, and each \mathcal{C}_{k} forms a $D G D D\left(g^{n}\right)$ on $X \backslash S$ with the groups q.

Definition 1.7. For positive integers n and g, a $D F\left(g^{n}\right)$ is a trio $(X, \mathcal{q}, \mathcal{A})$ where X is a $g n$-set of points, g is a partition of X into n subsets (called groups) with size g, \mathcal{A} is a collection of all transitive triples intersecting any given group in at most one point, and \mathcal{A} can be partitioned into $3 g n \mathcal{A}_{x}^{j}$ such that each $\left(X \backslash G, \mathcal{G} \backslash\{G\}, \mathcal{A}_{x}^{j}\right)$ is a $D G D D\left(g^{n-1}\right)$, where $x \in G \in \mathcal{G}$ and $j \in I_{3}$.

Lemma 1.1. There exists a $D F\left(g^{n}\right)$ for positive integers g, n satisfying the following conditions:
(1) $n \equiv 1,2 \bmod 3$;
(2) $6 \mid n$ and $3 \mid g$;
(3) $n \equiv 3 \bmod 6, \quad n>3$ and $6 \mid g$.

Proof. By [8], there exists an $\operatorname{OLDTS}(n)$ if and only if $n \equiv 0,1 \bmod 3$, and if there exists an $\operatorname{OLDTS}(n)$ then there exists a $D F\left(g^{n+1}\right)$. So we can get the conclusion (1).

From [6], there exists an $F\left(3,3, g^{n}\right)=(X, \mathcal{G}, \mathcal{A})$ for $2|g n, 3| g(n-1)(n-2)$ and $n>3, n \neq 5$. By the definition, A can be partitioned into $g \mathcal{A}_{x}, x \in G \in \mathcal{G}$, such that each $\left(X \backslash G, \mathcal{G} \backslash\{G\}, \mathcal{A}_{x}\right)$ is a $3-G D D\left(g^{n-1}\right)$. For $x \in G \in \mathcal{G}$, define

$$
\begin{aligned}
& \mathcal{A}_{x}^{1}=\left\{(a, b, c),(c, b, a):(a, b, c) \in \mathcal{A}_{x}\right\}, \\
& \mathcal{A}_{x}^{2}=\left\{(a, c, b),(b, c, a):(a, b, c) \in \mathcal{A}_{x}\right\} \\
& \mathcal{A}_{x}^{3}=\left\{(b, a, c),(c, a, b):(a, b, c) \in \mathcal{A}_{x}\right\} .
\end{aligned}
$$

It is easy to see that each $\left(X \backslash G, \mathcal{G} \backslash\{G\}, \mathcal{A}_{x}^{j}\right)$ is a $\operatorname{DGDD}\left(g^{n-1}\right)$ and these $\mathcal{A}_{x}^{j}, x \in G \in \mathcal{G}, j \in I_{3}$, form a $D F\left(g^{n}\right)$ on X with the groups g. Thus, we can get the conclusion (2) and (3) for the case $3 \mid n$.

2. Recursive construction

Theorem 2.1. If there exist a $\operatorname{PECS}\left(g^{n}: s\right)$, an $\operatorname{LEDTS}(g+s, s)$ and an $\operatorname{LEDTS}(g+s)$, then there exists an $\operatorname{LEDTS}(g n+s)$.
Proof. Let $\operatorname{PECS}\left(g^{n}: s\right)=(X, S, \mathcal{G}, \mathcal{A})$, where $|X|=g n+s,|S|=s, \mathcal{G}=\left\{G_{i}: i \in I_{n}\right\}$ and $\left|G_{i}\right|=g$. \mathcal{A} consists of all extended transitive triples from X, not belonging any $S \cup G_{i}$. A can be partitioned into $\left\{\mathscr{B}_{i, j}^{r}: i \in I_{n}, j \in I_{g}, r \in I_{3}\right\} \cup\left\{\mathscr{B}_{k}: 1 \leq k \leq\right.$ $3 s-2\}$, where each $\mathscr{B}_{i, j}^{r}$ forms an $\operatorname{EDGDD}\left(1^{g(n-1)}(g+s)^{1}\right)$ on X with the long group $G_{i} \cup S$, each \mathscr{B}_{k} forms a $\operatorname{DGDD}\left(g^{n}\right)$ on $X \backslash S$ with the groups g.

By the assumption, there exists an $\operatorname{LEDTS}(g+s, s)$ on $G_{i} \cup S$ for each $i \in I_{n} \backslash\{1\}$, which contains

$$
\begin{aligned}
& 3 g \text { disjoint } E D T S(g+s)=\left(G_{i} \cup S, \mathcal{C}_{i, j}^{r}\right), \quad j \in I_{g}, r \in I_{3} \\
& 3 s-2 \text { disjoint } E D T S(g+s, s)=\left(G_{i} \cup S, \mathscr{D}_{i, k}\right), \quad 1 \leq k \leq 3 s-2
\end{aligned}
$$

And, there exists an $\operatorname{LEDTS}(g+s)$ on $G_{1} \cup S$ which contains

$$
\begin{aligned}
& 3 g \text { disjoint } E D T S(g+s)=\left(G_{1} \cup S, \mathcal{C}_{1, j}^{r}\right), \quad j \in I_{g}, r \in I_{3} \\
& 3 s-2 \text { disjoint } E D T S(g+s)=\left(G_{1} \cup S, \mathscr{E}_{k}\right), \quad 1 \leq k \leq 3 s-2
\end{aligned}
$$

Now, define

$$
\begin{aligned}
\Gamma_{i, j}^{r} & =\mathscr{B}_{i, j}^{r} \cup \mathcal{C}_{i, j}^{r}, \quad i \in I_{n}, j \in I_{g}, r \in I_{3} \\
\Lambda_{k} & =\left(\bigcup_{i=2}^{n} \mathscr{D}_{i, k}\right) \bigcup \mathscr{B}_{k} \bigcup \varepsilon_{k}, \quad 1 \leq k \leq 3 s-2
\end{aligned}
$$

Then each $\Gamma_{i, j}^{r}(x)$ or Λ_{k} forms an $\operatorname{EDTS}(g n+s)$ on $X \cup S$, and they form an $\operatorname{LEDTS}(g n+s)$.
Theorem 2.2. If there exist $e-F G\left(3,\left(K_{0}, K_{1}, \ldots, K_{e-1}, K_{\mathcal{T}}\right), g^{n}\right), \operatorname{PECS}\left(m^{k}: r\right) \forall k \in K_{1}, D F\left(m^{k}\right) \forall k \in K_{\mathcal{T}}$, and $D F\left(m^{k_{j}+1}\right) \forall k_{j} \in$ $K_{j}, 2 \leq j \leq e$, then there exists a PECS $\left((m g)^{n}:(e-1) m+r\right)$.

Construction. Let $e-F G\left(3,\left(K_{0}, K_{1}, \ldots, K_{e-1}, K_{\mathcal{T}}\right), g^{n}\right)=\left(X, \mathcal{G}, \mathcal{A}_{0}, \mathcal{A}_{1}, \ldots, \mathcal{A}_{e-1}, \mathcal{T}\right)$, where \mathcal{G} is a partition of the $g n$-set X into n groups with size g. Denote $\mathcal{G}_{A}=\left\{\{x\} \times I_{m}: x \in A\right\}$ and $A^{\prime}=A \times I_{m}$, where $A \subseteq X$. Let $S_{0}, S_{1}, \ldots, S_{e-1}$ and $X \times I_{m}$ be pairwise disjoint sets, where $S_{0}=\{\infty\} \times Z_{r}, S_{t}=\{(\infty, r+(t-1) m), \ldots,(\infty, r+t m-1)\}, t \in Z_{e}^{*}$. Denote $S=\bigcup_{t \in Z_{e}} S_{t}, X^{\prime}=\left(X \times I_{m}\right) \cup S, G^{\prime}=G \times I_{m}, G \in \mathcal{G}$. By assumption, we can give the following designs (1)-(3):
(1) $\operatorname{PECS}\left(m^{|A|}: r\right)=\left(A^{\prime} \cup S_{0}, S_{0}, \mathcal{G}_{A}, \mathscr{B}_{A}\right)$ for each $A \in \mathcal{A}_{0}$, where \mathscr{B}_{A} can be partitioned into $3 m|A|$ disjoint $\mathscr{B}_{x, i}^{j}(A)$ and $3 r-2$ disjoint $\mathscr{B}_{k}(A), x \in A, i \in I_{m}, j \in I_{3}, 1 \leq k \leq 3 r-2$, such that each $\mathscr{B}_{x, i}^{j}(A)$ forms an $\operatorname{EDGDD}\left(1^{m(|A|-1)}(m+r)^{1}\right)$ on $A^{\prime} \cup S_{0}$ with the long group $\left(\{x\} \times I_{m}\right) \cup S_{0}$, and each $\mathscr{B}_{k}(A)$ forms a $D G D D\left(m^{|A|}\right)$ on A^{\prime} with the groups g_{A}.
(2) $D F\left(m^{|A|+1}\right)=\left(A^{\prime} \cup S_{t}, \mathcal{G}_{A} \cup S_{t}, \mathcal{C}_{A}\right)$ for each $A \in \mathcal{A}_{t}, t \in Z_{e}^{*}$, where \mathcal{C}_{A} can be partitioned into $3 m|A|$ disjoint $\mathcal{C}_{x, i}^{j}(t, A)$ and $3 m$ disjoint $\mathcal{C}_{i}^{j}(t, A), x \in A, i \in I_{m}, j \in I_{3}$, such that each $\mathcal{C}_{x, i}^{j}(t, A)$ forms a $D G D D\left(m^{|A|}\right)$ on $\left((A \backslash\{x\}) \times I_{m}\right) \cup S_{t}$ with the groups $\mathcal{G}_{A \backslash\{x\}} \cup\left\{S_{t}\right\}$, and each $\mathcal{C}_{i}^{j}(t, A)$ forms a $D G D D\left(m^{|A|}\right)$ on A^{\prime} with the groups \mathcal{G}_{A}.
(3) $D F\left(m^{|A|}\right)=\left(A^{\prime}, \mathscr{g}_{A}, \mathscr{D}_{A}\right)$ for each $A \in \mathcal{T}$, where \mathscr{D}_{A} can be partitioned into $3 m|A|$ disjoint $\mathscr{D}_{x, i}^{j}(A), x \in A, i \in I_{m}, j \in I_{3}$, such that each $\mathscr{D}_{x, i}^{j}(A)$ forms a $D G D D\left(m^{|A|-1}\right)$ on $(A \backslash\{x\}) \times I_{m}$ with the groups $\mathcal{G}_{A \backslash\{x\}}$.

Now, for $x \in X, i \in I_{m}, j \in I_{3}, 1 \leq k \leq 3 r-2$ and $t \in Z_{e}^{*}$, define

$$
\begin{aligned}
& \mathcal{F}_{x, i}^{j}=\left(\bigcup_{x \in A \in \mathcal{A}_{0}} \mathscr{B}_{x, i}^{j}(A)\right) \bigcup\left(\bigcup_{x \in A \in \mathcal{A}_{t}, t \in Z_{e}^{*}} \mathcal{C}_{x, i}^{j}(t, A)\right) \bigcup\left(\bigcup_{x \in A \in \mathcal{T}} \mathscr{D}_{x, i}^{j}(A)\right) ; \\
& \mathcal{F}_{k}=\bigcup_{A \in \mathcal{A}_{0}} \mathscr{B}_{k}(A) ; \\
& \mathcal{F}_{i, t}^{j}=\bigcup_{A \in \mathcal{A}_{t}} \mathcal{C}_{i}^{j}(t, A)
\end{aligned}
$$

Then, $\mathcal{F}=\left\{\mathcal{F}_{x, i}^{j}, x \in X, i \in I_{m}, j \in I_{3}\right\} \cup\left\{\mathcal{F}_{k}, 1 \leq k \leq 3 r-2\right\} \cup\left\{\mathcal{F}_{i, t}^{j}, i \in I_{m}, j \in I_{3}, t \in Z_{e}^{*}\right\}$ forms a desired $\operatorname{PECS}\left((m g)^{n}:(e-1) m+r\right)$ on X^{\prime} with the groups $\left\{G^{\prime}: G \in \mathcal{G}\right\}$ and the stem S.
Proof. (1) Each $\mathcal{F}_{x, i}^{j}\left(x \in X, i \in I_{m}, j \in I_{3}\right)$ forms an $\operatorname{EDGDD}\left(1^{m g(n-1)}(m g+s)^{1}\right)$ on X^{\prime} with the long group $G^{\prime} \cup S$, where $x \in G \in \mathcal{G}$. In fact, any extended ordered pair $P=\{(\alpha, a),(\beta, b)\} \not \subset G^{\prime} \cup S$ occurs exactly one block of $\mathcal{F}_{x, i}^{j}$:
$*$ Case $\infty \in\{\alpha, \beta\}$. If $\alpha=\infty(\beta=\infty$ is similar). Then $(\alpha, a) \in S$ and $\beta \notin G$.
When $(\alpha, a) \in S_{0}$, there exists the unique block A in \mathscr{A}_{0} containing x and β, since \mathcal{A}_{0} forms a $\operatorname{GDD}\left(g^{n}\right)$ on X. Then, there exists the unique block in $\mathscr{B}_{x, i}^{j}(A)$ containing P, since $\mathscr{B}_{x, i}^{j}(A)$ forms an $\operatorname{EDGDD}\left(1^{m(|A|-1)}(m+r)^{1}\right)$ on $A^{\prime} \cup S_{0}$ with the long
group $\left(\{x\} \times I_{m}\right) \cup S_{0}$. Further, let us show the uniqueness for the block containing P. Suppose that there exists another block $C \in \mathcal{F}_{x, i}^{j}$ containing P. Since $(\alpha, a) \in S_{0}, C$ must belong $\bigcup_{x \in A \in \mathcal{A}_{0}} \mathscr{B}_{x, i}^{j}(A)$. Then, there must be some $A_{1} \in \mathcal{A}_{0}$ such that $C \in \mathscr{B}_{x, i}^{j}\left(A_{1}\right)$ and $\{x, \beta\} \subset A_{1}$. Since \mathscr{A}_{0} forms a $G D D\left(g^{n}\right)$ on X and $\{x, \beta\} \subset A$, we have $A_{1}=A$, i.e., $C \in \mathscr{B}_{x, i}^{j}(A)$. However, in $\mathcal{B}_{x, i}^{j}(A)$, the block containing P is unique.

