
Discrete Mathematics 309 (2009) 6515–6529

Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Large sets of extended directed triple systems with even ordersI

Yuanyuan Liu, Qingde Kang ∗
Institute of Mathematics, Hebei Normal University, Shijiazhuang 050016, PR China

a r t i c l e i n f o

Article history:
Received 6 October 2008
Received in revised form 19 June 2009
Accepted 23 June 2009
Available online 10 July 2009

Keywords:
Extended triple
Extended triple system
Large set

a b s t r a c t

For three types of triples: unordered, cyclic and transitive, the corresponding extended
triple, extended triple system and their large sets are introduced. The existence of LESTS(υ)
and LEMTS(υ) were completely solved. In this paper, we shall discuss the existence
problem of LEDTS(υ) and give the following conclusion: there exists an LEDTS(υ) for any
even υ except υ = 4. The existence of LEDTS(υ) with odd order υ will be discussed in
another paper, we are working at it.
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1. Introduction

Let x, y, z be distinct elements in a finite set X . A triple {x, y, z} (or cyclic triple 〈x, y, z〉, or transitive triple (x, y, z)) on X is a
set of three unordered pairs {x, y}, {y, z}, {z, x} (or ordered pairs (x, y), (y, z), (z, x), or ordered pairs (x, y), (y, z), (x, z)) of
X . For these (classical) triples, the elements in each pair and triple must be distinct. When this restriction is broken, we have
the so-called extended unordered pair (or ordered pair) and extended triple (or extended cyclic triple, or extended transitive
triple), which were firstly introduced by Johnson and Mendelsohn in 1972, see [5].
An extended Steiner (or Mendelsohn, or directed) triple system ESTS(v) (or EMTS(v), or EDTS(v)) is a pair (X,A), where

X is a v-set andA is a collection of extended triples (or cyclic triples, or transitive triples) on X , called blocks, such that every
extended unordered (or ordered) pair of X belongs to exactly one block ofA. A large set of ESTS(v) (or EMTS(v), or EDTS(v)),
denoted by LESTS(v) (or LEMTS(v), or LEDTS(v)), is a collection {(X,Ak)}k, where X is a v-set, each (X,Ak) is an ESTS(v) (or
EMTS(v), or EDTS(v)) and theseAk form a partition of all extended triples (or cyclic triples, or transitive triples) on X . The
types of extended triples (or cyclic triples, or transitive triples) and the extended pairs contained in them are listed in the
following table.

System Forms of triple Pairs covered by
triple

Number of triples in a
v-set

Number of systems in a
large set

S1 : {x, x, x} {x, x} v
ESTS S2 : {x, x, y} {x, x}, {x, y} v(v − 1) v

S3 : {x, y, z} {x, y}, {y, z}, {z, x} v(v − 1)(v − 2)/6

M1 : 〈x, x, x〉 (x, x) v
EMTS M2 : 〈x, x, y〉 (x, y), (y, x), (x, x) v(v − 1) v

M3 : 〈x, y, z〉 (x, y), (y, z), (z, x) v(v − 1)(v − 2)/3

(continued on next page)
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System Forms of triple Pairs covered by
triple

Number of triples in a
v-set

Number of systems in a
large set

D1 : (x, x, x) (x, x) v
D2 : (x, x, y) (x, x), (x, y) v(v − 1)

EDTS D3 : (x, y, y) (x, y), (y, y) v(v − 1) 3v − 2
D4 : (x, y, x) (x, y), (y, x), (x, x) v(v − 1)
D5 : (x, y, z) (x, y), (y, z), (x, z) v(v − 1)(v − 2)

The existence problem of extended Steiner triple system and extended Mendelsohn triple system have been solved in
[1,2,5]. The existence problem of extended directed triple system with some additional conditions has also been discussed
in [3,4]. In this paper, we will discuss the existence problems for the large sets of ESTS, EMTS and EDTS. For the last designs,
i.e., LEDTS(v), our conclusion is: there exists an LEDTS(v) for any even v except v = 4. The existence of LEDTS(v) with odd
order v will be discussed in another paper, we are working at it.

Theorem 1.1. There exists an LESTS(v) for any integer v ≥ 1.

Proof. For v ≡ 1, 2 mod 3, the collection {(Zv,Ax) : x ∈ Zv} forms an LESTS(v), where

A0 = {{i, j, k} : i+ j+ k ≡ 0 mod v}, Ax = A0 + x, x ∈ Zv.

For v ≡ 0 mod 3, the collection {(Zv,As,x) : x ∈ Zv/3, 0 ≤ s ≤ 2} forms an LESTS(v), where

As,0 = {{i, j, k} : i+ j+ k ≡ s mod v}, 0 ≤ s ≤ 2,

As,x = {B + x : B ∈ As,0}, where (i, j, k) + x = (i + x, j + x, k + x) for i, j, k ∈ Zv , the addition is taken modulo v,
x ∈ Zv/3, 0 ≤ s ≤ 2. �

In [9], Wang gave the existence spectrum for LEMTS(v). Here, we give a simpler proof.

Theorem 1.2. There exists an LEMTS(v) for any integer v ≥ 1.

Proof. Let {(Zv,Ax) : x ∈ Zv} be an LESTS(v). Replace each (S3 type’s) extended triple {x, y, z} inAx by (M3 type’s) extended
cyclic triples 〈x, y, z〉 and 〈z, y, x〉. As well, by replacing each (S1 and S2 type’s) extended triples {x, x, x} and {x, x, y} by
(M1 and M2 type’s) extended cyclic triples 〈x, x, x〉 and 〈x, x, y〉, the triple system {(Zv,Ax) : x ∈ Zv} will become an
LEMTS(v). �

In this paper, we shall focus on the existence of LEDTS(v)with even orders v. Let k, g, n be positive integers. A k-GDD(gn)
is a triple (V,G,B), where V is a gn-set, G is a partition of V , which consists of n subsets (called groups) with size g , and
B is a family of some subsets (called blocks) of V such that if B ∈ B, then |B| = k and every pair of distinct elements of V
occurs in exactly one block or one group but not both.
Let K be a set of positive integers, t, v, g1, . . . , gr , n1, . . . , nr be positive integers, s be a non-negative integer and∑r
i=1 nigi = v − s. A candelabra t-system (t, K)-CS(v : s) or (t, K)-CS(g

n1
1 g

n2
2 · · · g

nr
r : s), see [7], is a quadruple (X, S,G,A)

that satisfying the following conditions:

(1) X is a v-set (called points), S is its s-subset (called a stem);
(2) G is a partition of X \ S, which consists of ni subsets with size gi (called groups);
(3) A is a family of some subsets of X , each member (called block) has the size from K ;
(4) Every t-subset T of X is contained in exactly one block if |T ∩ (S ∪ G)| < t, ∀G ∈ G, or in no block if T ⊆ S ∪ G for some
G ∈ G.

Especially, a (t, K)-CS(1v : 0) is just a t-wise balanced design S(t, K , v), briefly denoted by t-BD, and a (t, k)-CS(1v : 0) is
just a t-design S(t, k, v).
F(3, 3, gn) is a triple (X,G,A) where X is a gn-set of points, G is a collection of n non-empty subsets (called groups) of

size g of X which partition X , A is a collection of all triples satisfying each triple intersects any given group in at most one
point andA can be partitioned into gnAx, x ∈ G ∈ G such that each (X \ G,G \ {G},Ax) is a 3-GDD(gn−1).
Let v be a positive integer, X be a v-set, G be a partition of X , and K1, . . . , Ks, KT be sets of positive integers. Suppose

that B1, . . . ,Bs and T are collections of some subsets of X with size from K1, . . . , Ks and KT respectively. An s-fan design
s-FG(3, (K1, K2, . . . , KT ), v) is an (s+ 3)-tuple (X,G,B1,B2, . . . ,Bs, T ), where (X,G) is a 1-BD, (X,G ∪Bi) is a 2-BD for
each 1 ≤ i ≤ s, and (X,G ∪ (∪si=1Bi) ∪ T ) is a 3-BD.
Below, In is an n-set, Zn is a residual ringmodule n and Fq is a finite field of order q. Denote Z∗n = Zn \{0} and F

∗
q = Fq \{0}.

Denote extended transitive triple by (a, b, c) or abc. For a family of extended transitive triplesA on Zn (or Fq) and x,m ∈ Zn
(or Fq), denote

A+ x = {(a+ x, b+ x, c + x) : (a, b, c) ∈ A}, mA = {(ma,mb,mc) : (a, b, c) ∈ A},

−A = {(−a,−b,−c) : (a, b, c) ∈ A} and A−1 = {(c, b, a) : (a, b, c) ∈ A}.
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Definition 1.1. For positive integers ni and gi, 1 ≤ i ≤ r , a directed group divisible triple system DGDD(g
n1
1 · · · g

nr
r ) is a trio

(X,G,A) satisfying the following conditions:
(1) X is a set containing

∑r
i=1 nigi points;

(2) G is a partition of X , which consists of ni subsets of size gi (called groups);
(3) A is a family of some transitive triples of X (called blocks) such that |A ∩ G| ≤ 1, ∀A ∈ A, G ∈ G;
(4) Each ordered pair on X from distinct (or same) groups is contained in exactly one (or no) block.

Definition 1.2. For positive integers n, g, s and s ≥ 2, a PDGDD(gn : s) is a trio (X,G,A) satisfying the following conditions:
(1) X is a set containing ng + s points;
(2) G = {G0,G1, . . . ,Gn} forms a partition of X , where Gi = {ai,j : j ∈ Ig} is called group, i ∈ Zn. |G0| = s and other |Gi| = g;
(3) A consists of all transitive triples on X , intersecting each group in at most one points. And, A can be partitioned into
{Bri,j : i ∈ In, j ∈ Ig , r ∈ I3} ∪ {Ck : 1 ≤ k ≤ 3(s − 2)}, where eachBri,j forms a DGDD(g

n−1(s + 1)1) on X \ (Gi \ {ai,j})
with the group set (G \ {G0,Gi}) ∪ {G0 ∪ {ai,j}}, and each Ck forms a DGDD(gn) on X \ G0 with the group set G \ {G0}.

