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Summary

Increasing evidence suggests that histone posttranslational

modifications (PTMs) function in a combinatorial fashion to
regulate the diverse activities associated with chromatin.

Yet how these patterns of histone PTMs influence the
adapter proteins known to bind them is poorly understood.

In addition, how histone-specific antibodies are influenced
by these same patterns of PTMs is largely unknown. Here

we examine the binding properties of histone-specific anti-
bodies and histone-interacting proteins using peptide

arrays containing a library of combinatorially modified
histone peptides. We find that modification-specific anti-

bodies are more promiscuous in their PTM recognition
than expected and are highly influenced by neighboring

PTMs. Furthermore, we find that the binding of histone-inter-
action domains from BPTF, CHD1, and RAG2 to H3 lysine

4 trimethylation is also influenced by combinatorial PTMs.
These results provide further support for the histone code

hypothesis and raise specific concerns with the quality

of the currently available modification-specific histone
antibodies.

Results and Discussion

Protein posttranslational modifications (PTMs), such as phos-
phorylation, methylation, acetylation, and ubiquitination, regu-
late many processes, such as protein degradation, protein
trafficking, and mediation of protein-protein interactions [1].
Perhaps the best-studied PTMs are those found to be associ-
ated with histone proteins. More than 100 histone PTMs have
been described, and they largely function by recruiting protein
factors to chromatin, which in turn drives processes such as
transcription, replication, and DNA repair [2]. Likewise, dozens
of chromatin-associating factors have been identified that
bind to distinct histone PTMs, and hundreds of modification-
specific histone antibodies have been developed to under-
stand the in vivo function of these modifications [3, 4].

The enormous number of potential combinations of histone
PTMs represents a major obstacle to our understanding of
how PTMs regulate chromatin-templated processes, as well
as to our ability to develop high-quality diagnostic tools for
chromatin and epigenetic studies. The same obstacle applies
to other proteins regulated by combinatorial PTMs: for
example, p53, RNA polymerase, and nuclear receptors [5–7].
To that end, we developed a peptide array-based platform to
begin to address how both histone-interacting proteins and
*Correspondence: brian_strahl@med.unc.edu
antibodies recognize combinations of PTMs. We focused
primarily on the recognition of PTMs associated with the
N-terminal tail of histone H3, but this approach is useful for
the study of other histone modifications and combinatorial
PTMs found on other nonhistone proteins.
We generated a library of 110 synthetic histone peptides

bearing either single or combinatorial PTMs and a biotin
moiety for immobilization (Figure 1; see also Table S1 available
online). Prior to printing, all peptides were subjected to
rigorous quality control to verify their accuracy. This is signifi-
cant because extensive peptide purification and mass spec-
trometric analysis is not possible with other recently described
array technologies used to study combinatorial histone PTMs
[8]. Another significant advancement in our method was the
introduction of a biotinylated fluorescent tracer molecule,
which served as a positive control for the quality of our printing
in all experiments. Lastly, peptides were printed as a series of
six spots, two times per slide by two different pins, yielding
24 independent measurements of every binding interaction
per slide. These measures were adopted to minimize binding
artifacts due to pin variation or inconsistencies on the slide
surface. Thus, these arrays offer a large number of extensively
characterized histone peptide substrates suitable for the
assessment of effector protein or antibody binding.
We initially used our arrays to ask two fundamental ques-

tions regarding the recognition of histone PTMs: (1) How well
do modification-directed antibodies recognize their intended
epitope? and (2) What impact, if any, do combinatorial PTMs
have on antibody recognition? We tested more than 20
commercially available antibodies raised against individual
modifications on histone tails (see Tables S2 and S3 for infor-
mation regarding antibodies and experimental conditions).
Generally, we found that antibodies were reasonably proficient
at recognizing their target modification (Figure S1). However,
we found several exceptions, notably the discrimination
between different methyllysine states by methyl-specific anti-
bodies and the recognition of histone H3 lysine 14 acetylation
(H3K14ac).
To explore methyllysine recognition, we tested the speci-