When $(\alpha, a) \in S_{t}\left(t \in Z_{e}^{*}\right)$, there exists the unique block $A \in \mathcal{A}_{t}$ containing x and β, since $\mathcal{A}_{t}\left(t \in Z_{e}^{*}\right)$ forms a $G D D\left(g^{n}\right)$ on X. Then, there exists the unique block in $\bigodot_{x, i}^{j}(t, A)$ containing P, since $\mathcal{C}_{x, i}^{j}(t, A)$ forms a $D G D D\left(m^{|A|}\right)$ on $\left((A \backslash\{x\}) \times I_{m}\right) \cup S_{t}$ with the groups $\mathcal{G}_{A \backslash\{x\}} \cup\left\{S_{t}\right\}$. Similarly, we can show the uniqueness for the block containing P.
${ }^{*}$ Case $\infty \notin\{\alpha, \beta\}$. If $\alpha=\beta$ or $\alpha=x\left(\beta=x\right.$ is similar), then $\beta \notin G$. Since there exists the unique block $A \in \mathcal{A}_{0}$ containing x and β, there exists the unique block in $\mathscr{B}_{x, i}^{j}(A)$ containing P. If $\alpha \neq \beta$ and $x \notin\{\alpha, \beta\}$, then $\{x, \alpha, \beta\}$ is contained in the unique block $A \in\left(\bigcup_{t \in Z_{e}} \mathcal{A}_{t}\right) \bigcup \mathcal{T}$. Then,
$A \in \mathcal{A}_{0} \longrightarrow$ there exists the unique block in $\mathscr{B}_{x, i}^{j}(A)$ containing P.
$A \in \mathcal{A}_{t}\left(t \in Z_{e}^{*}\right) \longrightarrow$ there exists a unique block in $\mathcal{C}_{x, i}^{j}(t, A)$ containing P.
$A \in \mathcal{T} \longrightarrow$ there exists the unique block in $\mathscr{D}_{x, i}^{j}(A)$ containing P, since $\left((A \backslash\{x\}) \times Z_{m}, \mathscr{G}_{A \backslash\{x\}}, \mathscr{D}_{x, i}^{j}(A)\right)$ is a $D G D D\left(m^{|A|-1}\right)$.
The uniqueness for the block containing P can be similarly shown.
(2) Each $\mathcal{F}_{i, t}^{j}$ or $\mathcal{F}_{k}\left(i \in I_{m}, j \in I_{3}, t \in Z_{e}^{*}, 1 \leq k \leq 3 r-2\right)$ forms a $D G D D\left((m g)^{n}\right)$ on $X \times I_{m}$. In fact, for any ordered pair $P=\{(\alpha, a),(\beta, b)\}$ from distinct groups,

* There exists the unique block $A \in \mathcal{A}_{t}$ containing α, β. And, by the construction, $\mathcal{C}_{i}^{j}(t, A)$ forms a $D G D D\left(m^{|A|}\right)$ on A^{\prime} with the groups \mathscr{F}_{A}. So, there exists the unique block in $\mathcal{C}_{i}^{j}(t, A) \subset \mathcal{F}_{i, t}^{j}$ containing P.
${ }^{*}$ There exists the unique block $A \in \mathcal{A}_{0}$ containing α, β. And, by the construction, $\mathscr{B}_{k}(A)$ forms a $D G D D\left(m^{|A|}\right)$ on A^{\prime} with the groups \mathscr{G}_{A}. So, there exists the unique block in $\mathscr{B}_{k}(A) \subset \mathcal{F}_{k}$ containing P.
(3) Any extended transitive triple $T=\{(\alpha, a),(\beta, b),(\gamma, c)\} \not \subset G^{\prime} \cup S, \forall G \in \mathcal{G}$, belongs \mathcal{F}. In fact,
${ }^{*} \alpha=\infty$ (or $\infty \in\{\beta, \gamma\}$). Then $(\alpha, a) \in S$ and β, γ are in distinct groups. When $(\alpha, a) \in S_{0}$, there exists the unique block $A \in \mathcal{A}_{0}$ containing β and γ. And, by the construction, \mathscr{B}_{A} forms a $\operatorname{PECS}\left(m^{|A|}: r\right)$ on $\left(A \times I_{m}\right) \cup S_{0}$, so $T \in \mathscr{B}_{A} \subset \mathcal{F}$. When $(\alpha, a) \in S_{t}\left(t \in Z_{e}^{*}\right)$, there exists the unique block $A \in \mathcal{A}_{t}$ containing β and γ. And, by the construction, \mathcal{C}_{A} forms a $D F\left(m^{|A|+1}\right)$ with group set $\mathcal{g}_{A} \cup S_{t}$, so $T \in \mathcal{C}_{A} \subset \mathcal{F}$.
${ }^{*} \infty \notin\{\alpha, \beta, \gamma\}$. By the definition of $e-F G\left(3,\left(K_{0}, K_{1}, \ldots, K_{e-1}, K_{\mathcal{T}}\right), g^{n}\right)$, there exists $A \in\left(\bigcup_{t \in Z_{e}} \mathcal{A}_{t}\right) \bigcup \mathcal{T}$ such that $\{\alpha, \beta, \gamma\} \subseteq A$. Therefore, $T \in \mathscr{B}_{A} \cup \mathcal{C}_{A} \cup \mathscr{D}_{A} \subset \mathcal{F}$.

Theorem 2.3. If there exist 2-FG(3, $\left.\left(K_{\mathcal{B}}, K_{\mathcal{C}}, K_{\mathscr{D}}\right), g^{n}\right), \operatorname{PECS} C^{*}\left(m^{k}: r\right) \forall k \in K_{\mathscr{B}}, \operatorname{PDGDD}\left(m^{k}: s\right) \forall k \in K_{\mathcal{C}}$ and $D F\left(m^{k}\right) \forall k \in$ $K_{\mathscr{D}}$, then there exists a PECS $\left((m g)^{n}: r+s\right)$.
Proof. Let $2-F G\left(3,\left(K_{\mathcal{B}}, K_{\mathcal{C}}, K_{\mathscr{D}}\right), g^{n}\right)=(X, \mathcal{G}, \mathscr{B}, \mathcal{C}, \mathscr{D})$, where \mathcal{G} is a partition of the $g n$-set X into n groups with size g. Denote $\mathcal{G}_{A}=\left\{\{x\} \times I_{m}: x \in A\right\}$ where $A \subseteq X$. Let R, S and $X \times I_{m}$ are pairwise disjoint sets where $|R|=r,|S|=s$. By assumption, we can give the following designs (1)-(3):
(1) $\operatorname{PECS}^{*}\left(m^{|A|}: r\right)=\left(\left(A \times I_{m}\right) \cup R, R, \mathscr{G}_{A}, \mathscr{B}_{A}\right)$ for each $A \in \mathscr{B}$, where \mathscr{B}_{A} can be partitioned into $3 m|A|$ disjoint $\mathscr{B}_{x, i}^{j}(A)$ and $3 r+4$ disjoint $\mathscr{B}_{k}(A), x \in A, i \in I_{m}, j \in I_{3}, 1 \leq k \leq 3 r+4$, such that each $\mathcal{B}_{x, i}^{j}(A)$ forms an $\operatorname{EDGDD}\left(1^{m(|A|-1)}(m+r-1)^{1}\right)$ on $\left(\left(A \times I_{m}\right) \cup R\right) \backslash\left\{x_{i}\right\}$ with the long group $\left(\left(\{x\} \times\left(I_{m} \backslash\{i\}\right)\right)\right) \cup R$, and each $\mathscr{B}_{k}(A)$ forms a $D G D D\left(m^{|A|}\right)$ on $A \times I_{m}$ with the groups \mathcal{G}_{A}.
(2) $\operatorname{PDGDD}\left(m^{k}: s\right)=\left(\left(A \times I_{m}\right) \cup S, \mathcal{g}_{A}, \mathcal{C}_{A}\right)$ for each $A \in \mathcal{C}$, where \mathcal{C}_{A} can be partitioned into $3 m|A|$ disjoint $\mathcal{C}_{x, i}^{j}(A)$ and $3(s-2)$ disjoint $\mathcal{C}_{k}(A), x \in A, i \in I_{m}, j \in I_{3}, 1 \leq k \leq 3(s-2)$, such that each $\mathcal{C}_{x, i}^{j}(A)$ forms a $\operatorname{DGDD}\left(m^{|A|-1}(s+1)^{1}\right)$ on $\left((A \backslash\{x\}) \times I_{m}\right) \cup S \cup\left\{x_{i}\right\}$ with a $(s+1)$-group $S \cup\left\{x_{i}\right\}$ and $|A|-1 m$-groups $\{y\} \times I_{m}, y \in A \backslash\{x\}$, and each $\mathcal{C}_{k}(A)$ forms a $D G D D\left(m^{|A|}\right)$ on $A \times I_{m}$ with the groups ξ_{A}.
(3) $D F\left(m^{|A|}\right)=\left(A \times I_{m}, \mathcal{G}_{A}, \mathscr{D}_{A}\right)$ for each $A \in \mathscr{D}$, where \mathscr{D}_{A} can be partitioned into $3 m|A|$ disjoint $\mathscr{D}_{x, i}^{j}(A), x \in A, i \in$ $I_{m}, j \in I_{3}$, such that each $\mathscr{D}_{x, i}^{j}(A)$ forms a $D G D D\left(m^{|A|-1}\right)$ on $(A \backslash\{x\}) \times I_{m}$ with the groups $\mathscr{G}_{A \backslash\{x\}}$.

Now, define

$$
\begin{aligned}
& \mathcal{F}_{x, i}^{j}=\left(\bigcup_{x \in A \in \mathscr{B}} \mathscr{B}_{x, i}^{j}(A)\right) \bigcup\left(\bigcup_{x \in A \in \mathcal{C}} \mathscr{C}_{x, i}^{j}(A)\right) \bigcup\left(\bigcup_{x \in A \in \mathcal{D}} \mathscr{D}_{x, i}^{j}(A)\right), \quad x \in X, i \in I_{m}, j \in I_{3} ; \\
& \mathcal{F}_{k}= \begin{cases}\bigcup_{A \in \mathcal{B}} \mathcal{B}_{k}(A) & 1 \leq k \leq 3 r+4 \\
\bigcup_{A \in \mathcal{C}} \mathcal{C}_{k-3 r-4}(A) & 3 r+5 \leq k \leq 3(r+s)-2 .\end{cases}
\end{aligned}
$$

Then, the collection $\left\{\mathcal{F}_{x, i}^{j}, x \in X, i \in I_{m}, j \in I_{3}\right\} \cup\left\{\mathcal{F}_{k}, 1 \leq k \leq 3(r+s)-2\right\}$ forms a $\operatorname{PECS}\left((m g)^{n}: r+s\right)$ on $\left(X \times I_{m}\right) \cup(R \cup S)$ with the groups $\left\{G \times I_{m}: G \in \mathcal{G}\right\}$ and the stem $R \cup S$.

Theorem 2.4 ([9]). If there exists an $\operatorname{LEDTS}(v)$ then there exist an $\operatorname{LEDTS}(3 v)$ and an $\operatorname{LEDTS}(3 v, 3)$ for $v \geq 3$ and $v \neq 6$.