Definition 1.3. For positive integers n, g and s, an EDGDD(gns1) (extended directed group divisible triple system) is a trio
(X,G,A) satisfying the following conditions:
(1) X is a set containing ng + s points;
(2) G = {G0,G1, . . . ,Gn} forms a partition of X , where Gi (i ∈ Zn) is called group. |G0| = s and other |Gi| = g;
(3) A is a family of extended transitive triples of X (called blocks) such that A 6⊆ G ∪ S for any A ∈ A and G ∈ G;
(4) Each ordered 2-subset (x, y) of X is contained in exactly one (or no) block ofA if x, y in distinct (or same) groups;
(5) Each pair (x, x) is contained in exactly one (or no) block ofA if x 6∈ G0 (or x ∈ G0).
Especially, an EDGDD(1n−ss1) = (X,G,A) is named as EDTS(n, s) = (X, Y ,A), where the long group G0 = Y with size s is
called hole.

Definition 1.4. For positive integers w < v, let X be a v-set, Y be its w-subset. An LEDTS(v,w) is a collection {(X, Y ,Ai) :
1 ≤ i ≤ 3v−2} such that all extended transitive triples from X , not belonging to Y , are partitioned intoAi, 1 ≤ i ≤ 3v−2,
where each (X, Y ,Ai) is an EDTS(v,w) for 1 ≤ i ≤ 3w − 2 or an EDTS(v) for 3w − 1 ≤ i ≤ 3v − 2. Obviously,
LEDTS(v,w) ∪ LEDTS(w) = LEDTS(v).

Definition 1.5. For positive integers n, g and s, a PECS(gn : s) is a quadruple (X, S,G,A) satisfying the following conditions:
(1) X is an (ng + s)-set, S is its s-subset (called stem);
(2) G = {G1, . . . ,Gn} partition X \ S, where each Gi is a g-subset;
(3) A consists of all extended transitive triples from X , not belonging S ∪ G, ∀G ∈ G. A can be partitioned into {Bri,j : i ∈
In, j ∈ Ig , r ∈ I3} ∪ {Ck : 1 ≤ k ≤ 3s − 2}, where each Bri,j forms an EDGDD(1

g(n−1)(g + s)1) on X with the long group
Gi ∪ S, each Ck forms a DGDD(gn) on X \ S with the groups G.

Definition 1.6. For positive integers n, g and non-negative integer s, a PECS∗(gn : s) is a quadruple (X, S,G,A) satisfying
the following conditions:
(1) X is an (ng + s)-set, S is its s-subset (called stem);
(2) G = {G1, . . . ,Gn} partition X \ S, where each Gi = {ai,j : j ∈ Ig} is a g-subset, i ∈ In;
(3) A consists of all transitive directed triples (called blocks), not belonging S ∪ G, ∀G ∈ G. A can be partitioned into
{Bri,j : i ∈ In, j ∈ Ig , r ∈ I3} ∪ {Ck : 1 ≤ k ≤ 3s+ 4}, where eachBri,j forms an EDGDD(1

g(n−1)(g + s− 1)1) on X \ {ai,j}
with the long group (Gi ∪ S) \ {ai,j}, and each Ck forms a DGDD(gn) on X \ S with the groups G.

Definition 1.7. For positive integers n and g , a DF(gn) is a trio (X,G,A) where X is a gn-set of points, G is a partition of X
into n subsets (called groups) with size g ,A is a collection of all transitive triples intersecting any given group in at most one
point, andA can be partitioned into 3gnA

j
x such that each (X \G,G \ {G},A

j
x) is a DGDD(gn−1), where x ∈ G ∈ G and j ∈ I3.

Lemma 1.1. There exists a DF(gn) for positive integers g, n satisfying the following conditions:

(1) n ≡ 1, 2 mod 3; (2) 6|n and 3|g; (3) n ≡ 3 mod 6, n > 3 and 6|g.

Proof. By [8], there exists an OLDTS(n) if and only if n ≡ 0, 1 mod 3, and if there exists an OLDTS(n) then there exists a
DF(gn+1). So we can get the conclusion (1).
From [6], there exists an F(3, 3, gn) = (X,G,A) for 2|gn, 3|g(n− 1)(n− 2) and n > 3, n 6= 5. By the definition,A can

be partitioned into gnAx, x ∈ G ∈ G, such that each (X \ G,G \ {G},Ax) is a 3-GDD(gn−1). For x ∈ G ∈ G, define

A1x = {(a, b, c), (c, b, a) : (a, b, c) ∈ Ax},

A2x = {(a, c, b), (b, c, a) : (a, b, c) ∈ Ax},

A3x = {(b, a, c), (c, a, b) : (a, b, c) ∈ Ax}.

It is easy to see that each (X \ G,G \ {G},Ajx) is a DGDD(gn−1) and theseA
j
x, x ∈ G ∈ G, j ∈ I3, form a DF(gn) on X with the

groups G. Thus, we can get the conclusion (2) and (3) for the case 3|n. �
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2. Recursive construction

Theorem 2.1. If there exist a PECS(gn : s), an LEDTS(g + s, s) and an LEDTS(g + s), then there exists an LEDTS(gn+ s).

Proof. Let PECS(gn : s) = (X, S,G,A), where |X | = gn+s, |S| = s,G = {Gi : i ∈ In} and |Gi| = g .A consists of all extended
transitive triples from X , not belonging any S ∪ Gi. A can be partitioned into {Bri,j : i ∈ In, j ∈ Ig , r ∈ I3} ∪ {Bk : 1 ≤ k ≤
3s − 2}, where each Bri,j forms an EDGDD(1

g(n−1)(g + s)1) on X with the long group Gi ∪ S, each Bk forms a DGDD(gn) on
X \ S with the groups G.
By the assumption, there exists an LEDTS(g + s, s) on Gi ∪ S for each i ∈ In \ {1}, which contains

3g disjoint EDTS(g + s) = (Gi ∪ S,Cri,j), j ∈ Ig , r ∈ I3;
3s− 2 disjoint EDTS(g + s, s) = (Gi ∪ S,Di,k), 1 ≤ k ≤ 3s− 2.

And, there exists an LEDTS(g + s) on G1 ∪ S which contains

3g disjoint EDTS(g + s) = (G1 ∪ S,Cr1,j), j ∈ Ig , r ∈ I3;
3s− 2 disjoint EDTS(g + s) = (G1 ∪ S, Ek), 1 ≤ k ≤ 3s− 2.

Now, define

Γ ri,j = Bri,j ∪ Cri,j, i ∈ In, j ∈ Ig , r ∈ I3;

Λk =

(
n⋃
i=2

Di,k

)⋃
Bk
⋃

Ek, 1 ≤ k ≤ 3s− 2.

Then each Γ ri,j(x) orΛk forms an EDTS(gn+ s) on X ∪ S, and they form an LEDTS(gn+ s). �

Theorem 2.2. If there exist e-FG(3, (K0, K1, . . . , Ke−1, KT ), gn), PECS(mk : r)∀ k ∈ K1, DF(mk)∀ k ∈ KT , and DF(mkj+1)∀ kj ∈
Kj, 2 ≤ j ≤ e, then there exists a PECS((mg)n : (e− 1)m+ r).

Construction. Let e-FG(3, (K0, K1, . . . , Ke−1, KT ), gn) = (X,G,A0,A1, . . . ,Ae−1, T ), where G is a partition of the gn-set
X into n groups with size g . Denote GA = {{x} × Im : x ∈ A} and A′ = A × Im, where A ⊆ X . Let S0, S1, . . . , Se−1 and
X × Im be pairwise disjoint sets, where S0 = {∞} × Zr , St = {(∞, r + (t − 1)m), . . . , (∞, r + tm − 1)}, t ∈ Z∗e . Denote
S =

⋃
t∈Ze St , X

′
= (X × Im) ∪ S, G′ = G× Im, G ∈ G. By assumption, we can give the following designs (1)–(3):

(1) PECS(m|A| : r) = (A′ ∪ S0, S0,GA,BA) for each A ∈ A0, where BA can be partitioned into 3m|A| disjoint B
j
x,i(A) and

3r − 2 disjointBk(A), x ∈ A, i ∈ Im, j ∈ I3, 1 ≤ k ≤ 3r − 2, such that eachB
j
x,i(A) forms an EDGDD(1

m(|A|−1)(m+ r)1) on
A′ ∪ S0 with the long group ({x} × Im) ∪ S0, and eachBk(A) forms a DGDD(m|A|) on A′ with the groups GA.
(2) DF(m|A|+1) = (A′∪ St ,GA∪ St ,CA) for each A ∈ At , t ∈ Z∗e , where CA can be partitioned into 3m|A| disjoint C

j
x,i(t, A)

and 3m disjoint C ji(t, A), x ∈ A, i ∈ Im, j ∈ I3, such that each C
j
x,i(t, A) forms a DGDD(m

|A|) on ((A \ {x})× Im)∪ St with the
groups GA\{x} ∪ {St}, and each C

j
i(t, A) forms a DGDD(m

|A|) on A′ with the groups GA.
(3)DF(m|A|) = (A′,GA,DA) for each A ∈ T , whereDA can be partitioned into 3m|A| disjointD

j
x,i(A), x ∈ A, i ∈ Im, j ∈ I3,

such that eachD
j
x,i(A) forms a DGDD(m

|A|−1) on (A \ {x})× Im with the groups GA\{x}.
Now, for x ∈ X, i ∈ Im, j ∈ I3, 1 ≤ k ≤ 3r − 2 and t ∈ Z∗e , define

F
j
x,i =

( ⋃
x∈A∈A0

B
j
x,i(A)

)⋃ ⋃
x∈A∈At ,t∈Z∗e

C
j
x,i(t, A)

⋃( ⋃
x∈A∈T

D
j
x,i(A)

)
;

Fk =
⋃
A∈A0

Bk(A);

F
j
i,t =

⋃
A∈At

C
j
i(t, A).