ficity of commercial antibodies raised against the three
different methylated forms (mono-, di-, and trimethyl) of H3
at lysines 4 and 79 (H3K4me and H3K79me) (Figure 2). These
antibodies were generally specific for their target lysine
residue; however, both the trimethyl- and dimethyl-directed
antibodies showedmeasurable cross-reactivity with dimethyl-
lysine and monomethyllysine, respectively (Figure 2A and
Figure S2). This finding has particular biological importance,
because each methylation state of a given histone lysine
residue is thought to mediate different biological outcomes
through the recruitment of distinct chromatin-associated
factors [9]. For example, H3K4me3 is well correlated with
transcriptional activation through the recruitment of histone
acetyltransferases and the preinitiation complex of transcrip-
tion [10–12]. Conversely, H3K4me2 was reported to recruit
the Set3 histone deacetylase complex [9]. The ability to distin-
guish between these methyl states is therefore necessary to
dissect how H3K4 methylation controls the balance of histone
acetylation and/or deacetylation at transcribed genes.
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Figure 1. Composition of Histone Peptide Arrays

(A) Peptides synthesized for this study with possible side-chain modifications (in single or combinatorial fashion) are indicated for each amino acid.

(B) Depiction of array surface. Streptavidin-coated glass slides were spotted with a library of histone peptides containing different combinations of post-

translational modifications (PTMs; see also Table S1 for complete peptide list). Biotin-fluorescein was mixed with the peptides and used as an internal

control for spotting efficiency.

(C) Fluorescent image from a sample array. Positive binding interactions are shown as red spots where only the printing control (green) is visible for negative

interactions.
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Wealso tested a number of antibodies raised against acetyl-
lysine found at position 14 of histone H3 (H3K14ac). Unlike
lysine methylation, our arrays detected that several of these
antibodies had difficulty in recognizing their target sequence,
preferring acetylation at lysine 36 (H3K36ac) instead (Fig-
ure 2B). Additionally, peptide competition assays verified the
interaction between the H3K14 antibodies and the H3K36ac
peptide (Figure 2C). This result is likely explained by the fact
that H3K14 and H3K36 are found in very similar sequence
contexts and are acetylated by the same enzyme in vivo (Fig-
ure 2D). Acetylation of both H3K14 and H3K36 is catalyzed by
the histone acetyltransferase Gcn5 [13]. However, H3K14ac is
reported to be recognized by the RSC complex in yeast,
whereas H3K36ac has been reported to be recognized by
the bromodomain of PCAF in human cells [14, 15]. Thus, mis-
detection of H3K36ac using H3K14ac-directed antibodies by
either western blot or chromatin immunoprecipitation may
obscure our understanding of chromatin-templated pro-
cesses regulated by H3K14 acetylation.

The large number of synthetic peptides containing combina-
torial PTMs allowed us to additionally ascertain how PTM
recognition is influenced by neighboring modifications. We
therefore did further analysis of the H3K4me3 antibodies to
determine how adjacent modifications affect substrate recog-
nition. We observed that a monoclonal antibody widely used
against H3K4me3 (Abcam; catalog number ab1012) is per-
turbed mainly by modification at histone H3 arginine 2 (H3R2)
(Figure 3A). In contrast, a widely used polyclonal antibody
from Millipore (catalog number 07-473) was negatively influ-
enced by H3T6 phosphorylation, and a similar antibody from
ActiveMotif (catalog number 39160) was not particularly sensi-
tive to any neighboring modifications (Figure 3A).
We also examined the well-characterized PTM ‘‘switch’’
region on histone H3, where H3K9 is modified by either acety-
lation or methylation and where the neighboring serine 10
(H3S10) is a target for phosphorylation [16]. A polyclonal anti-
body (Active Motif; catalog number 39253) raised against
H3S10 phosphorylation showed a statistically significant
reduction in binding to peptides also modified at H3K9
(Figures 3B and 3C). In contrast, an antibody raised against
both H3S10phos and H3K9ac (Cell Signaling; catalog number
9711) showed nearly absolute specificity for the peptide
containing both modifications (Figures 3B and 3C). These
data can be interpreted to suggest that biological changes in
acetylation andmethylation at H3K9would influence the ability
of antibodies derived against H3S10 phosphorylation to
appropriately detect this mark. Such findings are significant,
because H3S10 phosphorylation levels have already been
found to change during the cell cycle and in response to
histone deacetylase inhibitors [17–19].
Collectively, our analysis of histone PTM-specific antibodies

enabled us to uncover recognition of related (but off-target)
sequences in addition to adjacent PTM effects. This finding
is significant because several major ongoing initiatives aimed
at mapping and understanding how histone PTMs regulate
biology, such as the National Institutes of Health (NIH) Epi-
genomic Roadmap and ENCODE, heavily rely on modifica-
tion-specific antibodies [20].
In addition to being a powerful diagnostic tool for the

characterization of PTM-derived antibodies, we used our
peptide array technology to measure how PTM codes affect
the interaction of chromatin-associated proteins. Accordingly,
wemeasured the binding of several domains known to interact
with H3K4me3. We found that the PHD domain from the V(D)J
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Figure 2. Antibody Binding to Histone Peptide Microarrays