3. Structure equations and orbits

For a given order v, an $\operatorname{EDTS}(v)$ may contain distinct amount of triples, and an $\operatorname{LEDTS}(v)$ may consist of $\operatorname{EDTS}(v)$ with distinct structure. In order to construct a large set of disjoint $E D T S(v)$, or to show its non-existence, we have to consider the structure of possible EDTS (v) and LEDTS (v). For example,
(1) How many D_{i}-triples may be contained in an $\operatorname{EDTS}(v)$ for $1 \leq i \leq 5$?
(2) What structure each $\operatorname{EDTS}(v)$ in an $\operatorname{LEDTS}(v)$ has?

By the enumeration of the pairs (x, y) for $x=y$ and $x \neq y$, we have two equations:

$$
\left|D_{1}\right|+\left|D_{2}\right|+\left|D_{3}\right|+\left|D_{4}\right|=v, \quad\left|D_{2}\right|+\left|D_{3}\right|+2\left|D_{4}\right|+3\left|D_{5}\right|=v(v-1) .
$$

Let $x=\left|D_{1}\right|, y=\left|D_{2}\right|+\left|D_{3}\right|, z=\left|D_{4}\right|+\left|D_{5}\right|$. Adding the two equations, we obtain $x+2 y+3 z=v^{2}$ and $x+y \leq v$, for $v \geq 3$. As well, in [3], Huang gave the further necessary conditions to exist an $\operatorname{EDTS}(v)$:

$$
\left|D_{2}\right|+\left|D_{3}\right| \neq 1 \quad \text { and } \quad\left|D_{4}\right| \equiv \begin{cases}\left|D_{2}\right|+\left|D_{3}\right| \bmod 3 & (\text { if } v \equiv 0,1 \bmod 3) \\ \left|D_{2}\right|+\left|D_{3}\right|+1 \bmod 3 & (\text { if } v \equiv 2 \bmod 3)\end{cases}
$$

Structure equation for $\operatorname{EDTS}(v): x+2 y+3 z=v^{2}$, where $x+y \leq v$ and $y \neq 1$.
Suppose it has m non-negative integer solutions $\left(x_{i}, y_{i}, z_{i}\right), 1 \leq i \leq m$. Each solution (x_{i}, y_{i}, z_{i}) will give a possible $\operatorname{EDTS}(v)$, which consists of $x_{i} D_{1}$-triples, $y_{i} D_{2}$ - or D_{3}-triples and $z_{i} D_{4}$ - or D_{5}-triples. The $E D T S(v)$ is called $\left(x_{i}, y_{i}, z_{i}\right)$-type's. Suppose an LEDTS (v) consists of $w_{i}\left(x_{i}, y_{i}, z_{i}\right)$-type's EDTS $(v) \mathrm{s}, 1 \leq i \leq m$. Of course, $\sum_{i=1}^{m} w_{i}=3 v-2$. These parameters w_{i} will be determined by
Structure equation system for LEDTS (v):

$$
\left(\begin{array}{cccc}
x_{1} & x_{2} & \cdots & x_{m} \\
y_{1} & y_{2} & \cdots & y_{m} \\
z_{1} & z_{2} & \cdots & z_{m}
\end{array}\right)\left(\begin{array}{c}
w_{1} \\
w_{2} \\
\vdots \\
w_{m}
\end{array}\right)=\left(\begin{array}{c}
v \\
2 v(v-1) \\
v(v-1)^{2}
\end{array}\right)
$$

Take Z_{v} as the point set. Under the action of the automorphic group Z_{v}, all ordered pairs from Z_{v} can be partitioned into v differences:

$$
\langle d\rangle=\left\{(x, x+d): x \in Z_{v}\right\}, \quad d \in Z_{v}
$$

where $\langle 0\rangle=\left\{(x, x): x \in Z_{v}\right\}$ is a special difference only for extended triple systems. Under the action of the automorphic group Z_{v}, all extended transitive triples can be partitioned into orbits:

$$
O\left(d, d^{\prime}\right)=\left\{\left(x-d, x, x+d^{\prime}\right): x \in Z_{v}\right\}, \quad d, d^{\prime} \in Z_{v}
$$

which covers three differences $\langle d\rangle,\left\langle d^{\prime}\right\rangle$ and $\left\langle d+d^{\prime}\right\rangle$ (one may equal to another), so the orbit $O\left(d, d^{\prime}\right)$ is denoted by [$d, d^{\prime}, d+d^{\prime}$] sometimes. Among these orbits, there are

$$
\begin{aligned}
& \text { one } D_{1} \text {-orbit } O(0,0)=\left\{(x, x, x): x \in Z_{v}\right\} ; \\
& v-1 D_{2} \text {-orbits } O\left(0, d^{\prime}\right)=\left\{\left(x, x, x+d^{\prime}\right): x \in Z_{v}\right\}, \quad d^{\prime} \in Z_{v}^{*} ; \\
& v-1 D_{3} \text {-orbits } O(d, 0)=\left\{(x-d, x, x): x \in Z_{v}\right\}, \quad d \in Z_{v}^{*} ; \\
& v-1 D_{4} \text {-orbits } O(d,-d)=\left\{(x-d, x, x-d): x \in Z_{v}\right\}, \quad d \in Z_{v}^{*} ; \\
& (v-1)(v-2) D_{5} \text {-orbits } O\left(d, d^{\prime}\right)=\left\{\left(x-d, x, x+d^{\prime}\right): x \in Z_{v}\right\}, \quad d, d^{\prime} \in Z_{v}^{*}, d^{\prime} \neq-d .
\end{aligned}
$$

Each orbit covers one difference ($\langle 0\rangle$ for D_{1}-orbit), or two differences ($\langle 0\rangle,\left\langle d^{\prime}\right\rangle$ for D_{2}-orbits, $\langle 0\rangle,\langle d\rangle$ for D_{3}-orbits) or three differences ($\langle 0\rangle,\langle d\rangle,\langle-d\rangle$ for D_{4}-orbits, $\langle 0\rangle,\langle d\rangle,\left\langle d^{\prime}\right\rangle$ for D_{5}-orbits).

Furthermore, if v is a prime power q, and g is a primitive element of F_{q}, the index set of all non-zero elements in F_{q} is denoted by Z_{q-1}. Under the action of the multiplicative group of F_{q}, all orbits on F_{q} can be partitioned into the following orbit families.
one D_{1}-orbit family : $\overline{\mathcal{O}}_{1}=\{O(0,0)\}, \quad$ one D_{2}-orbit family : $\overline{\mathcal{O}}_{2}=\left\{O\left(0, g^{i}\right): i \in Z_{q-1}\right\}$,
one D_{3}-orbit family : $\overline{\mathcal{O}}_{3}=\left\{O\left(g^{i}, 0\right): i \in Z_{q-1}\right\}, \quad$ one D_{4}-orbit family : $\overline{\mathcal{O}}_{4}=\left\{O\left(g^{i},-g^{i}\right): i \in Z_{q-1}\right\}$,
$q-2 D_{5}$-orbit families : $\overline{\mathcal{O}}_{5}(k)=\left\{g^{i} \cdot O\left(1, g^{k}\right): i \in Z_{q-1}\right\}, \quad k \in \begin{cases}Z_{q-1} \backslash\left\{\frac{q-1}{2}\right\} & \begin{array}{l}\text { for odd } q \\ Z_{q-1}^{*}\end{array} \\ \text { for even } q .\end{cases}$

4. LEDTS (v) of small orders

Lemma 4.1. There exists no LEDTS(4).
Proof. The structure equation for $E D T S(4)$

$$
x+2 y+3 z=16, \quad(x+y \leq 4 \text { and } y \neq 1)
$$

has four non-negative integer solutions $(x, y, z)=(0,2,4),(1,0,5),(1,3,3),(4,0,4)$. But, the structure equation system for LEDTS (4)

$$
\left(\begin{array}{llll}
0 & 1 & 1 & 4 \\
2 & 0 & 3 & 0 \\
4 & 5 & 3 & 4
\end{array}\right)\left(\begin{array}{l}
w_{1} \\
w_{2} \\
w_{3} \\
w_{4}
\end{array}\right)=\left(\begin{array}{c}
4 \\
24 \\
36
\end{array}\right)
$$

has unique solution $\left(w_{1}, w_{2}, w_{3}, w_{4}\right)=(6,0,4,0)$. Let the unique possible $\operatorname{LEDTS}(4)$ be $\left\{\left(Z_{4}, \mathcal{A}_{k}\right): 1 \leq k \leq 6\right\} \bigcup$ $\left\{\left(Z_{4}, \mathscr{B}_{k}\right): 1 \leq k \leq 4\right\}$, where

$$
\begin{array}{llll}
\left|D_{1}\right|=0, & \left|D_{2} \cup D_{3}\right|=2, & \left|D_{4} \cup D_{5}\right|=4 & \text { for each } \mathscr{A}_{k}, \\
\left|D_{1}\right|=1, & \left|D_{2} \cup D_{3}\right|=3, & \left|D_{4} \cup D_{5}\right|=3 & \text { for each } \mathscr{B}_{k} .
\end{array}
$$

Since $\left|\bigcup\left\{D_{i}: 1 \leq i \leq 4\right\}\right|$ must be 4 . Consider these \mathcal{A}_{k} only, it is easy to see that $\left|D_{4}\right|=\left|D_{5}\right|=2$ in each \mathcal{A}_{k}. However, if an $E D T S$ (4) contains two D_{5}-triples: (a, b, c) and ($a^{\prime}, b^{\prime}, c^{\prime}$), there are two cases:
(1) $\left|\{a, b, c\} \cup\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}\right|=4$. Then, among the remaining arcs in K_{4}^{*} (the complete symmetric directed graph of order $4)$, there is only one pair of opposite arcs (x, y) and (y, x). The $E D T S$ (4) cannot contain two D_{4}-triples, since each D_{4}-triple covers a pair of opposite arcs.
(2) $\left|\{a, b, c\} \cup\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}\right|=3$, i.e., $\{a, b, c\}=\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}$. Let the other vertex in K_{4}^{*} be d, then two D_{4}-triples in the $E D T S$ (4) should be (x, d, x) and (y, d, y), where $x \neq y \in\{a, b, c\}$, i.e., they have the same middle element d. However, it is impossible to partition all $6 \times 2=12 D_{4}$-triples into six parts in this form, because, for any element $x \in Z_{4}$, there are just three D_{4}-triples with the same middle element.

Lemma 4.2. There exist an LEDTS (2) and an LEDTS(6).
Construction. $\operatorname{LEDTS}(2)=\left\{\left(Z_{2}, \mathcal{A}_{i}\right): 0 \leq i \leq 3\right\}$, where

$$
\mathcal{A}_{0}: 000101 ; \quad \mathcal{A}_{1}: 111010 ; \quad \mathcal{A}_{2}: 110001 ; \quad \mathcal{A}_{3}: 011100 .
$$

$\operatorname{LEDTS}(6)=\left\{\left(Z_{6}, \mathcal{A}_{x}\right): x \in Z_{6}\right\} \cup\left\{\left(Z_{6}, \mathscr{B}_{x}\right): x \in Z_{6}\right\} \cup\left\{\left(Z_{6}, \mathcal{C}_{j}\right): 1 \leq j \leq 4\right\}$, where $\mathcal{A}_{x}=\mathcal{A}_{0}+x, \mathscr{B}_{x}=\mathscr{B}_{0}+x, x \in Z_{6}$, and

$$
\begin{aligned}
& \mathcal{A}_{0}: 000112221544455303150051523325134431024 \text { 420; } \\
& \mathcal{B}_{0}: 003330115551422244012210504405352253413 \text { 314; }
\end{aligned}
$$

(The first two triples of $\mathscr{B}_{0}+3, \mathscr{B}_{0}+4$ and $\mathscr{B}_{0}+5$ need to be replaced by their inverse.)

$$
\begin{aligned}
& \mathcal{C}_{1}: 010121202313424505235532340043451 \text { 154; } \\
& \mathcal{C}_{2}: 020101242323404545125521341143503 \text { 305; } \\
& \mathfrak{C}_{3}: 040151232343454535502205013310124 \text { 421; } \\
& \mathcal{C}_{4}: 050131212353434515014410230032452254 \text {. }
\end{aligned}
$$

Proof. The correctness for $\operatorname{LEDTS}(2)$ is obvious. Next, checking the appearance of each ordered pair, we can show that each A_{0}, B_{0} and C_{j} forms an $\operatorname{EDTS}(6)$. Further, checking the appearance of each extended transitive triple (or each block orbit for A_{0} and B_{0}), we can prove that all A_{x}, B_{x} and $C_{j}, x \in Z_{6}, 1 \leq j \leq 4$, forms an $\operatorname{LEDTS}(6)$.