Then, F = {F j
x,i, x ∈ X, i ∈ Im, j ∈ I3} ∪ {Fk, 1 ≤ k ≤ 3r − 2} ∪ {F

j
i,t , i ∈ Im, j ∈ I3, t ∈ Z

∗
e } forms a desired

PECS((mg)n : (e− 1)m+ r) on X ′ with the groups {G′ : G ∈ G} and the stem S.

Proof. (1) Each F
j
x,i (x ∈ X, i ∈ Im, j ∈ I3) forms an EDGDD(1

mg(n−1)(mg + s)1) on X ′ with the long group G′ ∪ S, where
x ∈ G ∈ G. In fact, any extended ordered pair P = {(α, a), (β, b)} 6⊂ G′ ∪ S occurs exactly one block of F j

x,i:
∗ Case∞ ∈ {α, β}. If α = ∞ (β = ∞ is similar). Then (α, a) ∈ S and β 6∈ G.
When (α, a) ∈ S0, there exists the unique block A inA0 containing x and β , sinceA0 forms a GDD(gn) on X . Then, there

exists the unique block in B
j
x,i(A) containing P , since B

j
x,i(A) forms an EDGDD(1

m(|A|−1)(m + r)1) on A′ ∪ S0 with the long
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group ({x} × Im) ∪ S0. Further, let us show the uniqueness for the block containing P . Suppose that there exists another
block C ∈ F

j
x,i containing P . Since (α, a) ∈ S0, C must belong

⋃
x∈A∈A0

B
j
x,i(A). Then, there must be some A1 ∈ A0 such that

C ∈ B
j
x,i(A1) and {x, β} ⊂ A1. SinceA0 forms a GDD(gn) on X and {x, β} ⊂ A, we have A1 = A, i.e., C ∈ B

j
x,i(A). However, in

B
j
x,i(A), the block containing P is unique.
When (α, a) ∈ St (t ∈ Z∗e ), there exists the unique block A ∈ At containing x and β , sinceAt (t ∈ Z∗e ) forms a GDD(g

n)

on X . Then, there exists the unique block inC
j
x,i(t, A) containing P , sinceC

j
x,i(t, A) forms a DGDD(m

|A|) on ((A\{x})× Im)∪St
with the groups GA\{x} ∪ {St}. Similarly, we can show the uniqueness for the block containing P .
* Case∞ 6∈ {α, β}. If α = β or α = x (β = x is similar), then β 6∈ G. Since there exists the unique block A ∈ A0

containing x and β , there exists the unique block inB
j
x,i(A) containing P . If α 6= β and x 6∈ {α, β}, then {x, α, β} is contained

in the unique block A ∈ (
⋃
t∈Ze At)

⋃
T . Then,

A ∈ A0 −→ there exists the unique block inB
j
x,i(A) containing P .

A ∈ At (t ∈ Z∗e ) −→ there exists a unique block in C
j
x,i(t, A) containing P .

A ∈ T −→ there exists the unique block inD
j
x,i(A) containing P , since ((A\ {x})×Zm,GA\{x},D

j
x,i(A)) is a DGDD(m

|A|−1).
The uniqueness for the block containing P can be similarly shown.
(2) Each F

j
i,t or Fk (i ∈ Im, j ∈ I3, t ∈ Z

∗
e , 1 ≤ k ≤ 3r − 2) forms a DGDD((mg)

n) on X × Im. In fact, for any ordered pair
P = {(α, a), (β, b)} from distinct groups,
* There exists the unique block A ∈ At containing α, β . And, by the construction, C

j
i(t, A) forms a DGDD(m

|A|) on A′ with
the groups GA. So, there exists the unique block in C

j
i(t, A) ⊂ F

j
i,t containing P .

* There exists the unique block A ∈ A0 containing α, β . And, by the construction,Bk(A) forms a DGDD(m|A|) on A′ with
the groups GA. So, there exists the unique block inBk(A) ⊂ Fk containing P .
(3) Any extended transitive triple T = {(α, a), (β, b), (γ , c)} 6⊂ G′ ∪ S, ∀ G ∈ G, belongs F . In fact,
* α = ∞ (or∞ ∈ {β, γ }). Then (α, a) ∈ S and β, γ are in distinct groups. When (α, a) ∈ S0, there exists the unique

block A ∈ A0 containing β and γ . And, by the construction, BA forms a PECS(m|A| : r) on (A × Im) ∪ S0, so T ∈ BA ⊂ F .
When (α, a) ∈ St (t ∈ Z∗e ), there exists the unique block A ∈ At containing β and γ . And, by the construction, CA forms a
DF(m|A|+1)with group set GA ∪ St , so T ∈ CA ⊂ F .
*∞ 6∈ {α, β, γ }. By the definition of e-FG(3, (K0, K1, . . . , Ke−1, KT ), gn), there exists A ∈ (

⋃
t∈Ze At)

⋃
T such that

{α, β, γ } ⊆ A. Therefore, T ∈ BA ∪ CA ∪DA ⊂ F . �

Theorem 2.3. If there exist 2- FG(3, (KB, KC, KD), gn), PECS∗(mk : r) ∀ k ∈ KB , PDGDD(mk : s) ∀ k ∈ KC and DF(mk) ∀ k ∈
KD , then there exists a PECS((mg)n : r + s).

Proof. Let 2-FG(3, (KB, KC, KD), gn) = (X,G,B,C,D), where G is a partition of the gn-set X into n groups with size g .
Denote GA = {{x} × Im : x ∈ A} where A ⊆ X . Let R, S and X × Im are pairwise disjoint sets where |R| = r, |S| = s. By
assumption, we can give the following designs (1)–(3):
(1) PECS∗(m|A| : r) = ((A×Im)∪R, R,GA,BA) for each A ∈ B, whereBA can be partitioned into 3m|A| disjointB

j
x,i(A) and

3r + 4 disjointBk(A), x ∈ A, i ∈ Im, j ∈ I3, 1 ≤ k ≤ 3r + 4, such that eachB
j
x,i(A) forms an EDGDD(1

m(|A|−1)(m+ r − 1)1)
on ((A× Im) ∪ R) \ {xi}with the long group (({x} × (Im \ {i}))) ∪ R, and eachBk(A) forms a DGDD(m|A|) on A× Im with the
groups GA.
(2) PDGDD(mk : s) = ((A× Im) ∪ S,GA,CA) for each A ∈ C, where CA can be partitioned into 3m|A| disjoint C

j
x,i(A) and

3(s − 2) disjoint Ck(A), x ∈ A, i ∈ Im, j ∈ I3, 1 ≤ k ≤ 3(s − 2), such that each C
j
x,i(A) forms a DGDD(m

|A|−1(s + 1)1) on
((A \ {x})× Im) ∪ S ∪ {xi} with a (s+ 1)-group S ∪ {xi} and |A| − 1m-groups {y} × Im, y ∈ A \ {x}, and each Ck(A) forms a
DGDD(m|A|) on A× Im with the groups GA.
(3) DF(m|A|) = (A × Im,GA,DA) for each A ∈ D , where DA can be partitioned into 3m|A| disjoint D

j
x,i(A), x ∈ A, i ∈

Im, j ∈ I3, such that eachD
j
x,i(A) forms a DGDD(m

|A|−1) on (A \ {x})× Im with the groups GA\{x}.
Now, define

F
j
x,i =

( ⋃
x∈A∈B

B
j
x,i(A)

)⋃( ⋃
x∈A∈C

C
j
x,i(A)

)⋃( ⋃
x∈A∈D

D
j
x,i(A)

)
, x ∈ X, i ∈ Im, j ∈ I3;

Fk =


⋃
A∈B

Bk(A) 1 ≤ k ≤ 3r + 4⋃
A∈C

Ck−3r−4(A) 3r + 5 ≤ k ≤ 3(r + s)− 2.

Then, the collection {F j
x,i, x ∈ X, i ∈ Im, j ∈ I3}∪{Fk, 1 ≤ k ≤ 3(r+ s)−2} forms a PECS((mg)

n
: r+ s) on (X× Im)∪ (R∪S)

with the groups {G× Im : G ∈ G} and the stem R ∪ S. �

Theorem 2.4 ([9]). If there exists an LEDTS(v) then there exist an LEDTS(3v) and an LEDTS(3v, 3) for v ≥ 3 and v 6= 6.
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3. Structure equations and orbits

For a given order v, an EDTS(v) may contain distinct amount of triples, and an LEDTS(v) may consist of EDTS(v) with
distinct structure. In order to construct a large set of disjoint EDTS(v), or to show its non-existence, we have to consider the
structure of possible EDTS(v) and LEDTS(v). For example,
(1) How many Di-triples may be contained in an EDTS(v) for 1 ≤ i ≤ 5?
(2) What structure each EDTS(v) in an LEDTS(v) has?
By the enumeration of the pairs (x, y) for x = y and x 6= y, we have two equations:

|D1| + |D2| + |D3| + |D4| = v, |D2| + |D3| + 2|D4| + 3|D5| = v(v − 1).

Let x = |D1|, y = |D2| + |D3|, z = |D4| + |D5|. Adding the two equations, we obtain x + 2y + 3z = v2 and x + y ≤ v, for
v ≥ 3. As well, in [3], Huang gave the further necessary conditions to exist an EDTS(v):

|D2| + |D3| 6= 1 and |D4| ≡
{
|D2| + |D3| mod 3 (if v ≡ 0, 1 mod 3)
|D2| + |D3| + 1 mod 3 (if v ≡ 2 mod 3).

