Abstract
We consider the following prescribed scalar curvature problem on \mathbb{S}^N

$$
\begin{cases}
-\Delta_{\mathbb{S}^N} u + \frac{N(N-2)}{2} u = \tilde{K} u^{\frac{N+2}{N-2}} & \text{on } \mathbb{S}^N, \\
\end{cases}
$$

(*)

where \tilde{K} is positive and rotationally symmetric. We show that if \tilde{K} has a local maximum point between the poles then Eq. (*) has infinitely many non-radial positive solutions, whose energy can be made arbitrarily large.

Keywords: Prescribed scalar curvature; Elliptic equation; Reduction argument

1. Introduction

Consider the standard N-sphere (\mathbb{S}^N, g_0), $N \geq 3$. Let \tilde{K} be a fixed smooth function. The prescribed curvature problem asks if one can find a conformally invariant metric g such that the scalar curvature becomes \tilde{K}. The problem consists in solving the following equation on \mathbb{S}^N:

* Corresponding author.
E-mail addresses: wei@math.cuhk.edu.hk (J. Wei), syan@turing.une.edu.au (S. Yan).

© 2009 Elsevier Inc. All rights reserved.

\[
\begin{cases}
-\Delta_{\mathbb{S}^N} u + \frac{N(N - 2)}{2} u - \tilde{K}u^{\frac{N+2}{N-2}} = 0 & \text{on } \mathbb{S}^N, \\
u > 0.
(1.1)
\end{cases}
\]

Problem (1.1) does not always admit a solution. A first necessary condition for the existence is that \(\max_{\mathbb{S}^N} \tilde{K} > 0\), but there are also some obstructions, which are said of topological type. For example, a necessary condition is the following Kazdan–Warner condition:

\[
\int_{\mathbb{S}^N} \nabla \tilde{K} \cdot \nabla u \frac{2N}{N-2} = 0. \tag{1.2}
\]

The problem of determining which \(\tilde{K}\) admits a solution to (1.1) has been studied extensively. See [1,3–11,13–21,23,24,30] and the references therein. Some existence results have been obtained under some assumptions involving the Laplacian at the critical point of \(\tilde{K}\), see Chang and Yang [9], Bahri and Coron [3] and Schoen and Zhang [29] for the case \(N = 3\), and Y. Li [19] for the case \(N \geq 4\). For example, in Bahri and Coron [3], it is assumed that \(N = 3\), \(\tilde{K}\) is a positive Morse function with \(\Delta \tilde{K}(x) \neq 0\) if \(\nabla \tilde{K}(x) = 0\), then if \(m(x)\) denotes the Morse index of the critical point \(x\) of \(K\), (1.1) has a solution provided that

\[
\sum_{\nabla \tilde{K} = 0, \Delta \tilde{K}(x) < 0} (-1)^{m(x)} \neq -1. \tag{1.3}
\]

The result has been extended to any \(\mathbb{S}^N\), \(N \geq 3\) by Y. Li in [18,19]. Roughly, it is assumed that there exists \(\beta\), \(N - 2 < \beta < N\) such that

\[
\tilde{K}(\xi) = \tilde{K}(\xi_0) + \sum_{j=1}^{N} a_j |\xi_j - \xi_0, j|^{\beta} + \text{h.o.t.} \tag{1.4}
\]

where \(a_j \neq 0\), \(\sum_{j=1}^{N} a_j \neq 0\). Let \(\Sigma = \{\xi: \nabla \tilde{K}(\xi) = 0, \sum_{j=1}^{N} a_j < 0\}\) and \(i(\xi)\) be the number of \(a_j\) such that \(a_j < 0\). Then (1.1) has a solution provided

\[
\sum_{\xi \in \Sigma} (-1)^{i(\xi)} \neq (-1)^N. \tag{1.5}
\]

By using the stero-graphic projection, the prescribed scalar curvature problem (1.1) can be reduced to (1.6)

\[
\begin{cases}
-\Delta u = K(y)u^{\frac{N+2}{N-2}}, & u > 0, \ y \in \mathbb{R}^N, \\
u \in D^{1,2}(\mathbb{R}^N) \tag{1.6}
\end{cases}
\]

where \(D^{1,2}(\mathbb{R}^N)\) denotes the completion of \(C_0^\infty(\mathbb{R}^N)\) under the norm \(\int_{\mathbb{R}^N} |\nabla u|^2\).