Lemma 4.3. There exist an $\operatorname{LEDTS}(8)$ and an $\operatorname{LEDTS}(8,2)$.
Construction. Let g be a primitive element of the finite field F_{8}, and $g^{3}=1+g$. Construct three families of extended transitive triples on F_{8} as follows, where $F_{8}=R \cup S, R=\left\{0,1, g, g^{3}\right\}, S=\left\{g^{2}, g^{4}, g^{5}, g^{6}\right\}$.

$$
\begin{aligned}
\mathcal{A}_{0}: & (0,0,0),\left(g^{j}, 0, g^{j}\right),\left(g^{j+3}, g^{j+1}, g^{j+4}\right),\left(g^{j+2}, g^{j+6}, g^{j+1}\right), \\
\mathcal{A}_{1}: & \left(0,0, g^{5}\right)+x, x \in F_{8} ; \quad\left(1,0, g^{3}\right)+x,\left(g^{2}, 0, g^{6}\right)+x \text { for } x \in R ; \\
& \left(g^{3}, 0, g^{4}\right)+x,\left(g^{2}, 0, g\right)+x \text { for } x \in S . \\
\mathcal{A}_{2}: & \left(g^{5}, 0,0\right)+x, x \in F_{8} ; \quad\left(1,0, g^{3}\right)+x,\left(g^{2}, 0, g^{6}\right)+x \text { for } x \in S ; \\
& \left(g^{3}, 0, g^{4}\right)+x,\left(g^{2}, 0, g\right)+x \text { for } x \in R .
\end{aligned}
$$

Let $\mathscr{B}_{x}=\mathcal{A}_{0}+x, \mathcal{C}_{k}=g^{k} \mathcal{A}_{1}, \mathscr{D}_{k}=g^{k} \mathcal{A}_{2}$, where $x \in F_{8}$ and $k \in Z_{7}$. Then, $\left\{\left(F_{8}, \mathscr{B}_{x}\right): x \in F_{8}\right\} \cup\left\{\left(F_{8}, \mathscr{C}_{k}\right): k \in Z_{7}\right\} \cup\left\{\left(F_{8}, \mathscr{D}_{k}\right)\right.$: $\left.k \in Z_{7}\right\}$ forms an LEDTS (8). Furthermore, define

$$
\begin{aligned}
& \mathscr{B}_{0}^{\prime}=\mathscr{B}_{0} \backslash\left\{(0,0,0),\left(g^{5}, 0, g^{5}\right)\right\}, \quad \mathscr{B}_{g^{5}}^{\prime}=\mathscr{B}_{g^{5}} \backslash\left\{\left(g^{5}, g^{5}, g^{5}\right),\left(0, g^{5}, 0\right)\right\} \quad \text { and } \quad \mathscr{B}_{x}^{\prime}=\mathscr{B}_{x} \quad \text { for other } x \in F_{8} ; \\
& \mathcal{C}_{0}^{\prime}=\mathcal{C}_{0} \backslash\left\{\left(0,0, g^{5}\right),\left(g^{5}, g^{5}, 0\right)\right\} \quad \text { and } \quad \mathcal{C}_{k}^{\prime}=\mathcal{C}_{k} \text { for } k \in Z_{7}^{*} ; \\
& \mathscr{D}_{0}^{\prime}=\mathscr{D}_{0} \backslash\left\{\left(0, g^{5}, g^{5}\right),\left(g^{5}, 0,0\right)\right\} \quad \text { and } \quad \mathscr{D}_{k}^{\prime}=\mathscr{D}_{k} \text { for } k \in Z_{7}^{*} .
\end{aligned}
$$

Then, $\left\{\left(F_{8}, \mathscr{B}_{x}^{\prime}\right): x \in F_{8}\right\} \cup\left\{\left(F_{8}, \mathcal{C}_{k}^{\prime}\right): k \in Z_{7}\right\} \cup\left\{\left(F_{8}, \mathscr{D}_{k}^{\prime}\right): k \in Z_{7}\right\}$ forms an $\operatorname{LEDTS}(8,2)$.
Proof. (1) \mathcal{A}_{0} forms an $E D T S$ (8) on F_{8}. In fact, it is easy to see that each of the ordered pairs $(x, x),\left(0, g^{j}\right),\left(g^{j}, 0\right)$ and $\left(g^{j}, g^{j+k}\right)$, $x \in F_{8}, j \in Z_{7}, k \in Z_{7}^{*}$, appears once in \mathcal{A}_{0}. Furthermore, each \mathscr{B}_{x} or $\mathscr{B}_{y}^{\prime} x \in F_{8}, y \in F_{8}^{*} \backslash\left\{g^{5}\right\}$, is also an EDTS (8) on F_{8}. And, $\mathscr{B}_{0}^{\prime}\left(\right.$ and $\left.\mathscr{B}_{g^{5}}^{\prime}\right)$ is an $\operatorname{EDTS}(8,2)$ on F_{8} with the hole $\left\{0, g^{5}\right\}$.
(2) \mathcal{A}_{1} forms an $E D T S(8)$ on F_{8} (similarly, for \mathcal{A}_{2}). In fact, by the additive table

+	0	g^{0}	g^{1}	g^{2}	g^{3}	g^{4}	g^{5}	g^{6}
0	0	g^{0}	g^{1}	g^{2}	g^{3}	g^{4}	g^{5}	g^{6}
g^{0}	g^{0}	0	g^{3}	g^{6}	g^{1}	g^{5}	g^{4}	g^{2}
g^{1}	g^{1}	g^{3}	0	g^{4}	g^{0}	g^{2}	g^{6}	g^{5}
g^{2}	g^{2}	g^{6}	g^{4}	0	g^{5}	g^{1}	g^{3}	g^{0}
g^{3}	g^{3}	g^{1}	g^{0}	g^{5}	0	g^{6}	g^{2}	g^{4}
g^{4}	g^{4}	g^{5}	g^{2}	g^{1}	g^{6}	0	g^{0}	g^{3}
g^{5}	g^{5}	g^{4}	g^{6}	g^{3}	g^{2}	g^{0}	0	g^{1}
g^{6}	g^{6}	g^{2}	g^{5}	g^{0}	g^{4}	g^{3}	g^{1}	0

we can know that $R+R=R=S+S, R+S=S=S+R$ and
$(0,0) \in\langle 0\rangle ;$
$(1,0),\left(g^{2}, g^{6}\right) \in\left\langle g^{0}\right\rangle ;$
$\left(1, g^{3}\right),(0, g) \in\left\langle g^{1}\right\rangle$
$\left(g^{2}, 0\right) \in\left\langle g^{2}\right\rangle ;$
$\left(0, g^{3}\right),\left(g^{3}, 0\right) \in\left\langle g^{3}\right\rangle ;$
$\left(0, g^{4}\right),\left(g^{2}, g\right) \in\left\langle g^{4}\right\rangle ;$
$\left(0, g^{5}\right) \in\left\langle g^{5}\right\rangle ;$
$\left(0, g^{6}\right),\left(g^{3}, g^{4}\right) \in\left\langle g^{6}\right\rangle$.

Obviously, the pairs in the orbits $\langle 0\rangle$ and $\left\langle g^{5}\right\rangle$ are filled. For the other orbits, we have

$$
\begin{aligned}
& \left\{\begin{array}{lllr}
x \in R & (1,0) \in(R, R) & \longrightarrow & (1+x, x) \in(R, R) \\
x \in R & \left(g^{2}, g^{6}\right) \in(S, S) & \longrightarrow & \left(g^{2}+x, g^{6}+x\right) \in(S, S)
\end{array}\right\} \quad\left\langle g^{0}\right\rangle ; \\
& \left\{\begin{array}{lllr}
x \in R & \left(1, g^{3}\right) \in(R, R) & \longrightarrow & \left(1+x, g^{3}+x\right) \in(R, R) \\
x \in S & (0, g) \in(R, R) & \longrightarrow & (x, g+x) \in(S, S)
\end{array}\right\} \quad\left\langle g^{1}\right\rangle ; \\
& \left\{\begin{array}{llll}
x \in R & \left(g^{2}, 0\right) \in(S, R) & \longrightarrow & \left(g^{2}+x, x\right) \in(S, R) \\
x \in S & \left(g^{2}, 0\right) \in(S, R) & \longrightarrow & \left(g^{2}+x, x\right) \in(R, S)
\end{array}\right\} \quad\left\langle g^{2}\right\rangle ; \\
& \left\{\begin{array}{llll}
x \in R & \left(0, g^{3}\right) \in(R, R) & \longrightarrow & \left(x, g^{3}+x\right) \in(R, R) \\
x \in S & \left(g^{3}, 0\right) \in(R, R) & \longrightarrow & \left(g^{3}+x, x\right) \in(S, S)
\end{array}\right\} \quad\left\langle g^{3}\right\rangle ; \\
& \left\{\begin{array}{lll}
x \in S & \left(0, g^{4}\right) \in(R, S) & \longrightarrow
\end{array} \quad\left(x, g^{4}+x\right) \in(S, R)\right\} \quad\left\langle g^{4}\right\rangle ; \\
& \left\{\begin{array}{lllr}
x \in R & \left(0, g^{6}\right) \in(R, S) & \longrightarrow & \left(x, g^{6}+x\right) \in(R, S) \\
x \in S & \left(g^{3}, g^{4}\right) \in(R, S) & \longrightarrow & \left(g^{3}+x, g^{4}+x\right) \in(S, R)
\end{array}\right\} \quad\left\langle g^{6}\right\rangle .
\end{aligned}
$$

Therefore, the system \mathcal{A}_{1} forms an $E D T S(8)$ on F_{8} indeed. Furthermore, each $\mathcal{C}_{k}, \mathscr{D}_{k}$ or $\mathcal{C}_{r}^{\prime}, \mathscr{D}_{r}^{\prime}, k \in Z_{7}, r \in Z_{7}^{*}$, is also an $\operatorname{EDTS}(8)$ on F_{8}. And, \mathscr{C}_{0}^{\prime} (and $\left.\mathscr{D}_{0}^{\prime}\right)$ is an $\operatorname{EDTS}(8,2)$ on F_{8} with the hole $\left\{0, g^{5}\right\}$.
(3) $\left\{\left(F_{8}, \mathscr{B}_{x}\right): x \in F_{8}\right\} \cup\left\{\left(F_{8}, \mathscr{C}_{k}\right): k \in Z_{7}\right\} \cup\left\{\left(F_{8}, \mathscr{D}_{k}\right): k \in Z_{7}\right\}$ forms an LEDTS(8). In fact,

$$
\begin{aligned}
& \left(g^{j+3}, g^{j+1}, g^{j+4}\right)=g^{j}\left(g-1, g, g+g^{2}\right) \in g^{j} \cdot O\left(1, g^{2}\right) \in \overline{\mathcal{O}}_{5}(2), \\
& \left(g^{j+2}, g^{j+6}, g^{j+1}\right)=g^{j}\left(g^{6}-1, g^{6}, g^{6}+g^{5}\right) \in g^{j} \cdot O\left(1, g^{5}\right) \in \overline{\mathcal{O}}_{5}(5) \\
& \left(1+x, x, g^{3}+x\right) \in O\left(1, g^{3}\right) \in \overline{\mathcal{O}}_{5}(3), \quad\left(g^{2}+x, x, g^{6}+x\right) \in g^{2} \cdot O\left(1, g^{4}\right) \in \overline{\mathcal{O}}_{5}(4), \\
& \left(g^{3}+x, x, g^{4}+x\right) \in g^{3} \cdot O(1, g) \in \overline{\mathcal{O}}_{5}(1), \quad\left(g^{2}+x, x, g+x\right) \in g^{2} \cdot O\left(1, g^{6}\right) \in \overline{\mathcal{O}}_{5}(6) .
\end{aligned}
$$

Therefore, the D_{5}-triples in $\mathcal{A}_{0}, \mathcal{A}_{1}$ and \mathcal{A}_{2} appear in all D_{5}-orbit families $\overline{\mathcal{O}}_{5}(k), k \in Z_{7}^{*}$. For $1 \leq i \leq 4$, the D_{i}-triples in $\mathcal{A}_{0}, \mathscr{A}_{1}$ and \mathscr{A}_{2} appear in all D_{i}-orbit families $\overline{\mathcal{O}}_{i}$.
(4) $\left\{\left(F_{8}, \mathscr{B}_{x}^{\prime}\right): x \in F_{8}\right\} \cup\left\{\left(F_{8}, \mathcal{C}_{k}^{\prime}\right): k \in Z_{7}\right\} \cup\left\{\left(F_{8}, \mathscr{D}_{k}^{\prime}\right): k \in Z_{7}\right\}$ forms an $\operatorname{LEDTS}(8,2)$. In fact, the distinction between the collections (4) and (3) lies only in removing two blocks for each procedure

$$
\mathscr{B}_{0} \longrightarrow \mathscr{B}_{0}^{\prime}, \quad \mathscr{B}_{g^{5}} \longrightarrow \mathscr{B}_{g^{5}}^{\prime}, \quad \mathcal{C}_{0} \longrightarrow \mathfrak{C}_{0}^{\prime}, \quad \mathcal{D}_{0} \longrightarrow \mathscr{D}_{0}^{\prime}
$$

However, the removed eight blocks form just an $\operatorname{LEDTS}(2)$ on the hole $\left\{0, g^{5}\right\}$.
Lemma 4.4. There exists an LEDTS(10).
Construction. Construct an $\operatorname{LEDTS}(10)$ on $X=Z_{9} \cup\{u\}$ as follows, where $u \notin Z_{9}$ is a fixed element.