Structure equation for EDTS(v): x+ 2y+ 3z = v2, where x+ y ≤ v and y 6= 1.
Suppose it has m non-negative integer solutions (xi, yi, zi), 1 ≤ i ≤ m. Each solution (xi, yi, zi) will give a possible

EDTS(v), which consists of xiD1-triples, yiD2- or D3-triples and ziD4- or D5-triples. The EDTS(v) is called (xi, yi, zi)-type’s.
Suppose an LEDTS(v) consists of wi (xi, yi, zi)-type’s EDTS(v)s, 1 ≤ i ≤ m. Of course,

∑m
i=1wi = 3v − 2. These parameters

wi will be determined by

Structure equation system for LEDTS(v):

(x1 x2 · · · xm
y1 y2 · · · ym
z1 z2 · · · zm

)
w1
w2
...
wm

 =
 v
2v(v − 1)
v(v − 1)2

 .
Take Zv as the point set. Under the action of the automorphic group Zv , all ordered pairs from Zv can be partitioned into v
differences:

〈d〉 = {(x, x+ d) : x ∈ Zv}, d ∈ Zv,

where 〈0〉 = {(x, x) : x ∈ Zv} is a special difference only for extended triple systems. Under the action of the automorphic
group Zv , all extended transitive triples can be partitioned into orbits:

O(d, d′) = {(x− d, x, x+ d′) : x ∈ Zv}, d, d′ ∈ Zv,

which covers three differences 〈d〉, 〈d′〉 and 〈d + d′〉 (one may equal to another), so the orbit O(d, d′) is denoted by
[d, d′, d+ d′] sometimes. Among these orbits, there are

one D1-orbit O(0, 0) = {(x, x, x) : x ∈ Zv};
v − 1D2-orbits O(0, d′) = {(x, x, x+ d′) : x ∈ Zv}, d′ ∈ Z∗v ;
v − 1D3-orbits O(d, 0) = {(x− d, x, x) : x ∈ Zv}, d ∈ Z∗v ;
v − 1D4-orbits O(d,−d) = {(x− d, x, x− d) : x ∈ Zv}, d ∈ Z∗v ;
(v − 1)(v − 2)D5-orbits O(d, d′) = {(x− d, x, x+ d′) : x ∈ Zv}, d, d′ ∈ Z∗v , d

′
6= −d.

Each orbit covers one difference (〈0〉 for D1-orbit), or two differences (〈0〉, 〈d′〉 for D2-orbits, 〈0〉, 〈d〉 for D3-orbits) or three
differences (〈0〉, 〈d〉, 〈−d〉 for D4-orbits, 〈0〉, 〈d〉, 〈d′〉 for D5-orbits).
Furthermore, if v is a prime power q, and g is a primitive element of Fq, the index set of all non-zero elements in Fq is

denoted by Zq−1. Under the action of themultiplicative group of Fq, all orbits on Fq can be partitioned into the following orbit
families.

one D1-orbit family : O1 = {O(0, 0)}, one D2-orbit family : O2 = {O(0, g i) : i ∈ Zq−1},

one D3-orbit family : O3 = {O(g i, 0) : i ∈ Zq−1}, one D4-orbit family : O4 = {O(g i,−g i) : i ∈ Zq−1},

q− 2D5-orbit families : O5(k) = {g i · O(1, gk) : i ∈ Zq−1}, k ∈

Zq−1 \
{
q− 1
2

}
for odd q

Z∗q−1 for even q.
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4. LEDTS(v) of small orders

Lemma 4.1. There exists no LEDTS(4).

Proof. The structure equation for EDTS(4)

x+ 2y+ 3z = 16, (x+ y ≤ 4 and y 6= 1)

has four non-negative integer solutions (x, y, z) = (0, 2, 4), (1, 0, 5), (1, 3, 3), (4, 0, 4). But, the structure equation system
for LEDTS(4)(0 1 1 4

2 0 3 0
4 5 3 4

)w1w2w3
w4

 = ( 424
36

)

has unique solution (w1, w2, w3, w4) = (6, 0, 4, 0). Let the unique possible LEDTS(4) be {(Z4,Ak) : 1 ≤ k ≤ 6}
⋃

{(Z4,Bk) : 1 ≤ k ≤ 4}, where

|D1| = 0, |D2 ∪ D3| = 2, |D4 ∪ D5| = 4 for eachAk,

|D1| = 1, |D2 ∪ D3| = 3, |D4 ∪ D5| = 3 for eachBk.

Since |
⋃
{Di : 1 ≤ i ≤ 4}|must be 4. Consider theseAk only, it is easy to see that |D4| = |D5| = 2 in eachAk. However, if

an EDTS(4) contains two D5-triples: (a, b, c) and (a′, b′, c ′), there are two cases:
(1) |{a, b, c} ∪ {a′, b′, c ′}| = 4. Then, among the remaining arcs in K ∗4 (the complete symmetric directed graph of order

4), there is only one pair of opposite arcs (x, y) and (y, x). The EDTS(4) cannot contain two D4-triples, since each D4-triple
covers a pair of opposite arcs.
(2) |{a, b, c} ∪ {a′, b′, c ′}| = 3, i.e., {a, b, c} = {a′, b′, c ′}. Let the other vertex in K ∗4 be d, then two D4-triples in the

EDTS(4) should be (x, d, x) and (y, d, y), where x 6= y ∈ {a, b, c}, i.e., they have the same middle element d. However, it is
impossible to partition all 6 × 2 = 12D4-triples into six parts in this form, because, for any element x ∈ Z4, there are just
three D4-triples with the same middle element. �

Lemma 4.2. There exist an LEDTS(2) and an LEDTS(6).

Construction. LEDTS(2) = {(Z2,Ai) : 0 ≤ i ≤ 3}, where

A0 : 000 101; A1 : 111 010; A2 : 110 001; A3 : 011 100.

LEDTS(6) = {(Z6,Ax) : x ∈ Z6} ∪ {(Z6,Bx) : x ∈ Z6} ∪ {(Z6,Cj) : 1 ≤ j ≤ 4}, whereAx = A0 + x, Bx = B0 + x, x ∈ Z6,
and

A0 : 000 112 221 544 455 303 150 051 523 325 134 431 024 420;
B0 : 003 330 115 551 422 244 012 210 504 405 352 253 413 314;

(The first two triples ofB0 + 3,B0 + 4 andB0 + 5 need to be replaced by their inverse.)

C1 : 010 121 202 313 424 505 235 532 340 043 451 154;
C2 : 020 101 242 323 404 545 125 521 341 143 503 305;
C3 : 040 151 232 343 454 535 502 205 013 310 124 421;
C4 : 050 131 212 353 434 515 014 410 230 032 452 254.

Proof. The correctness for LEDTS(2) is obvious. Next, checking the appearance of each ordered pair, we can show that each
A0, B0 and Cj forms an EDTS(6). Further, checking the appearance of each extended transitive triple (or each block orbit for
A0 and B0), we can prove that all Ax, Bx and Cj, x ∈ Z6, 1 ≤ j ≤ 4, forms an LEDTS(6). �

Lemma 4.3. There exist an LEDTS(8) and an LEDTS(8, 2).

Construction. Let g be a primitive element of the finite field F8, and g3 = 1 + g . Construct three families of extended
transitive triples on F8 as follows, where F8 = R ∪ S, R = {0, 1, g, g3}, S = {g2, g4, g5, g6}.

A0 : (0, 0, 0), (g j, 0, g j), (g j+3, g j+1, g j+4), (g j+2, g j+6, g j+1), j ∈ Z7.
A1 : (0, 0, g5)+ x, x ∈ F8; (1, 0, g3)+ x, (g2, 0, g6)+ x for x ∈ R;

(g3, 0, g4)+ x, (g2, 0, g)+ x for x ∈ S.
A2 : (g5, 0, 0)+ x, x ∈ F8; (1, 0, g3)+ x, (g2, 0, g6)+ x for x ∈ S;

(g3, 0, g4)+ x, (g2, 0, g)+ x for x ∈ R.
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LetBx = A0+x,Ck = gkA1,Dk = gkA2, where x ∈ F8 and k ∈ Z7. Then, {(F8,Bx) : x ∈ F8}∪{(F8,Ck) : k ∈ Z7}∪{(F8,Dk) :
k ∈ Z7} forms an LEDTS(8). Furthermore, define

B ′0 = B0 \ {(0, 0, 0), (g5, 0, g5)}, B ′g5 = Bg5 \ {(g
5, g5, g5), (0, g5, 0)} and B ′x = Bx for other x ∈ F8;

C ′0 = C0 \ {(0, 0, g5), (g5, g5, 0)} and C ′k = Ck for k ∈ Z∗7 ;

D ′0 = D0 \ {(0, g5, g5), (g5, 0, 0)} and D ′k = Dk for k ∈ Z∗7 .

Then, {(F8,B ′x) : x ∈ F8} ∪ {(F8,C
′

k) : k ∈ Z7} ∪ {(F8,D
′

k) : k ∈ Z7} forms an LEDTS(8, 2).

Proof. (1)A0 forms an EDTS(8) on F8. In fact, it is easy to see that each of the ordered pairs (x, x), (0, g j), (g j, 0) and (g j, g j+k),
x ∈ F8, j ∈ Z7, k ∈ Z∗7 , appears once inA0. Furthermore, eachBx orB ′y x ∈ F8, y ∈ F

∗

8 \ {g
5
}, is also an EDTS(8) on F8. And,

B ′0 (andB ′
g5
) is an EDTS(8, 2) on F8 with the hole {0, g5}.

(2)A1 forms an EDTS(8) on F8 (similarly, forA2). In fact, by the additive table

+ 0 g0 g1 g2 g3 g4 g5 g6

0 0 g0 g1 g2 g3 g4 g5 g6

g0 g0 0 g3 g6 g1 g5 g4 g2

g1 g1 g3 0 g4 g0 g2 g6 g5

g2 g2 g6 g4 0 g5 g1 g3 g0

g3 g3 g1 g0 g5 0 g6 g2 g4

g4 g4 g5 g2 g1 g6 0 g0 g3

g5 g5 g4 g6 g3 g2 g0 0 g1

g6 g6 g2 g5 g0 g4 g3 g1 0

,

we can know that R+ R = R = S + S, R+ S = S = S + R and

(0, 0) ∈ 〈0〉; (1, 0), (g2, g6) ∈ 〈g0〉; (1, g3), (0, g) ∈ 〈g1〉; (g2, 0) ∈ 〈g2〉;
(0, g3), (g3, 0) ∈ 〈g3〉; (0, g4), (g2, g) ∈ 〈g4〉; (0, g5) ∈ 〈g5〉; (0, g6), (g3, g4) ∈ 〈g6〉.