Results of two independent arrays consisting of 24 independent spots for

each peptide are depicted as heat maps of the normalized mean intensity

and plotted on a scale from 0 to 1, with 1 (yellow) being the most significant

(see Experimental Procedures).

(A) Interactions of H3K4- and H3K79-specific antibodies with methylated

peptides derived from the N terminus of histone H3 (antibodies used are

given in Table S1, and further information is given in Figures S1 and S3).

(B) Recognition of histone H3 acetyllysine peptides by H3K14ac antibodies.

(C) Western blot of yeast whole-cell extract probed with H3K14ac antibody

preincubated with various concentrations of histone H3 peptides.

(D) Alignment of sequence surrounding H3K14 and H3K16.
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recombination factor RAG2 was specific for H3K4me3 and
was blocked by phosphorylation at either H3T3 or H3T6
(Figure 4A). From the structure of the RAG2 PHD domain
bound to H3K4me3 peptide [21], it can clearly be seen how
H3T3 phosphorylation may disrupt binding. Varier and
coworkers very recently published that H3T3 phosphorylation
acts as a switch to control the binding of TAF3 PHD domain
[22]. Thus, this may be a general mechanism for controlling
gene expression during mitosis (when H3T3 is phosphory-
lated). Similarly, Garske and coworkers found that H3T6 phos-
phorylation may disrupt RAG2 binding [23].

We next examined the tandem bromo-PHD domains of
BPTF (subunit of the NURF ATP-dependent remodeling
complex [24]). Our studies showed that the tandem domain
was specific for H3K4me3 and also showed reduced binding
in the presence of either H3T3 or H3T6 phosphorylation (Fig-
ure 4B). However, both RAG2 and BPTF are blocked by citrul-
line, but not by methylation at position 2, suggesting a role for
the positive charge of H3R2 in PHD domain binding. Notably,
converting H3R2 to citrulline results in a loss of cationic charge
and likely loss of ionic and hydrogen bonding interactions
within the pockets of the two PHD domains (Figures 4A and
4B). Interestingly, our ability to synthesize and print long
peptides (R20 amino acids) allowed us to observe greater
interactions of BPTF (PHD-bromo) with H3K4me3 peptides
also harboring acetylation. We found that multiple acteylations
on H3 enhanced the binding of BPTF to H3K4me3 (Figure 4B
and Figure S3), suggesting coordination between the methyl-
binding PHD domain and the acetyl-binding bromodomain to
recognize multiple modifications on the histone H3 tail.
The chromodomain of human CHD1 is also known to recog-

nize H3K4me3 but has a structurally distinct binding pocket
from the PHD domains. We found that CHD1, like RAG2 and
BPTF,preferentiallybindsH3K4me3and isalsonegatively influ-
enced by phosphorylation at H3T3 and H3T6 (Figure 4C). Inter-
estingly, we also found that methylation of H3R2 appears to
slightlyenhancebindingofCHD1,whereascitrullinationatposi-
tion 2 blocks this binding. Although the finding that H3R2
methylation reduces binding affinity of human CHD1 to
H3K4me3 is in opposition to a previous report [25], this discrep-
ancy may be due to the fact that Flanagan and coworkers used
peptides labeled at the N terminus with fluorescein in their
binding studies, which may have contributed to the binding.
Consistent with our CHD1 findings, we and others have found
that H3R2 methylation does not decrease CHD1 binding to
H3K4me3 by either isothermal titration calorimetry (data not
shown) or fluorescence polarization using C-terminally labeled
peptides (Marcey Waters, personal communication). H3R2
methylation and H3K4me3 have been found to be mutually
exclusive in yeast and humans [26, 27]. Thus, H3R2methylation
and H3K4me3 may function in specific circumstances to
prevent the binding of effector proteins that promote gene tran-
scriptionwhile facilitating the recruitmentofCHD1 (andpossibly
other factors) to genes in order to promote gene silencing.
In conclusion, the complex patterns of histone PTMs are