\mathcal{A}_{0} :	$0 u$ u	u 00	171	422	233	544	355	666	737	818			
	$78 u$	$24 u$	$36 u$	$15 u$	u 62	u 41	u 53	u 87	651	321	134	570	825
	380	160	405	843	012	568	746	063	286	647	752	207	048
\mathcal{B}_{0} :	u $1 u$	070	112	226	335	484	551	663	767	828			
	$38 u$	$74 u$	$20 u$	65 u	u 45	u 68	u 03	u 72	785	564	247	580	713
	187	215	086	831	610	052	416	423	537	014	340	362	
\mathcal{C}_{0} :	ии 4	$00 u$	110	822	343	744	5 u 5	266	771	886			
	7 u 8	$1 u 3$	3 u 6	$6 u 2$	$4 u 1$	$2 u 0$	8 u 7	172	854	705	021	037	450
	156	427	657	325	763	046	614	830	381	518	523	608	248.

Define $\mathscr{A}_{k}=\mathscr{A}_{0}+k, \mathscr{B}_{k}=\mathscr{B}_{0}+k$ and $\mathcal{C}_{k}=\mathcal{C}_{0}+k$, where $k \in Z_{9}$. Then, $\left\{\left(X, \mathscr{A}_{k}\right),\left(X, \mathscr{B}_{k}\right),\left(X, \mathcal{C}_{k}\right): k \in Z_{10}\right\} \bigcup\left\{\left(X, \mathscr{A}_{u}\right)\right\}$ is an LEDTS (10) desired.
Proof. First, it is not difficult to check that \mathcal{A}_{0} (or $\mathscr{B}_{0}, \mathcal{C}_{0}, \mathcal{A}_{u}$) forms an EDTS (10). Furthermore, in order to show the collection $\left\{\left(X, \mathscr{A}_{k}\right),\left(X, \mathscr{B}_{k}\right),\left(X, \mathcal{C}_{k}\right): k \in Z_{10}\right\} \bigcup\left\{\left(X, \mathcal{A}_{u}\right)\right\}$ forms an LEDTS(10) indeed, we list the following two tables. The first table shows the orbits of the triples containing u in every block set.

	$D_{1} \sim D_{4}$	$(u, x, x+d)$	$(x, x+d, u)$
\mathcal{A}_{u}	(u, u, u)		
\mathcal{A}_{0}	$(*, u, u),(u, *, *)$	$d=5,6,7,8$	$d=1,2,3,4$
\mathcal{B}_{0}	$(u, *, u)$	$d=1,2,3,4$	$d=5,6,7,8$
\mathcal{C}_{0}	$(*, *, u),(u, u, *),(*, u, *)$		

The second table shows the orbits of the triples not containing u in every block set, where A_{u} (or $\mathscr{A}_{0}, \mathscr{B}_{0}, \mathcal{C}_{0}$) in the position (i, j) means that there exists some block in A_{u} (or $\mathscr{A}_{0}, \mathscr{B}_{0}, \mathcal{C}_{0}$) belonging to the orbit $O(i, j)$.

	0	1	2	3	4	5	6	7	8
0	\mathcal{A}_{0}	\mathcal{B}_{0}	\mathcal{B}_{0}	\mathcal{C}_{0}	\mathscr{B}_{0}	\mathcal{B}_{0}	\mathcal{B}_{0}	\mathcal{C}_{0}	\mathcal{C}_{0}
1	\mathcal{A}_{0}	\mathcal{A}_{0}	\mathcal{A}_{0}	\mathscr{B}_{0}	\mathcal{C}_{0}	\mathcal{B}_{0}	\mathcal{B}_{0}	\mathcal{B}_{0}	C_{0}
2	\mathcal{A}_{0}	\mathcal{A}_{0}	\mathcal{A}_{0}	\mathcal{B}_{0}	\mathcal{C}_{0}	C_{0}	\mathcal{A}_{u}	\mathcal{A}_{0}	\mathcal{C}_{0}
3	\mathcal{C}_{0}	\mathcal{B}_{0}	\mathcal{B}_{0}	\mathcal{A}_{0}	\mathcal{C}_{0}	\mathcal{B}_{0}	\mathcal{B}_{0}	\mathcal{A}_{u}	C_{0}
4	\mathcal{C}_{0}	\mathcal{C}_{0}	\mathcal{C}_{0}	\mathcal{C}_{0}	\mathcal{A}_{0}	\mathcal{B}_{0}	\mathcal{C}_{0}	\mathcal{B}_{0}	\mathcal{B}_{0}
5	\mathcal{A}_{u}	\mathcal{A}_{0}	\mathcal{C}_{0}	\mathcal{A}_{0}	\mathcal{A}_{0}	\mathcal{A}_{0}	\mathcal{B}_{0}	\mathcal{C}_{0}	\mathcal{A}_{0}
6	\mathcal{C}_{0}	\mathcal{C}_{0}	\mathcal{A}_{0}	\mathcal{A}_{0}	\mathcal{C}_{0}	\mathcal{B}_{0}	\mathcal{A}_{0}	\mathcal{A}_{0}	\mathcal{C}_{0}
7	\mathcal{A}_{0}	\mathcal{B}_{0}	\mathcal{B}_{0}	A_{0}	\mathcal{B}_{0}	\mathcal{C}_{0}	\mathcal{A}_{0}	\mathcal{A}_{0}	\mathcal{B}_{0}
8	\mathcal{A}_{0}	\mathcal{B}_{0}	\mathcal{C}_{0}	\mathcal{C}_{0}	\mathcal{B}_{0}	\mathcal{A}_{0}	\mathcal{C}_{0}	\mathcal{B}_{0}	\mathcal{A}_{0}

Lemma 4.5. There exists an $\operatorname{LEDTS}(10,4)$.
Proof. Suppose $\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4} \notin Z_{6}$ where $\overline{0}$ is only an auxiliary symbol. Let us construct an $\operatorname{LEDTS}(10,4)$ on $X=Z_{6} \cup$ $\{\overline{1}, \overline{2}, \overline{3}, \overline{4}\}$ with the hole $\{\overline{1}, \overline{2}, \overline{3}, \overline{4}\}$ as follows. Define

$$
\begin{array}{lll}
S_{0}=\{(1,2),(3,4),(5,0)\}, & S_{1}=\{(0,4),(1,5),(2,3)\}, & S_{2}=\{(2,0),(3,1),(4,5)\}, \\
S_{3}=\{(4,2),(5,3),(0,1)\}, & S_{4}=\{(1,4),(2,5),(0,3)\} &
\end{array}
$$

For $i \in Z_{5}^{*}$ and $j \in Z_{5}$, denote

$$
\begin{aligned}
& \bar{i} S_{j}=\left\{(\bar{i}, x, y),(y, x, \bar{i}):(x, y) \in S_{j}\right\}, \quad \bar{i} S_{j}^{\prime}=\left\{(\bar{i}, y, x),(x, y, \bar{i}):(x, y) \in S_{j}\right\}, \\
& \overline{0} S_{j}=\left\{(x, x, y),(y, y, x):(x, y) \in S_{j}\right\}, \quad \overline{0} S_{j}^{\prime}=\left\{(x, y, y),(y, x, x):(x, y) \in S_{j}\right\} .
\end{aligned}
$$

Then, define ten families of extended transitive triples on X where the subscripts are taken in Z_{5}.

$$
\mathscr{B}_{k}=\left\{\bar{i} S_{i+k}: i \in Z_{5}\right\}, \quad \mathscr{B}_{k}^{\prime}=\left\{\bar{i} S_{i+k}^{\prime}: i \in Z_{5}\right\}, \quad k \in Z_{5} .
$$

And, construct three families of extended transitive triples on X :

\mathcal{A}_{0}^{0} :	1 $\overline{1} \overline{1}$	$3 \overline{2} \overline{2}$	$0 \overline{3} \overline{3}$	$4 \overline{4}$	300	211	212	433	144	535	$0 \overline{1}$	$31 \overline{3}$
	$5 \overline{1} \overline{4}$	$4 \overline{2} \overline{3}$	$1 \overline{2} \overline{4}$	$2 \overline{3} \overline{4}$	$4 \overline{1} 0$	$2 \overline{2} 0$	$5 \overline{3} 1$	$3 \overline{4} 0$	$\overline{1} \overline{1} 2$	$\overline{3} \overline{1} 5$	$\overline{4} \overline{1} 1$	$\overline{3} \overline{2} 3$
	$\overline{4} \overline{2} 5$	$\overline{4} \overline{3} 2$	$2 \overline{1} 3$	$5 \overline{2} 4$	$1 \overline{3} 4$	0	013	2	34	150	052	431
\mathcal{A}_{0}^{1} :	11 3	$\overline{2} \overline{2} 1$	$\overline{3} \overline{3} 2$	$\overline{4} \overline{4} 4$	030	111	223	334	442	515	120	134
	$\overline{1} \overline{4} 1$	$\overline{2} \overline{3}$	$\overline{2} \overline{4} 5$	$\overline{3} \overline{4} 0$	$4 \overline{1} 2$	$1 \overline{2} 2$	$4 \overline{3} 5$	$0 \overline{4} 2$	$3 \overline{2}$	5	$2 \overline{4} \overline{1}$	$0 \overline{3} \overline{2}$
	$5 \overline{4} \overline{2}$	$1 \overline{4} \overline{3}$	$0 \overline{1} 5$	$2 \overline{2} 4$	$3 \overline{3} 1$	$4 \overline{4} 3$	014	250	354	213	410	532
\mathcal{A}_{0}^{2} :	14 1	$\overline{2} \overline{2}$	$\overline{3} 1 \overline{3}$	4 $0 \overline{4}$	030	111	$2 \overline{2} 2$	343	444	555		
	$\overline{1} 0 \overline{2}$	1 $22 \overline{3}$	15 4	$\overline{2} 4 \overline{3}$	2 $1 \overline{4}$	$\overline{3} 3 \overline{4}$	$0 \overline{1} 3$	$3 \overline{2} 0$	$3 \overline{3} 2$	$2 \overline{4} 3$	2 $3 \overline{1}$	$\overline{3} 5 \overline{1}$
	$\overline{4} 2 \overline{1}$	$\overline{3} 4$	$\overline{4} 1 \overline{2}$	$\overline{4} 5 \overline{3}$	012	135	531	054	140	241	520	425.

Let $\mathcal{A}_{x}^{j}=\mathcal{A}_{0}^{j}+x$ for $x \in Z_{6}$ and $j \in Z_{3}$. It is not difficult to check that each \mathcal{A}_{x}^{j} forms an $\operatorname{EDTS}(10)$ on X, and each \mathscr{B}_{k} (or $\left.B_{k}^{\prime}\right)$ forms an $\operatorname{EDTS}(10,4)$ on X with the holes $\{\overline{1}, \overline{2}, \overline{3}, \overline{4}\}$. So, the collection $\left\{\left(X, \mathcal{A}_{x}^{j}\right): x \in Z_{6}, j \in Z_{3}\right\} \cup\left\{\left(X, \mathscr{B}_{k}\right): k \in\right.$ $\left.Z_{5}\right\} \cup\left\{\left(X, \mathscr{B}_{k}^{\prime}\right): k \in Z_{5}\right\}$ is an $\operatorname{LEDTS}(10,4)$ desired.

Lemma 4.6. There exists an LEDTS(12).
Proof. We construct an $\operatorname{LEDTS}(12)$ on $X=Z_{10} \cup\{u, v\}$.

$\mathcal{A}_{0}^{0}:$	$u 6 u$	$v 4 v$	000	511	227	$3 v 3$	144	559	466	677	$8 u 8$	299	
	$u 1 v$	$07 u$	$u 57$	$2 u 4$	$9 u 2$	$3 u 0$	$1 u 9$	$4 u 3$	238	805	583	372	490
	$v 5 u$	$60 v$	$v 87$	$8 v 9$	$9 v 1$	$5 v 2$	$2 v 0$	$7 v 6$	781	695	341	170	745
	963	864	098	621	256	012	135	036	482	739	168	947	504
$\mathcal{A}_{0}^{1}:$	$u u 3$	$v v 6$	020	114	252	331	445	$55 u$	668	$77 v$	887	909	
	$u v 2$	$34 u$	$80 u$	$69 u$	$71 u$	$u 40$	$u 85$	$u 19$	$u 76$	046	158	073	423
	$2 v u$	$36 v$	$94 v$	$51 v$	$08 v$	$v 01$	$v 59$	$v 38$	$v 74$	610	839	291	862
	172	248	926	841	657	305	750	327	564	953	798	163	497
$\mathcal{A}_{0}^{2}:$	$6 u u$	$9 v v$	$u 00$	151	202	393	414	545	866	727	$v 88$	099	
	$3 u v$	$05 u$	$84 u$	$97 u$	$21 u$	$u 56$	$u 92$	$u 71$	$u 38$	128	573	374	698
	$v u 4$	$78 v$	$46 v$	$52 v$	$10 v$	$v 91$	$v 03$	$v 62$	$v 75$	430	580	429	823
	631	904	081	067	965	136	264	179	859	325	760	487	
$\mathcal{B}_{0}:$	$u u u$	$v u v$	006	$0 u 4$	$0 v 5$	013	310	$(\bmod 10) ;$					
$\mathcal{B}_{1}:$	$v v v$	$u v u$	044	$0 u 5$	$0 v 6$	023	320	$(\bmod$	$10) ;$				
$\mathcal{B}_{2}:$	$u u v$	$v v u$	055	$0 u 6$	$0 v 4$	029	031	$(\bmod$	$10) ;$				
$\mathcal{B}_{3}:$	$u v v$	$v u u$	007	$0 u 1$	$0 v 3$	082	095	$(\bmod$	$10)$.				