Obviously, the pairs in the orbits 〈0〉 and 〈g5〉 are filled. For the other orbits, we have{
x ∈ R (1, 0) ∈ (R, R) −→ (1+ x, x) ∈ (R, R)
x ∈ R (g2, g6) ∈ (S, S) −→ (g2 + x, g6 + x) ∈ (S, S)

}
〈g0〉;{

x ∈ R (1, g3) ∈ (R, R) −→ (1+ x, g3 + x) ∈ (R, R)
x ∈ S (0, g) ∈ (R, R) −→ (x, g + x) ∈ (S, S)

}
〈g1〉;{

x ∈ R (g2, 0) ∈ (S, R) −→ (g2 + x, x) ∈ (S, R)
x ∈ S (g2, 0) ∈ (S, R) −→ (g2 + x, x) ∈ (R, S)

}
〈g2〉;{

x ∈ R (0, g3) ∈ (R, R) −→ (x, g3 + x) ∈ (R, R)
x ∈ S (g3, 0) ∈ (R, R) −→ (g3 + x, x) ∈ (S, S)

}
〈g3〉;{

x ∈ S (0, g4) ∈ (R, S) −→ (x, g4 + x) ∈ (S, R)
x ∈ S (g2, g) ∈ (S, R) −→ (g2 + x, g + x) ∈ (R, S)

}
〈g4〉;{

x ∈ R (0, g6) ∈ (R, S) −→ (x, g6 + x) ∈ (R, S)
x ∈ S (g3, g4) ∈ (R, S) −→ (g3 + x, g4 + x) ∈ (S, R)

}
〈g6〉.

Therefore, the system A1 forms an EDTS(8) on F8 indeed. Furthermore, each Ck,Dk or C ′r ,D
′
r , k ∈ Z7, r ∈ Z

∗

7 , is also an
EDTS(8) on F8. And, C ′0 (andD ′0) is an EDTS(8, 2) on F8 with the hole {0, g

5
}.

(3) {(F8,Bx) : x ∈ F8} ∪ {(F8,Ck) : k ∈ Z7} ∪ {(F8,Dk) : k ∈ Z7} forms an LEDTS(8). In fact,

(g j+3, g j+1, g j+4) = g j(g − 1, g, g + g2) ∈ g j · O(1, g2) ∈ O5(2),
(g j+2, g j+6, g j+1) = g j(g6 − 1, g6, g6 + g5) ∈ g j · O(1, g5) ∈ O5(5),
(1+ x, x, g3 + x) ∈ O(1, g3) ∈ O5(3), (g2 + x, x, g6 + x) ∈ g2 · O(1, g4) ∈ O5(4),
(g3 + x, x, g4 + x) ∈ g3 · O(1, g) ∈ O5(1), (g2 + x, x, g + x) ∈ g2 · O(1, g6) ∈ O5(6).

Therefore, the D5-triples in A0,A1 and A2 appear in all D5-orbit families O5(k), k ∈ Z∗7 . For 1 ≤ i ≤ 4, the Di-triples in
A0,A1 andA2 appear in all Di-orbit families Oi.
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(4) {(F8,B ′x) : x ∈ F8} ∪ {(F8,C
′

k) : k ∈ Z7} ∪ {(F8,D
′

k) : k ∈ Z7} forms an LEDTS(8, 2). In fact, the distinction between
the collections (4) and (3) lies only in removing two blocks for each procedure

B0 −→ B ′0, Bg5 −→ B ′g5 , C0 −→ C ′0, D0 −→ D ′0.

However, the removed eight blocks form just an LEDTS(2) on the hole {0, g5}. �

Lemma 4.4. There exists an LEDTS(10).

Construction. Construct an LEDTS(10) on X = Z9 ∪ {u} as follows, where u 6∈ Z9 is a fixed element.

Au : u u u 0 5 5 0 u 4 0 2 8 0 3 1( mod 9)
A0 : 0 u u u 0 0 1 7 1 4 2 2 2 3 3 5 4 4 3 5 5 6 6 6 7 3 7 8 1 8

7 8 u 2 4 u 3 6 u 1 5 u u 6 2 u 4 1 u 5 3 u 8 7 6 5 1 3 2 1 1 3 4 5 7 0 8 2 5
3 8 0 1 6 0 4 0 5 8 4 3 0 1 2 5 6 8 7 4 6 0 6 3 2 8 6 6 4 7 7 5 2 2 0 7 0 4 8

B0 : u 1 u 0 7 0 1 1 2 2 2 6 3 3 5 4 8 4 5 5 1 6 6 3 7 6 7 8 2 8
3 8 u 7 4 u 2 0 u 6 5 u u 4 5 u 6 8 u 0 3 u 7 2 7 8 5 5 6 4 2 4 7 5 8 0 7 1 3
1 8 7 2 1 5 0 8 6 8 3 1 6 1 0 0 5 2 4 1 6 4 2 3 5 3 7 0 1 4 3 4 0 3 6 2

C0 : u u 4 0 0 u 1 1 0 8 2 2 3 4 3 7 4 4 5 u 5 2 6 6 7 7 1 8 8 6
7 u 8 1 u 3 3 u 6 6 u 2 4 u 1 2 u 0 8 u 7 1 7 2 8 5 4 7 0 5 0 2 1 0 3 7 4 5 0
1 5 6 4 2 7 6 5 7 3 2 5 7 6 3 0 4 6 6 1 4 8 3 0 3 8 1 5 1 8 5 2 3 6 0 8 2 4 8.

DefineAk = A0 + k, Bk = B0 + k and Ck = C0 + k, where k ∈ Z9. Then, {(X,Ak), (X,Bk), (X,Ck) : k ∈ Z10}
⋃
{(X,Au)}

is an LEDTS(10) desired.

Proof. First, it is not difficult to check thatA0 (orB0,C0,Au) forms an EDTS(10). Furthermore, in order to show the collection
{(X,Ak), (X,Bk), (X,Ck) : k ∈ Z10}

⋃
{(X,Au)} forms an LEDTS(10) indeed, we list the following two tables. The first table

shows the orbits of the triples containing u in every block set.
D1 ∼ D4 (u, x, x+ d) (x, x+ d, u) (x, u, x+ d)

Au (u, u, u) d = 4
A0 (∗, u, u), (u, ∗, ∗) d = 5, 6, 7, 8 d = 1, 2, 3, 4
B0 (u, ∗, u) d = 1, 2, 3, 4 d = 5, 6, 7, 8
C0 (∗, ∗, u), (u, u, ∗), (∗, u, ∗) d = 1, 2, 3, 5, 6, 7, 8

The second table shows the orbits of the triples not containing u in every block set, where Au (orA0,B0,C0) in the position
(i, j)means that there exists some block in Au (orA0,B0,C0) belonging to the orbit O(i, j).

0 1 2 3 4 5 6 7 8
0 A0 B0 B0 C0 B0 B0 B0 C0 C0
1 A0 A0 A0 B0 C0 B0 B0 B0 C0
2 A0 A0 A0 B0 C0 C0 Au A0 C0
3 C0 B0 B0 A0 C0 B0 B0 Au C0
4 C0 C0 C0 C0 A0 B0 C0 B0 B0
5 Au A0 C0 A0 A0 A0 B0 C0 A0
6 C0 C0 A0 A0 C0 B0 A0 A0 C0
7 A0 B0 B0 A0 B0 C0 A0 A0 B0
8 A0 B0 C0 C0 B0 A0 C0 B0 A0 �

Lemma 4.5. There exists an LEDTS(10, 4).

Proof. Suppose 0, 1, 2, 3, 4 6∈ Z6 where 0 is only an auxiliary symbol. Let us construct an LEDTS(10, 4) on X = Z6 ∪
{1, 2, 3, 4}with the hole {1, 2, 3, 4} as follows. Define

S0 = {(1, 2), (3, 4), (5, 0)}, S1 = {(0, 4), (1, 5), (2, 3)}, S2 = {(2, 0), (3, 1), (4, 5)},
S3 = {(4, 2), (5, 3), (0, 1)}, S4 = {(1, 4), (2, 5), (0, 3)}.

For i ∈ Z∗5 and j ∈ Z5, denote

iSj = {(i, x, y), (y, x, i) : (x, y) ∈ Sj}, iS ′j = {(i, y, x), (x, y, i) : (x, y) ∈ Sj},

0Sj = {(x, x, y), (y, y, x) : (x, y) ∈ Sj}, 0S ′j = {(x, y, y), (y, x, x) : (x, y) ∈ Sj}.

Then, define ten families of extended transitive triples on X where the subscripts are taken in Z5.

Bk = {iSi+k : i ∈ Z5}, B ′k = {iS
′

i+k : i ∈ Z5}, k ∈ Z5.
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And, construct three families of extended transitive triples on X:

A00 : 1 1 1 3 2 2 0 3 3 4 4 4 3 0 0 2 1 1 2 1 2 4 3 3 1 4 4 5 3 5 0 1 2 3 1 3
5 1 4 4 2 3 1 2 4 2 3 4 4 1 0 2 2 0 5 3 1 3 4 0 2 1 2 3 1 5 4 1 1 3 2 3
4 2 5 4 3 2 2 1 3 5 2 4 1 3 4 0 4 4 0 1 3 2 4 5 3 4 2 1 5 0 0 5 2 4 3 1

A10 : 1 1 3 2 2 1 3 3 2 4 4 4 0 3 0 1 1 1 2 2 3 3 3 4 4 4 2 5 1 5 1 2 0 1 3 4
1 4 1 2 3 3 2 4 5 3 4 0 4 1 2 1 2 2 4 3 5 0 4 2 3 2 1 5 3 1 2 4 1 0 3 2
5 4 2 1 4 3 0 1 5 2 2 4 3 3 1 4 4 3 0 1 4 2 5 0 3 5 4 2 1 3 4 1 0 5 3 2

A20 : 1 4 1 2 5 2 3 1 3 4 0 4 0 3 0 1 1 1 2 2 2 3 4 3 4 4 4 5 5 5
1 0 2 1 2 3 1 5 4 2 4 3 2 1 4 3 3 4 0 1 3 3 2 0 3 3 2 2 4 3 2 3 1 3 5 1
4 2 1 3 4 2 4 1 2 4 5 3 0 1 2 1 3 5 5 3 1 0 5 4 1 4 0 2 4 1 5 2 0 4 2 5.