critical determinants of chromatin structure and function, but
they also represent a significant challenge for future study.
Although many protein domains that bind selectively to partic-
ular PTMs have been identified, little is known regarding how
neighboring modifications inhibit or contribute to these inter-
actions. Of equal importance is our understanding of how
patterns of PTMs influence antibody recognition. In this
case, detection of biologically important events could be
blocked or misrepresented if neighboring modifications inter-
fere with epitope recognition. Thus, our work underscores
a need for more rigorous testing and characterization of
histone-specific antibodies. Similar antibody concerns have
been recently highlighted by other groups [20, 28]. The data
sets for the antibodies and proteins described here, plus
numerous additional antibodies, are available in Figure S1
and from our website (http://www.med.unc.edu/wbstrahl/
Arrays/index.htm). In addition, we will continue to characterize
histone antibody specificities and post the data to our website
as an ongoing resource for the chromatin community.
Finally, although several other peptide array approaches

have been used to measure binding to histone PTMs [8, 29–
31], our arrays and assay approaches offer several advan-
tages. First, our array displays a large number of peptides
carrying multiple PTMs that are fully characterized by high-
performance liquid chromatography (HPLC) and mass spec-
trometry (MS). Second, we take advantage of a biotin tracer
molecule to provide an assessment of printing efficiency.
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Figure 3. Effect of Neighboring Modifications on Histone Antibody Recognition

Results of two independent arrays consisting of 24 independent spots for each peptide are depicted as heat maps of the normalized mean intensity and

plotted on a scale from 0 to 1, with 1 (yellow) being the most significant (see Experimental Procedures).

(A) Heat map showing the effects of neighboring modifications on H3K4me3-specific antibody recognition. 3ac = K9ac, K14ac, and K18ac.

(B) Recognition of H3S10 phosphorylation by mono- and dual-specific PTM antibodies.

(C) Bar graph of data in (B). Differences in intensities were compared using two-way analyses of variance, and confidence intervals (99% [**]) are indicated

for individual comparisons. Further information is available in Figure S3.
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Lastly, the high density of spotting allows us to perform statis-
tical analysis of binding interactions. Although Liu et al.
recently reported a similarly semiquantitative approach, their
arrays were largely limited to peptides containing single
PTMs, and the peptides were labeled via their N terminus,
which could potentially occlude proteins and antibodies from
recognizing modifications such as H3K4 methylation [30].
Furthermore, cellulose SPOT synthesis technology is limited
by the inability to analytically characterize peptides [28]. In
addition, a very elegant bead-based approach has been
used to generate even larger peptide libraries and successfully
characterize the binding of several protein factors to combina-
torial histone PTMs [23]. However, our approach offers advan-
tages in that we obtain binding data for each individual peptide
and do not require sophisticated MS for the analysis. Regard-
less, several technologies now exist to enable the develop-
ment of PTM-specific antibodies with better specificity.
Furthermore, these technologies are useful for understanding
how combinations of PTMs coordinate protein-protein inter-
actions. This has important implications not only for chromatin
biologists but also for those who study the role of PTMs in
other systems [32].

Experimental Procedures

Antibodies

All primary antibodies tested are commercially available and are listed in

Table S2. Secondary antibodies were Alexa Fluor 647 conjugated goat

anti-rabbit IgG (catalog number A21244) and Alexa Fluor 647 conjugated

rabbit anti-mouse IgG (catalog number A21239) antibodies from Invitrogen.

Peptide Synthesis

All reagents were obtained from commercial suppliers (AnaSpec, EMD,

and Apptec). The peptides, biotinylated at their C termini, were
synthesized on either NovaPEG Rink amide resin (histone H3 peptides)