Let $\mathcal{A}_{x}^{j}=\mathcal{A}_{0}^{j}+x$ for $x \in Z_{10}$ and $j \in Z_{3}$. It is not difficult to check that each \mathcal{A}_{x}^{j} (or $\mathscr{B}_{k}, k \in Z_{4}$) forms an EDTS(12) on X and they are pairwise disjoint. Therefore, the collection $\left\{\left(X, \mathcal{A}_{x}^{j}\right): x \in Z_{10}, j \in Z_{3}\right\} \bigcup\left\{\left(X, \mathscr{B}_{k}\right): k \in Z_{4}\right\}$ is an LEDTS(12) desired.

Lemma 4.7. There exists an LEDTS (14).
Proof. We construct an $\operatorname{LEDTS}(14)$ on $X=Z_{13} \cup\{u\}$, where $10,11,12$ are written in $\overline{0}, \overline{1}, \overline{2}$.
\mathcal{A}_{u} : иии 0 ио $034057 \quad 750430(\bmod 13)$.

(ii) $\begin{array}{rlllllllllllll}3 u 4 & 2 u 5 & 9 u & 8 u \overline{0} & 7 u \overline{1} & 6 u \overline{2} & 036 & 9 \overline{0} 0 & \overline{2} 59 & 18 \overline{2} & 012 & 726 \\ 135 & 392 & 16 \overline{1} & \overline{1} 05 & \overline{2} 3 \overline{0} & 07 \overline{2} & 4 \overline{2} 2 & 5 \overline{0} 4 & 694 & 857 & 048 & 9 \overline{1} 8\end{array}$ $\overline{0} 17 \quad \overline{1} 2 \overline{0}$
(iii) $\{c b a: a b c \in(i i)\}$

(ii) $24 u \quad 37 u \quad 16 \frac{u}{2} 5 \frac{u}{2} \quad 8 \overline{1} \frac{u}{2} \quad 9 \overline{0} \frac{u}{2} \quad 480 \quad 78 \overline{0} \quad 9 \overline{2} 8 \quad \overline{0} \overline{1} 6 \quad 459128$ $560 \quad 34 \frac{1}{25} \overline{0} \quad 67 \overline{2} \quad 23 \overline{2} \quad 47 \overline{1} \quad 02 \overline{1} \quad \overline{2} 4 \overline{0} \quad 571 \quad 683 \quad 790 \quad 692$ $03 \overline{0} \quad 01 \overline{2} \quad 9 \overline{1} 1 \quad 35 \overline{1}$
(iii) $\{c b a: a b c \in(i i)\}$
$\mathcal{A}_{0}^{2}=\left(-\mathcal{A}_{0}^{1}\right)^{-1}$.

Let $\mathcal{A}_{x}^{j}=\mathcal{A}_{0}^{j}+x$ for $x \in Z_{13}$ and $j \in Z_{3}$. It is not difficult to check that each $\mathscr{A}_{x}^{j}\left(\right.$ or $\left.\mathcal{A}_{u}\right)$ forms an EDTS (14) on X and they are pairwise disjoint. Therefore, the collection $\left\{\left(X, \mathcal{A}_{x}^{j}\right): x \in Z_{13}, j \in Z_{3}\right\} \bigcup\left\{\left(X, \mathcal{A}_{u}\right)\right\}$ is an $\operatorname{LEDTS}(14)$ desired.

Lemma 4.8. There exists an LEDTS(16).
Proof. We construct an $\operatorname{LEDTS}(16)$ on $X=Z_{15} \cup\{u\}$, where $10,11,12,13$, 14 are written in $\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}$.
$\mathcal{A}_{u}: u и u 0550 u \overline{0} 034068430860(\bmod 15)$.
 $\begin{array}{llllll}3 \overline{1} \overline{1} & \overline{2} \overline{2} u & \overline{3} \overline{2} \overline{3} & 8 \overline{4} \overline{4} & 7 u \overline{2}\end{array}$

(ii) | $1 u 5$ | 3 | $u 9$ | $4 u 6$ | $8 u \overline{1}$ | $\overline{3} u \overline{4}$ | $\overline{0} u 2$ | $56 \overline{4}$ | $34 \overline{3}$ | $29 \overline{2}$ | 452 | 683 | $23 \overline{4}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $01 \overline{4}$ | $\overline{0} \frac{2}{2} 4$ | $\frac{1}{3}$ | 6 | 9 | $\overline{1} 5$ | $02 \overline{3}$ | $47 \overline{4}$ | 0778 | $81 \frac{2}{3}$ | $\overline{3} 19$ | 03 | $\frac{2}{2}$ |
| | $7 \overline{1} 2$ | 04 | | | | | | | | | | |

(iii) $\{c b a: a b c \in(i i)\}$.

(ii) $\frac{3}{4} 4 u \quad 79 u \quad 26 u \quad 5 \overline{1} u \quad \overline{0} \overline{3} u \quad 18 u \quad 0 \overline{2} u \quad \overline{2} 25 \quad 7 \overline{1} \overline{2} \quad 05 \overline{0} \quad 17 \overline{3} \quad 012$ $\begin{array}{llllllllllll}\overline{4} 38 & 07 \overline{4} & 8 \overline{0} \overline{1} & \overline{4} 56 & 68 \overline{2} & 9 \overline{2} 1 & 457 & 239 & 469 & 9 \overline{3} 0 & 37 \overline{0} & 9 \overline{0} \overline{4} \\ 135 & 036 & \overline{2} \overline{3} 3 & \overline{2} \overline{4} 4 & 58 \overline{3} & 278 & 048 & 16 \overline{0} & \overline{1} \overline{4} 1 & 6 \overline{1} \overline{3} & \overline{3} \overline{4} 2 & 24 \overline{0}\end{array}$
(iii) $\{c b a: a b c \in(i i)\}$.

(ii) $21 u \quad 73 u \quad 50 u \quad 49 u \quad \overline{4} 8 u \quad \overline{3} 6 u \quad \overline{2} \overline{0} u \quad 09 \overline{2} \quad 0 \overline{3} \overline{4} \quad 6 \overline{1} 2 \quad 382 \quad 018$ $\begin{array}{llllllllllll}07 \overline{1} & 14 \overline{0} & 8 \overline{2} 7 & \overline{1} 19 & 27 \overline{4} & \overline{0} \overline{3} 8 & 1 \overline{2} \overline{4} & 9 \overline{3} 7 & 716 & 574 & \overline{0} 59 & 3 \overline{3} 1\end{array}$ $\begin{array}{lllllllllll}\frac{2}{1} \overline{4} 0 & 5 & 5 \overline{2} 2 & 39 \overline{4} & \overline{2} 3 \overline{1} & \overline{3} 5 \overline{1} & 6 \overline{0} 3 & 968 & 403 & 6 \overline{4} 5 & 4 \overline{3} 2 \\ \overline{1} 48 & 6 \overline{2} 4\end{array}$
(iii) $\{c b a: a b c \in(i i)\}$.

Let $\mathscr{A}_{x}^{j}=\mathcal{A}_{0}^{j}+x$ for $x \in Z_{15}$ and $j \in Z_{3}$. It is not difficult to check that each \mathcal{A}_{x}^{j} (or \mathcal{A}_{u}) forms an EDTS (16) on X and they are pairwise disjoint. Therefore, the collection $\left\{\left(X, \mathscr{A}_{x}^{j}\right): x \in Z_{15}, j \in Z_{3}\right\} \bigcup\left\{\left(X, \mathcal{A}_{u}\right)\right\}$ is an $\operatorname{LEDTS}(16)$ desired.

Lemma 4.9. There exists an LEDTS(18).
Proof. Construct an $\operatorname{LEDTS}(18)$ on $X=Z_{16} \cup\{u, v\}$, where $10,11,12,13,14$, 15 are written in $\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}$.

$\mathcal{A}_{0}^{0}:$ (i)	$\underline{~} 7$ u	$v \overline{1} v$	$00 \overline{5}$	$11 \overline{0}$	224	313	442	575	$6 \overline{2} 6$	$7 \overline{0} 7$	$88 \overline{3}$	$9 \overline{0}^{9}$
	$\overline{0} \overline{0} 1$	1'1 $\overline{4}$	$\overline{2} \overline{2}$	$\overline{3} \overline{3} 8$	$\overline{4} \overline{4} \overline{1}$	550						
(ii)	45 u	$\overline{0} \overline{2} u$	$\overline{3} 0 u$	$6 \overline{1} u$	39 u	$\overline{4} 2 u$	$18 u$	$\overline{5} u v$	$4 \overline{3} \overline{5}$	$\overline{4} 19$	$\overline{4} \overline{5} \overline{2}$	$58 \overline{5}$
	$68 v$	25 v	$\overline{3} \overline{4} v$	90 v	$\overline{2} 1 v$	$4 \overline{0} v$	$37 v$	$05 \overline{0}$	$3 \overline{0} \overline{3}$	672	012	074
	$23 \overline{5}$	$34 \overline{4}$	$56 \overline{4}$	$\overline{5} 1 \overline{1}$	914	$\overline{1} \overline{3} 5$	$9 \overline{2} 5$	135	036	048	$0 \overline{1} \overline{2}$	$2 \overline{2} \overline{3}$
	З 69	$\overline{4} 8 \overline{0}$	$17 \overline{3}$	579	$2 \overline{0} \overline{1}$	461	892	$\overline{2} 47$	$8 \overline{2} 3$	$56 \overline{0}$	178	
(iii) $\{c b a: a b c \in(i i)\}$												
$\mathcal{A}_{0}^{1}:(\mathrm{i})$	$1 \mathrm{u} u$	0 vv	u00	$v 11$	822	$3 v 3$	484	$5 u 5$	$\overline{3} 66$	$\overline{1} 77$	288	$\overline{4} 99$
	$\overline{0} 6 \overline{0}$	711	$\overline{2} 1 \overline{2}$	$6 \overline{3} \overline{3}$	$9 \overline{4} \overline{4}$	$\overline{5} 5 \overline{5}$	$u 1 v$	$v 8 u$	0 u 8	$8 v 0$		
(ii)	2 u 3	6 u 9	$7 u \overline{2}$	$4 u \overline{1}$	$\overline{0} u \overline{4}$	$\overline{3} u \overline{5}$	$03 \overline{3}$	241	015	$02 \overline{4}$	$04 \overline{2}$	$05 \overline{1}$
	$7 v \overline{0}$	$\overline{3} v 2$	$\overline{1} v \overline{2}$	$4 v 6$	$\overline{4} v 5$	$v 95$	$2 \overline{1} \overline{5}$	$\overline{2} \overline{0}$	473	927	594	$\overline{0} 09$
	$8 \overline{5} 7$	$13 \overline{0}$	$\overline{5} 4$	$\overline{3} 1 \overline{1}$	$\overline{4} 3 \overline{2}$	$\overline{4} 6 \overline{1}$	615	836	$7 \overline{3} 5$	$8 \overline{2} 5$	$5 \overline{0} 2$	$17 \overline{4}$
	$\overline{1} 8 \overline{0}$	$\overline{3} 9 \overline{2}$	$\overline{4} 8 \overline{3}$	$\overline{3} 4 \overline{0}$	706	918	$5 \overline{5} 3$	139	$26 \overline{2}$			
(iii) $\{c b a: a b c \in(i i)\}$												
$\mathcal{A}_{0}^{2}:(\mathrm{i})$	uu7	vv9	200	$1 \overline{4} 1$	022	313	$4 \overline{4} 4$	$55 \overline{1}$	656	77 u	818	$99 v$
	$\overline{0} 5 \overline{0}$	115	$\overline{5} \overline{2}$	$\overline{4} \overline{3} \overline{3}$	$\overline{3} \overline{4}$	$\overline{2} \overline{5}$						
(ii)	u68	u 03	u93	$u \overline{5} 4$	$u \overline{2}$	$u \overline{4} 5$	$u \overline{0} \overline{1}$	1 vu	$06 \overline{1}$	$17 \overline{1}$	$1 \overline{3} \overline{5}$	$0 \overline{0} \overline{3}$
	$v 8 \overline{1}$	$v \overline{0} \overline{2}$	v 34	$v 05$	$v 7 \overline{5}$	$v 6 \overline{3}$	$v \overline{4} 2$	014	489	$0 \overline{4} \overline{5}$	$08 \overline{2}$	259
	$9 \overline{0} 1$	$\overline{1} 5$	$58 \overline{3}$	695	$8 \overline{0} \overline{5}$	行3	126	079	$\overline{3} 2$	$\overline{5} 5$	$6 \overline{2} \overline{4}$	238
	$27 \overline{0}$	$46 \overline{0}$	$39 \overline{2}$	$7 \overline{2} \overline{3}$	$\overline{1} \overline{2}$	45	367	78	$5 \overline{2} 1$	$\overline{4} 9$	$\overline{4} 3 \overline{0}$	