Let Ajx = A
j
0 + x for x ∈ Z6 and j ∈ Z3. It is not difficult to check that each A

j
x forms an EDTS(10) on X , and each Bk (or

B′k) forms an EDTS(10, 4) on X with the holes {1, 2, 3, 4}. So, the collection {(X,A
j
x) : x ∈ Z6, j ∈ Z3} ∪ {(X,Bk) : k ∈

Z5} ∪ {(X,B ′k) : k ∈ Z5} is an LEDTS(10, 4) desired. �

Lemma 4.6. There exists an LEDTS(12).
Proof. We construct an LEDTS(12) on X = Z10 ∪ {u, v}.

A00 : u 6 u v 4 v 0 0 0 5 1 1 2 2 7 3 v 3 1 4 4 5 5 9 4 6 6 6 7 7 8 u 8 2 9 9
u 1 v 0 7 u u 5 7 2 u 4 9 u 2 3 u 0 1 u 9 4 u 3 2 3 8 8 0 5 5 8 3 3 7 2 4 9 0
v 5 u 6 0 v v 8 7 8 v 9 9 v 1 5 v 2 2 v 0 7 v 6 7 8 1 6 9 5 3 4 1 1 7 0 7 4 5
9 6 3 8 6 4 0 9 8 6 2 1 2 5 6 0 1 2 1 3 5 0 3 6 4 8 2 7 3 9 1 6 8 9 4 7 5 0 4

A10 : u u 3 v v 6 0 2 0 1 1 4 2 5 2 3 3 1 4 4 5 5 5 u 6 6 8 7 7 v 8 8 7 9 0 9
u v 2 3 4 u 8 0 u 6 9 u 7 1 u u 4 0 u 8 5 u 1 9 u 7 6 0 4 6 1 5 8 0 7 3 4 2 3
2 v u 3 6 v 9 4 v 5 1 v 0 8 v v 0 1 v 5 9 v 3 8 v 7 4 6 1 0 8 3 9 2 9 1 8 6 2
1 7 2 2 4 8 9 2 6 8 4 1 6 5 7 3 0 5 7 5 0 3 2 7 5 6 4 9 5 3 7 9 8 1 6 3 4 9 7

A20 : 6 u u 9 v v u 0 0 1 5 1 2 0 2 3 9 3 4 1 4 5 4 5 8 6 6 7 2 7 v 8 8 0 9 9
3 u v 0 5 u 8 4 u 9 7 u 2 1 u u 5 6 u 9 2 u 7 1 u 3 8 1 2 8 5 7 3 3 7 4 6 9 8
v u 4 7 8 v 4 6 v 5 2 v 1 0 v v 9 1 v 0 3 v 6 2 v 7 5 4 3 0 5 8 0 4 2 9 8 2 3
6 3 1 9 0 4 0 8 1 0 6 7 9 6 5 1 3 6 2 6 4 1 7 9 8 5 9 3 2 5 7 6 0 4 8 7

B0 : u u u v u v 0 0 6 0 u 4 0 v 5 0 1 3 3 1 0 (mod 10);
B1 : v v v u v u 0 4 4 0 u 5 0 v 6 0 2 3 3 2 0 (mod 10);
B2 : u u v v v u 0 5 5 0 u 6 0 v 4 0 2 9 0 3 1 (mod 10);
B3 : u v v v u u 0 0 7 0 u 1 0 v 3 0 8 2 0 9 5 (mod 10).

LetAjx = A
j
0+x for x ∈ Z10 and j ∈ Z3. It is not difficult to check that eachA

j
x (orBk, k ∈ Z4) forms an EDTS(12) onX and they

are pairwise disjoint. Therefore, the collection {(X,Ajx) : x ∈ Z10, j ∈ Z3}
⋃
{(X,Bk) : k ∈ Z4} is an LEDTS(12) desired. �

Lemma 4.7. There exists an LEDTS(14).
Proof. We construct an LEDTS(14) on X = Z13 ∪ {u}, where 10, 11, 12 are written in 0, 1, 2.

Au : u u u 0 u 0 0 3 4 0 5 7 7 5 0 4 3 0 (mod 13).

A00 : (i) u 0 u 0 0 0 1 4 1 2 8 2 3 7 3 4 1 4 5 6 5 6 8 6 7 4 7 8 3 8 9 7 9 0 6 0
1 3 1 2 1 2

(ii) 3 u 4 2 u 5 9 u 1 8 u 0 7 u 1 6 u 2 0 3 6 9 0 0 2 5 9 1 8 2 0 1 2 7 2 6
1 3 5 3 9 2 1 6 1 1 0 5 2 3 0 0 7 2 4 2 2 5 0 4 6 9 4 8 5 7 0 4 8 9 1 8
0 1 7 1 2 0

(iii) {cba : abc ∈ (ii)}

A10 : ( i) u u 0 0 0 u 1 1 0 2 2 7 3 3 9 4 4 6 5 5 8 6 6 4 7 7 2 8 8 5 9 9 3 0 0 1
1 1 2 2 2 1

(ii) 2 4 u 3 7 u 1 6 u 2 5 u 8 1 u 9 0 u 4 8 0 7 8 0 9 2 8 0 1 6 4 5 9 1 2 8
5 6 0 3 4 1 2 5 0 6 7 2 2 3 2 4 7 1 0 2 1 2 4 0 5 7 1 6 8 3 7 9 0 6 9 2
0 3 0 0 1 2 9 1 1 3 5 1

(iii) {cba : abc ∈ (ii)}
A20 = (−A10)

−1.



Y. Liu, Q. Kang / Discrete Mathematics 309 (2009) 6515–6529 6525

LetAjx = A
j
0 + x for x ∈ Z13 and j ∈ Z3. It is not difficult to check that eachA

j
x (orAu) forms an EDTS(14) on X and they are

pairwise disjoint. Therefore, the collection {(X,Ajx) : x ∈ Z13, j ∈ Z3}
⋃
{(X,Au)} is an LEDTS(14) desired. �

Lemma 4.8. There exists an LEDTS(16).

Proof. We construct an LEDTS(16) on X = Z15 ∪ {u}, where 10, 11, 12, 13, 14 are written in 0, 1, 2, 3, 4.

Au : u u u 0 5 5 0 u 0 0 3 4 0 6 8 4 3 0 8 6 0 (mod 15).
A00 : (i) u u 7 0 u 0 4 1 1 6 2 2 1 3 3 1 4 4 5 0 5 2 6 6 2 7 7 4 8 8 9 7 9 0 0 0

3 1 1 2 2 u 3 2 3 8 4 4 7 u 2
(ii) 1 u 5 3 u 9 4 u 6 8 u 1 3 u 4 0 u 2 5 6 4 3 4 3 2 9 2 4 5 2 6 8 3 2 3 4

0 1 4 0 2 4 1 3 6 9 1 5 0 2 3 4 7 4 0 7 8 8 1 2 3 1 9 0 3 2 7 1 2 0 4 1
0 6 9 6 2 1 3 5 7 7 1 3 8 9 4 0 3 5 2 5 8 1 0 1 4 9 0 3 8 0 0 6 7 4 1 2

(iii) {cba : abc ∈ (ii)}.

A10 : (i) u 4 u 0 1 0 1 4 1 2 1 2 3 1 3 4 1 4 5 9 5 7 6 6 6 7 7 8 9 8 9 9 1 2 0 0
1 1 9 0 2 2 3 4 3 4 4 4

(ii) 3 4 u 7 9 u 2 6 u 5 1 u 0 3 u 1 8 u 0 2 u 2 2 5 7 1 2 0 5 0 1 7 3 0 1 2
4 3 8 0 7 4 8 0 1 4 5 6 6 8 2 9 2 1 4 5 7 2 3 9 4 6 9 9 3 0 3 7 0 9 0 4
1 3 5 0 3 6 2 3 3 2 4 4 5 8 3 2 7 8 0 4 8 1 6 0 1 4 1 6 1 3 3 4 2 2 4 0

(iii) {cba : abc ∈ (ii)}.

A20 : ( i) 1 u u 0 0 6 1 1 5 2 2 9 3 5 3 4 4 4 5 5 1 6 6 0 7 7 0 8 5 8 9 9 2 0 0 7
u 1 1 2 2 3 3 3 2 4 4 4

(ii) 2 1 u 7 3 u 5 0 u 4 9 u 4 8 u 3 6 u 2 0 u 0 9 2 0 3 4 6 1 2 3 8 2 0 1 8
0 7 1 1 4 0 8 2 7 1 1 9 2 7 4 0 3 8 1 2 4 9 3 7 7 1 6 5 7 4 0 5 9 3 3 1
2 0 0 5 2 2 3 9 4 2 3 1 3 5 1 6 0 3 9 6 8 4 0 3 6 4 5 4 3 2 1 4 8 6 2 4
1 4 0

(iii) {cba : abc ∈ (ii)}.

LetAjx = A
j
0 + x for x ∈ Z15 and j ∈ Z3. It is not difficult to check that eachA

j
x (orAu) forms an EDTS(16) on X and they are

pairwise disjoint. Therefore, the collection {(X,Ajx) : x ∈ Z15, j ∈ Z3}
⋃
{(X,Au)} is an LEDTS(16) desired. �

Lemma 4.9. There exists an LEDTS(18).

Proof. Construct an LEDTS(18) on X = Z16 ∪ {u, v}, where 10, 11, 12, 13, 14, 15 are written in 0, 1, 2, 3, 4, 5.