or Biotin-PEG NovaTag resin (histone H2A, H2B, and H4 peptides) using

fluorenylmethyloxycarbonyl (Fmoc) chemistry on a PS-3 automated

peptide synthesizer (see Table S1 for the complete list of peptides). All

standard amino acids were coupled using HATU and N-methylmorpholine

in dimethylformamide (DMF). Fmoc deprotection was performed using

20% piperidine in DMF. Modified amino acid residues were coupled using

HATU, HOAt, and N,N,-diisopropyletylamine in NMP, and the coupling of

these residues was monitored using ninhydrin test and repeated when

needed. Peptides were cleaved from the resins using a 2.5% TIS and

2.5% water in trifluoroacetic acid (TFA). After TFA evaporation and

washing with diethyl ether, the peptides were lyophilized from an acetoni-

trile/water solution and purified via preparative HPLC using water-acetoni-

trile gradient (0.1% TFA in both solvents) on a Waters SymmetryShield

RP-18 5 mm 19 3 150 mm column. All peptides were analyzed using

matrix-assisted laser desorption/ionization time-of-flight mass spectrom-

etry and analytical HPLC. The average purity of peptides was over 90%

(analytical HPLC). Analytical data for all peptides mentioned in this paper

is available on our website.
Array Fabrication

Biotinylated peptides (25 mMfinal concentration) in printing buffer (10mg/ml

bovine serum albumin [BSA, Amresco], 0.3% Tween-20, and 10 mM biotin-

conjugated fluorescein added to 13 ArrayIt protein printing buffer) were

arrayed onto SuperStreptavidin-coated slides (ArrayIt) using SMP6 stealth

pins (w200 mm spot diameter) and were arrayed onto OmniGrid100 arrayer

(Digilab/Genomic Solutions) at ambient temperature and humidity (50%–

60%) using the following printing parameters. To minimize effects from

individual pins or localized imperfections in the substrate arrays, we arrayed

samples as a series of six spots, two times on each slide at a spacing of

375 mm, as indicated in Table S4, and each peptide was printed by two

different pins on each slide. After printing, slides were incubated overnight

at 4�C in a humidified environment to facilitate interaction between the

biotinylated peptide and the streptavidin surface. Slides were then blocked

for 1 hr at 4�C with biotin-blocking buffer (ArrayIt), washed three times with

phosphate-buffered saline (PBS), dried with air, stored at 4�C, and used

within 60 days.
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Figure 4. Chromatin-Associating Domain Binding to Histone Peptide Arrays

(A) Top: heatmap of RAG2PHDdomain binding to histoneH3 peptides. Bottom:molecular representation of the RAG2PHDdomain binding to an H3K4me3-

containing peptide (PDB accession 2V83).

(B) Top: heat map of RAG2 PHD-Bromo domain binding to histone H3 peptides. Bottom: molecular representation of the BPTF PHD domain binding to an

H3K4me3-containing peptide (PDB accession 2F6J).

(C) Top: heat map of CHD1 chromodomain binding to histone H3 peptides. Bottom: molecular representation of the CHD1 chromodomain binding to an

H3K4me3-containing peptide (PDB accession 2B2W).

All models were constructed using PyMol software. Additional information is available in Figures S3 and S4.
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Antibody Binding

Antibody dilutions were made in PBS containing 1% BSA (w10 mg/ml) and

0.3% Tween-20; the exact concentration for each array is summarized in

Table S3. Antibodies were incubated with printed slides for 90–180 min at

4�C (with the exception of the H3K4me3 monoclonal antibody from Abcam,

which was incubated overnight) and washed three times with cold PBS.

Arrays were then probed with the appropriate Alexa Fluor 647 conjugated

secondary antibody (Invitrogen) for 30–60 min at 4�C, washed three times

with cold PBS, and dried. Arrays were then scanned using a Typhoon

TRIO+ imager (GE Healthcare) at 10 mm resolution using the 526 nm and

670 nm filter sets for the biotin-fluorescein and secondary antibody, respec-

tively. Interactions were quantified using ImageQuant array software

(GE Healthcare).

Protein Expression

The chromatin-associating domains from mouse RAG2 (PHD 387–493),

human BPTF (Bromo and PHD domain 2583–2751), and CHD1 (chromo-

domain 251–467) were C-terminally fused to GST in pGEX-4T. Proteins

were heterologously expressed in E. coli and purified by glutathione sephar-

ose affinity chromatography in PBS buffer (50mMphosphate, 150mMNaCl,

pH 7.6) on an AKTA purifier fast protein liquid chromatography system (GE

Healthcare).

Protein Binding

Prior to binding, arrays were blocked in PBS containing 5% BSA

(w50 mg/mL) and 0.3% Tween-20 for 1 hr at 4�C to reduce nonspecific

binding. Glutathione S-transferase (GST)-tagged protein (w25 mM) in the

same buffer was overlaid on each array (200 ml total volume) and incubated

in a hybridization chamber at 4�Covernight. Slides were washed three times

with cold PBS. Anti-GST primary antibody was incubated with slides for
90–180 min at 4�C and washed three times with cold PBS. Arrays were

then probed with the Alexa Fluor 647 conjugated anti-rabbit secondary anti-

body (Invitrogen) for 30–60 min at 4�C, washed three times with cold PBS,

and dried. Arrays were then scanned using a Typhoon TRIO+ imager

(GE Healthcare) at 10 mm resolution using the 526 nm and 670 nm filter

sets for the biotin-fluorescein and secondary antibody, respectively. Inter-

actions were quantified using ImageQuant array software (GE Healthcare).