(iii) $\{c b a: a b c \in(i i)\}$

```
\mp@subsup{B}{0}{\prime}: uuv vvu}008%0u6 0v\overline{0
B
```

\mathscr{B}_{2} : (i) иии 19 и $2 \overline{0} u \quad 3 \overline{1} u \quad 4 \overline{2} u \quad 5 \overline{3} u \quad 6 \overline{4} u \quad 7 \overline{5} u \quad u 80$
vuv u9 $\frac{1}{2}$ ū2 u $\overline{1} 3 \quad u \overline{2} 4 \quad u \overline{3} 5$ u $\overline{4} 6 \quad u \overline{5} 7 \quad 08 u$
(ii) $0 v 4 \quad 00 \overline{2} \quad 017 \quad 025 \quad 710 \quad 520 \bmod 16 ;$
\mathscr{B}_{3} : (i) $v v v \quad 91 u \quad \overline{0} 2 u \quad \overline{1} 3 u \quad \overline{2} 4 u \quad \overline{3} 5 u \quad \overline{4} 6 u \quad \overline{5} 7 u \quad u 08$
uvu u19 u2 $\overline{0}$ u3 $\overline{1}$ u4 $\overline{2}$ u5 $\overline{3}$ u6 $\overline{4}$ u7 $\overline{5} \quad 80 u$
(ii) $0 v \overline{2} \quad 004 \quad 067 \quad 035 \quad 530 \quad 760 \quad \bmod 16$.

Let $\mathscr{A}_{x}^{j}=\mathcal{A}_{0}^{j}+x$ for $x \in Z_{16}$ and $j \in Z_{3}$. It is not difficult to check that each \mathcal{A}_{x}^{j} or each $\mathscr{B}_{k}\left(k \in Z_{4}\right)$ is the block set of an $\operatorname{EDTS}(18)$ on X and they are pairwise disjoint. Therefore, the collection $\left\{\left(X, \mathcal{A}_{x}^{j}\right): x \in Z_{16}, j \in Z_{3}\right\} \bigcup\left\{\left(X, \mathscr{B}_{k}\right): k \in Z_{4}\right\}$ is an LEDTS(18) desired.

5. Existence of $\operatorname{LEDTS}(6 t+2)$

Lemma 5.1 ([10]). There exist a $\operatorname{PDGDD}\left(3^{3}: 2\right)$ and a $\operatorname{PDGDD(3^{5}:2).}$
Lemma 5.2. There exists a $\operatorname{PECS}^{*}\left(3^{3}: 0\right)$.
Proof. Let g be the primitive element of the field F_{9}, and $g^{2}=1+2 g$. We will construct a $\operatorname{PECS} S^{*}\left(3^{3}: 0\right)$, which consists of
(1) $27 E D G D D\left(2^{1} 1^{6}\right) s$, denoted by $\mathcal{A}_{x}^{j}, x \in F_{9}, j \in Z_{3}$, where $\mathcal{A}_{x}^{j}=\mathcal{A}_{0}^{j}+x$;
(2) $4 D G D D\left(3^{3}\right) s$, denoted by $\mathcal{B}_{k}, k \in I_{4}$.

Now, construct these \mathcal{A}_{0}^{j} and \mathscr{B}_{k} as follows.
(1) For each \mathcal{A}_{0}^{j}, the point set is $F_{9} \backslash\{0\}$, the long group is $G_{0}=\left\{g, g^{5}\right\}$, and the blocks are listed as follows, where the point g^{a} is briefly denoted by its index a.

$$
\begin{array}{llllllllllll}
\mathcal{A}_{0}^{0}: & 050 & 252 & 353 & 454 & 656 & 757 & 076 & 210 & 136 & 670 & 012 \\
& 631 & 403 & 732 & 642 & 304 & 237 & 246 & 147 & 741 & & \\
\mathcal{A}_{0}^{1}: & 003 & 422 & 733 & 440 & 266 & 776 & 146 & 613 & 341 & 712 & 307 \\
& 435 & 362 & 201 & 064 & 025 & 247 & 170 & 523 & 560 & 754 & 657 \\
\mathcal{A}_{0}^{2}=\left(\mathcal{A}_{0}^{1}\right)^{-1} .
\end{array}
$$

Clearly, each \mathcal{A}_{x}^{j} will be on $F_{9} \backslash\{x\}$ with the long group $G_{0}+x, x \in F_{9}$.
(2) For each \mathscr{B}_{k}, the point set is F_{9}, the group set is $\left\{\left\{x, x+g, x+g^{5}\right\}: x=0,1, g^{3}\right\}$, and the blocks are listed as follows.

$$
\begin{array}{ll}
\mathcal{B}_{1}=\left\{\left(0,1, g^{3}\right)+i,\left(0, g^{4}, g^{7}\right)+i, i \in F_{9}\right\} ; & \mathscr{B}_{2}=\left\{\left(0,1, g^{6}\right)+i,\left(0, g^{3}, g^{2}\right)+i, i \in F_{9}\right\} ; \\
\mathscr{B}_{3}=\left\{\left(0, g^{2}, g^{3}\right)+i,\left(0, g^{6}, g^{7}\right)+i, i \in F_{9}\right\} ; & \mathscr{B}_{4}=\left\{\left(0, g^{7}, g^{6}\right)+i,\left(0, g^{4}, g^{2}\right)+i, i \in F_{9}\right\} .
\end{array}
$$

It is not difficult to verify that each \mathcal{A}_{0}^{j} forms an $\operatorname{EDGDD}\left(2^{1} 1^{6}\right)$ on $F_{9} \backslash\{0\}$, each \mathcal{B}_{k} forms a $\operatorname{DGDD}\left(3^{3}\right)$ on F_{9}, and all \mathcal{A}_{x}^{j} and $\mathcal{B}_{k}\left(x \in F_{9}, j \in Z_{3}, k \in I_{4}\right)$ are mutually disjoint. Therefore, these designs form the desired $\operatorname{PECS}^{*}\left(3^{3}: 0\right)$ indeed.

Lemma 5.3. There exists a $\operatorname{PECS}^{*}\left(3^{5}: 0\right)$.
Proof. Take Z_{15} as the points. We will construct a $\operatorname{PECS} S^{*}\left(3^{5}: 0\right)$, which consists of
(1) $45 E D G D D\left(2^{1} 1^{12}\right) s$, denoted by $\mathcal{A}_{x}^{j}, x \in Z_{15}, j \in Z_{3}$, where $\mathcal{A}_{x}^{j}=\mathcal{A}_{0}^{j}+x$;
(2) $4 D G D D\left(3^{5}\right) s$, denoted by $\mathscr{B}_{k}, k \in I_{4}$.

Now, construct these \mathcal{A}_{0}^{j} and $\mathscr{B}_{k}\left(j \in Z_{3}, k \in I_{4}\right)$ as follows.
(1) Each \mathcal{A}_{0}^{j} is on $Z_{15} \backslash\{0\}$ with the long group $G_{0}=\{5,10\}$. The blocks in \mathcal{A}_{0}^{0} and \mathcal{A}_{0}^{1} are listed as follows, where $10,11,12,13,14$ are written in $\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}$. And, $\mathcal{A}_{0}^{2}=\left(-\mathcal{A}_{0}^{1}\right)^{-1}$.

	$1 \overline{2} 1$	$2 \overline{4} 2$	$3 \overline{2} 3$	454	$6 \overline{4} 6$	75	8 1	$9 \overline{3}$	$\overline{1} \overline{3} \overline{1}$	$\overline{2} \overline{1}$	$\overline{3} \overline{3}$	$\overline{4} 5$	
(ii)	123	246	147	159	$5 \overline{1} 2$	$\overline{2} \overline{3} 2$	$4 \overline{1} 3$	$\overline{0} 1$	1 $\overline{4} 7$	378	168	439	
	691	$\overline{3} \overline{1}$	348	$\overline{2} 4$	$\overline{0} \overline{3}$	5	28	$67 \overline{3}$	$\overline{5} 8$	$27 \overline{0}$	¢ $\overline{4}$	$79 \overline{2}$	

(iii) $\{c b a: a b c \in(i i)\}$

Clearly, each \mathcal{A}_{x}^{j} will be on $Z_{15} \backslash\{x\}$ with the long group $G_{0}+x, x \in Z_{15}$.
(2) For each \mathcal{B}_{k}, the point set is Z_{15}, the group set is $\{\{x, x+5, x+10\}: 0 \leq x \leq 4\}$, and the blocks are listed as follows.

$$
\begin{array}{llllllllllll}
\mathcal{B}_{1}: & 037 & 01 \overline{3} & 06 \overline{4} & 02 \overline{1} & (\bmod 15) ; & \mathscr{B}_{2}: & 047 & 0 \overline{2} \overline{3} & 08 \overline{4} & 09 \overline{1} & (\bmod 15) ; \\
\mathcal{B}_{3}: & 032 & 071 & 064 & 0 \overline{1} 8 & (\bmod 15) ; & \mathscr{B}_{4}: & 091 & 0 \overline{4} 2 & 0 \overline{3} 4 & 0 \overline{2} 8 & (\bmod 15) .
\end{array}
$$

It is not difficult to verify that each \mathcal{A}_{0}^{j} forms an $\operatorname{EDGDD}\left(2^{1} 1^{12}\right)$ on $Z_{15} \backslash\{0\}$, each \mathcal{B}_{k} forms a $\operatorname{DGDD}\left(3^{5}\right)$ on Z_{15}, and all \mathscr{A}_{x}^{j} and $\mathscr{B}_{k}\left(x \in Z_{15}, j \in Z_{3}, k \in I_{4}\right)$ are mutually disjoint. Therefore, these designs form the desired $\operatorname{PECS} S^{*}\left(3^{3}: 0\right)$ indeed.

Lemma 5.4. There exists a $\operatorname{PECS}\left(6^{k}: 2\right)$ for any integer $k \geq 3$.
Proof. From [6], for $k \geq 3$, there exists a $2-\operatorname{FG}\left(3,(\{3,5\},\{3,5\},\{4,6\}), 2^{k}\right)$. Furthermore, taking $m=3, g=2, r=0, s=2$ and using Theorem 2.3 , since
$\exists \operatorname{PECS}^{*}\left(3^{k}: 0\right)$ for $k \in\{3,5\}$ by Lemmas 5.2 and 5.3,
$\exists \operatorname{PDGDD}\left(3^{k}: 2\right)$ for $k \in\{3,5\}$ by Lemma 5.1,
$\exists D F\left(3^{k}\right)$ for $k \in\{4,6\}$ by Lemma 1.1,
we can get a $\operatorname{PECS}\left(6^{k}: 2\right)$.
Theorem 5.1. There exists an $\operatorname{LEDTS}(6 k+2)$ for any integer $k \geq 0$.
Proof. For $k=0,1,2$, there exists an $\operatorname{LEDTS}(6 k+2)$ by Lemmas 4.2, 4.3 and 4.7. For $k \geq 3$, there exist a $\operatorname{PECS}\left(6^{k}: 2\right)$, an $\operatorname{LEDTS}(8,2)$ and an $\operatorname{LEDTS}(8)$ by Lemmas 4.3 and 5.4. Therefore, there exists an $\operatorname{LEDTS}(6 k+2)$ by Theorem 2.1.

6. Existence of LEDTS ($6 \boldsymbol{t}+\mathbf{4}$)

Lemma 6.1. There exists a $\operatorname{PECS}\left(3^{3}: 1\right)$.
Proof. Let g be the primitive element of the field F_{9}, and $g^{2}=1+2 g$. Take $u \notin F_{9}$. We will construct a $\operatorname{PECS}\left(3^{3}: 1\right.$), which consists of
(1) $27 \operatorname{EDGDD}\left(4^{1} 1^{6}\right) s$, denoted by $\mathcal{A}_{x}^{j}, x \in F_{9}, j \in Z_{3}$, where $\mathcal{A}_{x}^{j}=\mathcal{A}_{0}^{j}+x$;
(2) one $\operatorname{DGDD}\left(3^{3}\right)$, denoted by \mathcal{B}.