A00 : (i) u 7 u v 1 v 0 0 5 1 1 0 2 2 4 3 1 3 4 4 2 5 7 5 6 2 6 7 0 7 8 8 3 9 0 9
0 0 1 1 1 4 2 2 2 3 3 8 4 4 1 5 5 0

(ii) 4 5 u 0 2 u 3 0 u 6 1 u 3 9 u 4 2 u 1 8 u 5 u v 4 3 5 4 1 9 4 5 2 5 8 5
6 8 v 2 5 v 3 4 v 9 0 v 2 1 v 4 0 v 3 7 v 0 5 0 3 0 3 6 7 2 0 1 2 0 7 4
2 3 5 3 4 4 5 6 4 5 1 1 9 1 4 1 3 5 9 2 5 1 3 5 0 3 6 0 4 8 0 1 2 2 2 3
3 6 9 4 8 0 1 7 3 5 7 9 2 0 1 4 6 1 8 9 2 2 4 7 8 2 3 5 6 0 1 7 8

(iii) {cba : abc ∈ (ii)}

A10 : (i) 1 u u 0 v v u 0 0 v 1 1 8 2 2 3 v 3 4 8 4 5 u 5 3 6 6 1 7 7 2 8 8 4 9 9
0 6 0 7 1 1 2 1 2 6 3 3 9 4 4 5 6 5 u 1 v v 8 u 0 u 8 8 v 0

(ii) 2 u 3 6 u 9 7 u 2 4 u 1 0 u 4 3 u 5 0 3 3 2 4 1 0 1 5 0 2 4 0 4 2 0 5 1
7 v 0 3 v 2 1 v 2 4 v 6 4 v 5 v 9 5 2 1 5 2 5 0 4 7 3 9 2 7 5 9 4 0 0 9
8 5 7 1 3 0 5 4 4 3 1 1 4 3 2 4 6 1 6 1 5 8 3 6 7 3 5 8 2 5 5 0 2 1 7 4
1 8 0 3 9 2 4 8 3 3 4 0 7 0 6 9 1 8 5 5 3 1 3 9 2 6 2

(iii) {cba : abc ∈ (ii)}

A20 : (i) u u 7 v v 9 2 0 0 1 4 1 0 2 2 3 1 3 4 4 4 5 5 1 6 5 6 7 7 u 8 1 8 9 9 v
0 5 0 1 1 5 5 2 2 4 3 3 3 4 4 2 5 5

(ii) u 6 8 u 0 3 u 9 3 u 5 4 u 2 2 u 4 5 u 0 1 1 v u 0 6 1 1 7 1 1 3 5 0 0 3
v 8 1 v 0 2 v 3 4 v 0 5 v 7 5 v 6 3 v 4 2 0 1 4 4 8 9 0 4 5 0 8 2 2 5 9
9 0 1 1 5 2 5 8 3 6 9 5 8 0 5 1 3 3 1 2 6 0 7 9 3 2 4 5 3 5 6 2 4 2 3 8
2 7 0 4 6 0 3 9 2 7 2 3 4 1 2 7 4 5 3 6 7 4 7 8 5 2 1 4 9 1 4 3 0

(iii) {cba : abc ∈ (ii)}
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B0 : u u v v v u 0 0 8 0 u 6 0 v 0 0 1 3 0 4 9 3 1 0 9 4 0 mod 16;
B1 : u v v v u u 0 8 8 0 v 6 0 u 0 0 2 3 0 5 9 3 2 0 9 5 0 mod 16;

B2 : (i) u u u 1 9 u 2 0 u 3 1 u 4 2 u 5 3 u 6 4 u 7 5 u u 8 0
v u v u 9 1 u 0 2 u 1 3 u 2 4 u 3 5 u 4 6 u 5 7 0 8 u

(ii) 0 v 4 0 0 2 0 1 7 0 2 5 7 1 0 5 2 0 mod 16;

B3 : (i) v v v 9 1 u 0 2 u 1 3 u 2 4 u 3 5 u 4 6 u 5 7 u u 0 8
u v u u 1 9 u 2 0 u 3 1 u 4 2 u 5 3 u 6 4 u 7 5 8 0 u

(ii) 0 v 2 0 0 4 0 6 7 0 3 5 5 3 0 7 6 0 mod 16.

Let Ajx = A
j
0 + x for x ∈ Z16 and j ∈ Z3. It is not difficult to check that each A

j
x or each Bk (k ∈ Z4) is the block set of an

EDTS(18) on X and they are pairwise disjoint. Therefore, the collection {(X,Ajx) : x ∈ Z16, j ∈ Z3}
⋃
{(X,Bk) : k ∈ Z4} is an

LEDTS(18) desired. �

5. Existence of LEDTS(6t + 2)

Lemma 5.1 ([10]). There exist a PDGDD(33 : 2) and a PDGDD(35 : 2).

Lemma 5.2. There exists a PECS∗(33 : 0).

Proof. Let g be the primitive element of the field F9, and g2 = 1+ 2g . We will construct a PECS∗(33 : 0), which consists of

(1) 27EDGDD(2116)s, denoted byAjx, x ∈ F9, j ∈ Z3, whereAjx = A
j
0 + x;

(2) 4DGDD(33)s, denoted byBk, k ∈ I4.

Now, construct theseA
j
0 andBk as follows.

(1) For each A
j
0, the point set is F9 \ {0}, the long group is G0 = {g, g

5
}, and the blocks are listed as follows, where the

point ga is briefly denoted by its index a.

A00 : 0 5 0 2 5 2 3 5 3 4 5 4 6 5 6 7 5 7 0 7 6 2 1 0 1 3 6 6 7 0 0 1 2
6 3 1 4 0 3 7 3 2 6 4 2 3 0 4 2 3 7 2 4 6 1 4 7 7 4 1

A10 : 0 0 3 4 2 2 7 3 3 4 4 0 2 6 6 7 7 6 1 4 6 6 1 3 3 4 1 7 1 2 3 0 7
4 3 5 3 6 2 2 0 1 0 6 4 0 2 5 2 4 7 1 7 0 5 2 3 5 6 0 7 5 4 6 5 7

A20 = (A
1
0)
−1.

Clearly, eachA
j
x will be on F9 \ {x}with the long group G0 + x, x ∈ F9.

(2) For eachBk, the point set is F9, the group set is {{x, x+ g, x+ g5} : x = 0, 1, g3}, and the blocks are listed as follows.

B1 = {(0, 1, g3)+ i, (0, g4, g7)+ i, i ∈ F9}; B2 = {(0, 1, g6)+ i, (0, g3, g2)+ i, i ∈ F9};
B3 = {(0, g2, g3)+ i, (0, g6, g7)+ i, i ∈ F9}; B4 = {(0, g7, g6)+ i, (0, g4, g2)+ i, i ∈ F9}.

It is not difficult to verify that eachA
j
0 forms an EDGDD(2

116) on F9 \ {0}, eachBk forms a DGDD(33) on F9, and allA
j
x and

Bk (x ∈ F9, j ∈ Z3, k ∈ I4) are mutually disjoint. Therefore, these designs form the desired PECS∗(33 : 0) indeed. �

Lemma 5.3. There exists a PECS∗(35 : 0).

Proof. Take Z15 as the points. We will construct a PECS∗(35 : 0), which consists of

(1) 45EDGDD(21112)s, denoted byAjx, x ∈ Z15, j ∈ Z3, whereAjx = A
j
0 + x;

(2) 4DGDD(35)s, denoted byBk, k ∈ I4.

Now, construct theseA
j
0 andBk (j ∈ Z3, k ∈ I4) as follows.

(1) Each A
j
0 is on Z15 \ {0} with the long group G0 = {5, 10}. The blocks in A00 and A10 are listed as follows, where

10, 11, 12, 13, 14 are written in 0, 1, 2, 3, 4. And,A20 = (−A10)
−1.

A00 : (i) 1 2 1 2 4 2 3 2 3 4 5 4 6 4 6 7 5 7 8 1 8 9 3 9 1 3 1 2 1 2 3 5 3 4 5 4
(ii) 1 2 3 2 4 6 1 4 7 1 5 9 5 1 2 2 3 2 4 1 3 0 1 1 1 4 7 3 7 8 1 6 8 4 3 9 4 9 0

6 9 1 3 4 1 3 4 8 2 4 4 0 3 3 3 5 6 2 8 9 6 7 3 2 5 8 2 7 0 8 0 4 7 9 2 6 0 2
(iii) {cba : abc ∈ (ii)}
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A10 : (i) 2 1 1 4 2 2 1 3 3 6 4 4 4 6 6 3 7 7 9 8 8 8 9 9 3 1 1 1 2 2 7 3 3 2 4 4
(ii) 2 6 1 3 8 2 1 4 4 1 1 9 7 2 4 3 4 9 2 3 8 1 2 6 0 1 7 7 9 2 7 8 6 1 3 3 2 5 2

5 9 4 3 7 4 1 4 8 1 3 5 2 4 0 4 5 8 6 3 5 3 9 2 0 6 9 8 0 1 4 1 2 6 3 4 0 3 4
3 2 0 7 1 5

(iii) {cba : abc ∈ (ii)}.

Clearly, eachA
j
x will be on Z15 \ {x}with the long group G0 + x, x ∈ Z15.

(2) For eachBk, the point set is Z15, the group set is {{x, x+ 5, x+ 10} : 0 ≤ x ≤ 4}, and the blocks are listed as follows.

B1 : 0 3 7 0 1 3 0 6 4 0 2 1 (mod 15); B2 : 0 4 7 0 2 3 0 8 4 0 9 1 (mod 15);
B3 : 0 3 2 0 7 1 0 6 4 0 1 8 (mod 15); B4 : 0 9 1 0 4 2 0 3 4 0 2 8 (mod 15).

It is not difficult to verify that each A
j
0 forms an EDGDD(2

1112) on Z15 \ {0}, each Bk forms a DGDD(35) on Z15, and all A
j
x

andBk (x ∈ Z15, j ∈ Z3, k ∈ I4) are mutually disjoint. Therefore, these designs form the desired PECS∗(33 : 0) indeed. �

Lemma 5.4. There exists a PECS(6k : 2) for any integer k ≥ 3.