Statistical Analysis

Briefly, printing of individual spots was evaluated based on the intensity of

the fluorescein-biotin cospotted with each peptide. Spots with control

intensities of less than 5% of the average intensity for all peptides were

labeled as ‘‘not spotted’’ and omitted from subsequent analysis. Data

were treated as four individual subarrays to account for small changes in

intensity across the slide, each subarray containing all 110 peptides spotted

six times. Alexa Fluor 647 intensities (corresponding to a positive interac-

tion) were normalized for all spots by dividing the intensity by the sum of

all intensities within a subarray. The six spots for each peptide were aver-

aged (outliers were removed using a Grubbs test) and treated as a single

value for a given subarray. The normalized intensities for the four subarrays

were used to calculate the mean, and the error is reported as the standard

error of the mean. For data displayed as heat maps, mean values were

normalized to either the highest calculated value across all peptides or

against the peptide for which a given antibody was supposed to interact.

Heat maps were created using Java Treeview, and all data were plotted

on a scale from 0 to 1 (Figure S1). Full data sets for all experiments are avail-

able at http://www.med.unc.edu/wbstrahl/Arrays/index.htm. Statistical

analyses were performed using GraphPad Prism software. Analyses of

variance were used to compare interactions, and confidence intervals are

reported as 95% (*), 99% (**), or 99.9% (***).

http://www.med.unc.edu/~bstrahl/Arrays/index.htm
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Schuchlautz, H., Lüscher, B., and Amati, B. (2007). Methylation of

histone H3R2 by PRMT6 and H3K4 by an MLL complex are mutually

exclusive. Nature 449, 933–937.

27. Kirmizis, A., Santos-Rosa, H., Penkett, C.J., Singer, M.A., Vermeulen,

M., Mann, M., Bähler, J., Green, R.D., and Kouzarides, T. (2007).

Argininemethylation at histone H3R2 controls deposition of H3K4 trime-

thylation. Nature 449, 928–932.

28. Bock, I., Dhayalan, A., Kudithipudi, S., Brandt, O., Rathert, P., and

Jeltsch, A. (2011). Detailed specificity analysis of antibodies binding

to modified histone tails with peptide arrays. Epigenetics 6, 256–263.

29. Bua, D.J., Kuo, A.J., Cheung, P., Liu, C.L., Migliori, V., Espejo, A.,

Casadio, F., Bassi, C., Amati, B., Bedford, M.T., et al. (2009).

Epigenome microarray platform for proteome-wide dissection of chro-

matin-signaling networks. PLoS ONE 4, e6789.

30. Liu, H., Galka, M., Iberg, A., Wang, Z., Li, L., Voss, C., Jiang, X., Lajoie,

G., Huang, Z., Bedford, M.T., and Li, S.S. (2010). Systematic identifica-

tion of methyllysine-driven interactions for histone and nonhistone

targets. J. Proteome Res. 9, 5827–5836.

31. Matthews, A.G., Kuo, A.J., Ramón-Maiques, S., Han, S., Champagne,

K.S., Ivanov, D., Gallardo, M., Carney, D., Cheung, P., Ciccone, D.N.,

et al. (2007). RAG2 PHD finger couples histone H3 lysine 4 trimethylation

with V(D)J recombination. Nature 450, 1106–1110.

32. Sims, R.J., 3rd, and Reinberg, D. (2008). Is there a code embedded in

proteins that is based on post-translational modifications? Nat. Rev.

Mol. Cell Biol. 9, 815–820.

http://dx.doi.org/doi:10.1016/j.cub.2010.11.058

	Influence of Combinatorial Histone Modifications on Antibody and Effector Protein Recognition
	Results and Discussion
	Experimental Procedures
	Antibodies
	Peptide Synthesis
	Array Fabrication
	Antibody Binding
	Protein Expression
	Protein Binding
	Statistical Analysis

	Supplemental Information
	Acknowledgments
	References