Now, give the constructions for these \mathcal{A}_{0}^{j} and \mathcal{B}_{k} as follows.
(1) For each \mathcal{A}_{0}^{j}, the point set is $F_{9} \cup\{u\}$, the long group is $G_{0}=\left\{0, g, g^{5}, u\right\}$, and the blocks are listed as follows, where the point g^{a} is briefly denoted by its index a and the point 0 is denoted 8 , but the point u is kept.

| $\mathcal{A}_{0}^{0}: ~$ | 080 | 282 | 313 | 414 | 616 | 787 | $0 u 6$ | $2 u 3$ | $3 u 2$ | $4 u 7$ | $6 u 0$ | $7 u 4$ |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 834 | 736 | 638 | 564 | 024 | 267 | 357 | 425 | 530 | 652 | 017 | 120 |
| | 705 | 403 | 721 | 486 | | | | | | | | |
| $\mathcal{A}_{0}^{1}:$ | 003 | 224 | 330 | 442 | 667 | 776 | $u 60$ | $u 23$ | $u 74$ | $06 u$ | $32 u$ | $47 u$ |
| | 804 | 826 | 837 | 408 | 628 | 738 | 461 | 057 | 163 | 435 | 271 | 654 |

Clearly, each \mathcal{A}_{x}^{j} will be on $F_{9} \cup\{u\}$ with the long group $G_{0}+x, x \in F_{9}$. Obviously, $G_{0}+0=G_{0}+g=G_{0}+g^{5}, G_{0}+1=$ $G_{0}+g^{2}=G_{0}+g^{7}$ and $G_{0}+g^{3}=G_{0}+g^{4}=G_{0}+g^{6}$.
(2) For \mathscr{B}, the point set is F_{9}, the group set is $\left\{\left\{x, x+g, x+g^{5}\right\}: x=0,1, g^{3}\right\}$, and the blocks are

$$
\mathcal{B}=\left\{\left(0, g^{7}, g^{4}\right)+i,\left(0, g^{3}, 1\right)+i: i \in F_{9}\right\} .
$$

It is not difficult to verify that each \mathcal{A}_{0}^{j} forms an $\operatorname{EDGDD}\left(4^{1} 1^{6}\right)$ on $F_{9} \cup\{u\}$, the \mathcal{B} forms a $\operatorname{DGDD}\left(3^{3}\right)$ on F_{9}, and all \mathscr{A}_{x}^{j} and \mathcal{B} $\left(x \in F_{9}, j \in Z_{3}\right)$ are mutually disjoint. Therefore, these designs form the desired $\operatorname{PECS}\left(3^{3}: 1\right)$ indeed.

Lemma 6.2. There exists a $\operatorname{PECS}\left(3^{5}: 1\right)$.
Proof. Take $Z_{15} \cup\{u\}$ as the points, where $u \notin Z_{15}$. Denote $G_{0}=\{0,5,10\}$ and $G_{x}=G_{0}+x, 0 \leq x \leq 4$. We will construct a $\operatorname{PECS}\left(3^{5}: 1\right)$, which consists of
(1) $45 \operatorname{EDGDD}\left(4^{1} 1^{12}\right) s$, denoted by $\mathcal{A}_{x}^{j}, x \in Z_{15}, j \in Z_{3}$, where $\mathcal{A}_{x}^{j}=\mathcal{A}_{0}^{j}+x$;
(2) one $\operatorname{DGDD}\left(3^{5}\right)$, denoted by \mathcal{B}.

Now, construct these $\mathscr{A}_{0}^{j}\left(j \in Z_{3}\right)$ and \mathscr{B} as follows.
(1) Each \mathcal{A}_{0}^{j} is on $Z_{15} \cup\{u\}$ with the long group $G_{0} \cup\{u\}$, and the blocks are listed as follows, where 10, 11, 12, 13, 14 are written in $\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}$.

\mathcal{A}_{0}^{0} : (i)	141	242	$3 \overline{0} 3$	$4 \overline{3} 4$	$6 \overline{4} 6$	$7 \overline{1} 7$	$8 \overline{4} 8$	$9 \overline{0} 9$	$\overline{1} 8 \overline{1}$	$\overline{2} 8 \overline{2}$	उ行	$\overline{4} \overline{3} \overline{4}$
(ii)	$6 u 9$	$\overline{2} u \overline{3}$	$3{ }^{4} 7$	$2 u 8$	$\overline{4} u 1$	$4 u \overline{1}$	$\overline{3} 2$	$\overline{3} 09$	$\overline{2} \overline{4} 5$	$\overline{0} 12$	389	257
	168	792	911	$58 \overline{3}$	$\overline{1} 2$	$\overline{1} \overline{4} 3$	$1 \overline{0} \overline{2}$	$4 \overline{0} \overline{4}$	467	$6 \overline{0} \overline{3}$	048	$9 \overline{4} 2$
	$78 \overline{0}$	$26 \overline{2}$	459	$\overline{2} 34$	012	135	036	$17 \overline{3}$	$07 \overline{4}$	$56 \overline{1}$		
(iii) $\{c b a: a b c \in(\mathrm{ii})\}$	$\{c b a: a b c \in(i i)\}$											
$\begin{array}{r} \mathcal{A}_{0}^{1}:(\mathrm{i}) \\ \quad(\mathrm{ii}) \end{array}$	117	229	$33 \overline{4}$	446	664	771	$88 \overline{1}$	992	¢1 $\overline{1} 8$	$\overline{2} \overline{2} \overline{3}$	$\overline{3} \overline{3} \overline{2}$	$\overline{4} \overline{4} 3$
	$91 u$	$\overline{4} 2 u$	37 u	$\overline{3} 4 u$	68 u	$\overline{1} \overline{2} u$	$04 \overline{1}$	$\overline{3} \overline{4} 8$	$\overline{1} \overline{4} \overline{0}$	894	381	$\overline{1} 27$
	$6 \overline{1} 3$	$24 \overline{2}$	$7 \overline{2} 6$	$\overline{2} \overline{4} 9$	$56 \overline{4}$	352	$47 \overline{4}$	$9 \overline{3} 3$	$4 \overline{0} 3$	$\overline{1} 9$	451	$7 \overline{3} 5$
	$8 \overline{2} 5$	$\overline{3} 1$	$8 \overline{0} 2$	$9 \overline{0} 7$	$\overline{0} \overline{1}$	$\overline{0} \overline{3}$	069	078	261	$01 \overline{4}$	$02 \overline{3}$	$03 \overline{2}$
(iii) $\{c b a: a b c \in(i i)\}$	$\{c b a: a b c \in(i i)\}$											
$\mathcal{A}_{0}^{2}:(\mathrm{i})$	711	922	$\overline{4} 33$	644	466	177	$\overline{1} 88$	299	8 $\overline{1} \overline{1}$	$\overline{3} \overline{2}$	2 $\overline{3} \overline{3}$	$3 \overline{4} \overline{4}$
	$19 u$	$2 \overline{4} u$	73 u	$4 \overline{3} u$	864	$\overline{2} \overline{1} u$	$\overline{4} 8 \overline{3}$	$\overline{4} 9 \overline{2}$	813	948	O 79	$\overline{3} 6 \overline{0}$
	$\overline{1} 36$	$27 \overline{1}$	$4 \overline{1} 0$	$4 \overline{2} 2$	$1 \overline{1} \overline{3}$	$\overline{4} \overline{0} \overline{1}$	523	612	$7 \overline{4} 4$	$\overline{3} 9$	$\overline{0} 34$	$6 \overline{4} 5$
	591	$\overline{2} 10$	$\overline{2} 8$	$\overline{0} 28$	$\overline{3} 57$	514	690	780	$1 \overline{4} 0$	$2 \overline{3} 0$	$3 \overline{2} 0$	$\overline{2} 67$
(iii)	$\{c b a: a b c \in(\mathrm{ii)}\}$.											

Clearly, each \mathcal{A}_{x}^{j} will be on $Z_{15} \cup\{u\}$ with the long group $G_{\bar{x}}, 0 \leq \bar{x} \leq 4, x \equiv \bar{x} \bmod 5$.
(2) For \mathcal{B}, the point set is Z_{15}, the group set is $\left\{G_{0}, G_{1}, G_{2}, G_{3}, G_{4}\right\}$, and the blocks are
$\mathcal{B}=\{(0,3,4),(4,3,0),(0,6,8),(8,6,0) \bmod 15\}$.
It is not difficult to verify that each \mathcal{A}_{0}^{j} forms an $\operatorname{EDGDD}\left(4^{1} 1^{12}\right)$ on $Z_{15} \cup\{u\}$, the \mathcal{B} forms a $\operatorname{DGDD}\left(3^{3}\right)$ on Z_{15}, and all \mathcal{A}_{x}^{j} and $\mathcal{B}\left(x \in Z_{15}, j \in Z_{3}\right)$ are mutually disjoint. Therefore, these designs form the desired $\operatorname{PECS}\left(3^{5}: 1\right)$ indeed.

Lemma 6.3. There exists a $\operatorname{PECS}\left(6^{k}: 4\right)$ for any integer $k \geq 3$.
Proof. From [6], for $k \geq 3$, there exists a $2-F G\left(3,(\{3,5\},\{3,5\},\{4,6\}), 2^{k}\right)$. Furthermore, taking $m=3, g=2, r=1$ and using Theorem 2.2 , since
$\exists \operatorname{PECS}\left(3^{k}: 1\right)$ for $k \in\{3,5\}$ by Lemmas 6.1 and 6.2,
$\exists D F\left(3^{k+1}\right)$ for $k \in\{3,5\}$ and $\exists D F\left(3^{k}\right)$ for $k \in\{4,6\}$ by Lemma 1.1,
we can get a $\operatorname{PECS}\left(6^{k}: 4\right)$.
Theorem 6.1. There exists an $\operatorname{LEDTS}(6 k+4)$ if and only if $k \geq 1$.
Proof. For $k=0$, there does not exist $\operatorname{LEDTS}(4)$ by Lemma 4.1. For $k=1,2$, there exists an $\operatorname{LEDTS}(6 k+4)$ by Lemmas 4.4 and 4.8. For $k \geq 3$, there exist $\operatorname{PECS}\left(6^{k}: 4\right)$, $\operatorname{LEDTS}(10,4)$ and $\operatorname{LEDTS}(14)$ by Lemmas $4.5,4.7$ and 6.3 . Then, there exists an LEDTS $(6 k+4)$ by Theorem 2.1.

7. Existence of LEDTS (6t)

Theorem 7.1. There exists an $\operatorname{LEDTS}(6 k)$ for any integer $k \geq 1$.
Proof. Let $6 k=3^{t} m$, where $t \geq 1, m \equiv 2,4 \bmod 6$. By Theorems 5.1 and 6.1 , there exists an LEDTS (m) for any integer $m \geq 2$ and $m \neq 4$. Using Theorem 2.4 , we can get an $\operatorname{LEDTS}\left(3^{t} m\right)$ for $(t, m) \neq(1,2),(1,4),(2,2)$. However, from Lemmas 4.2, 4.6 and 4.9 , we can get

$$
\operatorname{LEDTS}\left(3^{1} \cdot 2\right)=\operatorname{LEDTS}(6), \quad \operatorname{LEDTS}\left(3^{1} \cdot 4\right)=\operatorname{LEDTS}(12) \quad \text { and } \quad \operatorname{LEDTS}\left(3^{2} \cdot 2\right)=\operatorname{LEDTS}(18) .
$$

So, there exists an $\operatorname{LEDTS}(6 k)$ for any integer $k \geq 1$.

8. Conclusion

Theorem 8.1. There exists an LEDTS (v) for any even v except $v=4$.
Proof. We can get the conclusion by Theorems 5.1, 6.1 and 7.1 and Lemma 4.1.

References

[1] F.E. Bennett, Extended cyclic triple systems, Discrete Math. 24 (1978) 139-146.
[2] F.E. Bennett, N.S. Mendelsohn, On the existence of extended triple systems, Util. Math. 14 (1978) 249-267.
[3] Wen-Chung Huang, Extended directed triple systems, Discrete Math. 306 (2006) 1351-1357.
[4] Yong-Hyeon Han, Extended directed triple systems with a given automorphism, Commun. Korean Math. Soc. 19 (2) (2004) 355-373.
[5] D.M. Johnson, N.S. Mendelson, Extended triple systems, Aequationes Math. 8 (1972) 291-198.
[6] L. Ji, A new existence proof for large sets of disjoint Steiner triple systems, J. Combin. Theory Ser. A 112 (2005) 308-327.
[7] H. Mohácsy, D. Ray-Chaudhuri, Candelabra systems and designs, J. Statist. Plann. Inference 106 (2002) 419-448.
[8] Z. Tian, L. Ji, The spectrum for overlarge sets of directed triple systems, Sci. China Ser. A 50 (2007) 1369-1381.
[9] X. Wang, The Structure of Large Sets of Disjoint Extended ordered triple, Dissertation for Master degree, Hebei Normal University, 2003.
[10] J. Zhou, Y. Chang, L. Ji, The spectrum for large sets of pure directed triple systems, Sci. China Ser. A 49 (2006) 1103-1127.

[^0]: ${ }^{\text {*T }}$ Research supported by NSFC Grant 10671055 and NSFHB A2007000230.

 * Corresponding author.

 E-mail address: qdkang@heinfo.net (Q. Kang).