Proof. From [6], for k ≥ 3, there exists a 2-FG(3, ({3, 5}, {3, 5}, {4, 6}), 2k). Furthermore, takingm = 3, g = 2, r = 0, s = 2
and using Theorem 2.3, since

∃ PECS∗(3k : 0) for k ∈ {3, 5} by Lemmas 5.2 and 5.3,
∃ PDGDD(3k : 2) for k ∈ {3, 5} by Lemma 5.1,
∃ DF(3k) for k ∈ {4, 6} by Lemma 1.1,

we can get a PECS(6k : 2). �

Theorem 5.1. There exists an LEDTS(6k+ 2) for any integer k ≥ 0.

Proof. For k = 0, 1, 2, there exists an LEDTS(6k + 2) by Lemmas 4.2, 4.3 and 4.7. For k ≥ 3, there exist a PECS(6k : 2), an
LEDTS(8, 2) and an LEDTS(8) by Lemmas 4.3 and 5.4. Therefore, there exists an LEDTS(6k+ 2) by Theorem 2.1. �

6. Existence of LEDTS(6t + 4)

Lemma 6.1. There exists a PECS(33 : 1).

Proof. Let g be the primitive element of the field F9, and g2 = 1+ 2g . Take u 6∈ F9. We will construct a PECS(33 : 1), which
consists of

(1) 27EDGDD(4116)s, denoted byAjx, x ∈ F9, j ∈ Z3, whereAjx = A
j
0 + x;

(2) one DGDD(33), denoted byB.

Now, give the constructions for theseA
j
0 andBk as follows.

(1) For eachA
j
0, the point set is F9 ∪ {u}, the long group is G0 = {0, g, g

5, u}, and the blocks are listed as follows, where
the point ga is briefly denoted by its index a and the point 0 is denoted 8, but the point u is kept.

A00 : 0 8 0 2 8 2 3 1 3 4 1 4 6 1 6 7 8 7 0 u 6 2 u 3 3 u 2 4 u 7 6 u 0 7 u 4
8 3 4 7 3 6 6 3 8 5 6 4 0 2 4 2 6 7 3 5 7 4 2 5 5 3 0 6 5 2 0 1 7 1 2 0
7 0 5 4 0 3 7 2 1 4 8 6

A10 : 0 0 3 2 2 4 3 3 0 4 4 2 6 6 7 7 7 6 u 6 0 u 2 3 u 7 4 0 6 u 3 2 u 4 7 u
8 0 4 8 2 6 8 3 7 4 0 8 6 2 8 7 3 8 4 6 1 0 5 7 1 6 3 4 3 5 2 7 1 6 5 4
5 2 0 3 1 4 7 2 5 1 7 0 5 3 6 0 1 2

A20 : 4 0 0 6 2 2 2 3 3 7 4 4 0 6 6 3 7 7 u 3 0 u 2 4 u 6 7 0 3 u 4 2 u 7 6 u
8 2 0 8 6 3 3 8 4 0 5 2 6 4 5 5 4 3 4 6 8 7 2 8 0 8 7 3 5 6 5 7 0 2 7 5
2 6 1 4 7 1 1 6 0 1 7 3 0 1 4 3 1 2.

Clearly, eachA
j
x will be on F9 ∪ {u}with the long group G0 + x, x ∈ F9. Obviously, G0 + 0 = G0 + g = G0 + g5, G0 + 1 =

G0 + g2 = G0 + g7 and G0 + g3 = G0 + g4 = G0 + g6.
(2) ForB, the point set is F9, the group set is {{x, x+ g, x+ g5} : x = 0, 1, g3}, and the blocks are

B = {(0, g7, g4)+ i, (0, g3, 1)+ i : i ∈ F9}.

It is not difficult to verify that eachA
j
0 forms an EDGDD(4

116) on F9 ∪ {u}, theB forms a DGDD(33) on F9, and allA
j
x andB

(x ∈ F9, j ∈ Z3) are mutually disjoint. Therefore, these designs form the desired PECS(33 : 1) indeed. �
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Lemma 6.2. There exists a PECS(35 : 1).

Proof. Take Z15 ∪ {u} as the points, where u 6∈ Z15. Denote G0 = {0, 5, 10} and Gx = G0 + x, 0 ≤ x ≤ 4. We will construct
a PECS(35 : 1), which consists of

(1) 45EDGDD(41112)s, denoted byAjx, x ∈ Z15, j ∈ Z3, whereAjx = A
j
0 + x;

(2) one DGDD(35), denoted byB.

Now, construct theseA
j
0 (j ∈ Z3) andB as follows.

(1) EachA
j
0 is on Z15 ∪ {u}with the long group G0 ∪ {u}, and the blocks are listed as follows, where 10, 11, 12, 13, 14 are

written in 0, 1, 2, 3, 4.

A00 : (i) 1 4 1 2 4 2 3 0 3 4 3 4 6 4 6 7 1 7 8 4 8 9 0 9 1 8 1 2 8 2 3 1 3 4 3 4
(ii) 6 u 9 2 u 3 3 u 7 2 u 8 4 u 1 4 u 1 3 2 3 3 0 9 2 4 5 0 1 2 3 8 9 2 5 7

1 6 8 7 9 2 9 1 1 5 8 3 1 2 0 1 4 3 1 0 2 4 0 4 4 6 7 6 0 3 0 4 8 9 4 2
7 8 0 2 6 2 4 5 9 2 3 4 0 1 2 1 3 5 0 3 6 1 7 3 0 7 4 5 6 1

(iii) {cba : abc ∈ (ii)}

A10 : (i) 1 1 7 2 2 9 3 3 4 4 4 6 6 6 4 7 7 1 8 8 1 9 9 2 1 1 8 2 2 3 3 3 2 4 4 3
(ii) 9 1 u 4 2 u 3 7 u 3 4 u 6 8 u 1 2 u 0 4 1 3 4 8 1 4 0 8 9 4 3 8 1 1 2 7

6 1 3 2 4 2 7 2 6 2 4 9 5 6 4 3 5 2 4 7 4 9 3 3 4 0 3 1 5 9 4 5 1 7 3 5
8 2 5 3 1 1 8 0 2 9 0 7 0 2 1 0 3 6 0 6 9 0 7 8 2 6 1 0 1 4 0 2 3 0 3 2

(iii) {cba : abc ∈ (ii)}

A20 : (i) 7 1 1 9 2 2 4 3 3 6 4 4 4 6 6 1 7 7 1 8 8 2 9 9 8 1 1 3 2 2 2 3 3 3 4 4
(ii) 1 9 u 2 4 u 7 3 u 4 3 u 8 6 u 2 1 u 4 8 3 4 9 2 8 1 3 9 4 8 0 7 9 3 6 0

1 3 6 2 7 1 4 1 0 4 2 2 1 1 3 4 0 1 5 2 3 6 1 2 7 4 4 3 3 9 0 3 4 6 4 5
5 9 1 2 1 0 2 5 8 0 2 8 3 5 7 5 1 4 6 9 0 7 8 0 1 4 0 2 3 0 3 2 0 2 6 7

(iii) {cba : abc ∈ (ii)}.

Clearly, eachA
j
x will be on Z15 ∪ {u}with the long group Gx, 0 ≤ x ≤ 4, x ≡ xmod 5.

(2) ForB, the point set is Z15, the group set is {G0,G1,G2,G3,G4}, and the blocks are

B = {(0, 3, 4), (4, 3, 0), (0, 6, 8), (8, 6, 0)mod 15}.

It is not difficult to verify that eachA
j
0 forms an EDGDD(4

1112) on Z15 ∪ {u}, theB forms a DGDD(33) on Z15, and allA
j
x and

B (x ∈ Z15, j ∈ Z3) are mutually disjoint. Therefore, these designs form the desired PECS(35 : 1) indeed. �

Lemma 6.3. There exists a PECS(6k : 4) for any integer k ≥ 3.

Proof. From [6], for k ≥ 3, there exists a 2-FG(3, ({3, 5}, {3, 5}, {4, 6}), 2k). Furthermore, taking m = 3, g = 2, r = 1 and
using Theorem 2.2, since

∃ PECS(3k : 1) for k ∈ {3, 5} by Lemmas 6.1 and 6.2,
∃ DF(3k+1) for k ∈ {3, 5} and ∃ DF(3k) for k ∈ {4, 6} by Lemma 1.1,

we can get a PECS(6k : 4). �

Theorem 6.1. There exists an LEDTS(6k+ 4) if and only if k ≥ 1.

Proof. For k = 0, there does not exist LEDTS(4) by Lemma 4.1. For k = 1, 2, there exists an LEDTS(6k + 4) by Lemmas 4.4
and 4.8. For k ≥ 3, there exist PECS(6k : 4), LEDTS(10, 4) and LEDTS(14) by Lemmas 4.5, 4.7 and 6.3. Then, there exists an
LEDTS(6k+ 4) by Theorem 2.1. �

7. Existence of LEDTS(6t)

Theorem 7.1. There exists an LEDTS(6k) for any integer k ≥ 1.

Proof. Let 6k = 3tm, where t ≥ 1, m ≡ 2, 4mod6. By Theorems5.1 and 6.1, there exists an LEDTS(m) for any integerm ≥ 2
andm 6= 4. Using Theorem 2.4, we can get an LEDTS(3tm) for (t,m) 6= (1, 2), (1, 4), (2, 2). However, from Lemmas 4.2, 4.6
and 4.9, we can get

LEDTS(31 · 2) = LEDTS(6), LEDTS(31 · 4) = LEDTS(12) and LEDTS(32 · 2) = LEDTS(18).

So, there exists an LEDTS(6k) for any integer k ≥ 1. �
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8. Conclusion

Theorem 8.1. There exists an LEDTS(v) for any even v except v = 4.

Proof. We can get the conclusion by Theorems 5.1, 6.1 and 7.1 and Lemma 4.1. �
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