Much less is known about the multiplicity of the solutions of (1.6). Amrosetti, Azorero and Peral [1], and Cao, Noussair and Yan [7] proved the existence of two or many solutions if \(K\) is a perturbation of the constant, i.e.
On the other hand, Y. Li proved in [16] that (1.6) has infinitely many solutions if $K(x)$ is periodic, while similar result was obtained in [30] if $K(x)$ has a sequence of strict local maximum points tending to infinity. Note that this condition for $K(x)$ at the infinity implies that the corresponding function \tilde{K} defined on \mathbb{S}^N has a singularity at the south pole.

In this paper, we consider the simplest case, i.e., \tilde{K} is rotationally symmetric, $K = K(r)$, $r = |y|$. It follows from the Pohozaev identity (1.2) that (1.6) has no solution if $K'(r)$ has fixed sign. Thus we assume that K is positive and not monotone. On the other hand, Bianchi [5] showed that any solution of (1.6) is radially symmetric if there is an $r_0 > 0$, such that $K(r)$ is non-increasing in $(0, r_0]$, and non-decreasing in $[r_0, +\infty)$. Moreover, in [6], it was proved that (1.6) has no solutions for some function $K(r)$, which is non-increasing in $(0, 1]$, and non-decreasing in $[1, +\infty)$. Therefore, we see that to obtain a solution for (1.6), it is natural to assume that $K(r)$ has a local maximum at $r_0 > 0$. The purpose of this paper is to answer the following two questions:

Q1. Does the existence of a local maximum of K guarantee the existence of a solution to (1.6)?

Q2. Are there non-radially symmetric solutions to (1.6)?

(Question Q2 has been asked by Bianchi [5].)

The aim of this paper is to show that if $K(r)$ has a local maximum at $r_0 > 0$, then (1.6) has infinitely many non-radial solutions. This answers Q1 and Q2 affirmatively. As far as we know, we believe our result is the first on the existence of infinitely many solution for (1.6).

We assume that $K(r)$ satisfies the following condition:

(K): There is a constant $r_0 > 0$, such that

$$K(r) = K(r_0) - c_0 |r - r_0|^m + O(|r - r_0|^{m+\theta}), \quad r \in (r_0 - \delta, r_0 + \delta),$$

where $c_0 > 0, \theta > 0$ are some constants, and the constant m satisfies $m \in [2, N - 2)$.

Without loss of generality, we assume that

$$K(r_0) = 1.$$

Our main result in this paper can be stated as follows:

Theorem 1.1. Suppose that $N \geq 5$. If $K(r)$ satisfies (K), then problem (1.6) has infinitely many non-radial solutions.

Remark 1.2. The condition (1.3) (or (1.5)) is a global one while our condition (K) is local.

Remark 1.3. Theorem 1.1 shows that the condition in [5] is optimal. We shall prove Theorem 1.1 by constructing solutions with large number of bubbles lying near the sphere $|y| = r_0$. So the energy of these solutions can be made arbitrary large and the distance between different bubbles can be made arbitrary small. When $N = 3, 4$, we know that the energy of the solutions to (1.6) is
uniformly bounded and the distance between bubbles is uniformly bounded from below. See [29] (for \(N = 3 \)) and Theorem 0.10 of [19] (for \(N = 4 \)). On the other hand, if \(K(y) = K(y_0) + O(|y - y_0|^m) \) where \(m \in [N - 2, N) \) for \(N \geq 5 \), the energy of solutions is also be bounded. See [19]. So our assumptions on \(N \) and \(m \) are almost optimal in the construction of the solutions in this paper.

Remark 1.4. The radial symmetry can be replaced by the following weaker symmetry assumption: after suitably rotating the coordinate system,

(K1) \(K(y) = K(y', y'') = K(|y'|, |y_{N_0 + 1}|, \ldots, |y_N|) \), where \(y = (y', y'') \in \mathbb{R}^2 \times \mathbb{R}^{N - 2} \).

(K2) \(K(y) = K(y_0) - c_0 |y - y_0|^m + O(|y - y_0|^m + \theta) \), \(|y'| \in ([|y_0'| - \delta, |y_0'| + \delta], |y''| \leq \delta \), where \(y_0 = (y_0', 0) \).

Remark 1.5. Theorem 1.1 exhibits a new phenomena for the prescribed scalar curvature problem. It suggests that if the critical points of \(K \) are not isolated, new solutions to (1.6) may bifurcate. We formulate the following conjecture in the general case.

Conjecture. Assume that the set \(\{ K(x) = \max_{x \in \mathbb{R}^N} K(x) \} \) is an \(l \)-dimensional smooth manifold without boundary, where \(1 \leq l \leq N - 1 \). The problem (1.6) admits infinitely many positive solutions.

Before we close this introduction, let us outline the main idea in the proof of Theorem 1.1.

Let us fix a positive integer

\[k \geq k_0 \]

where \(k_0 \) is a large integer, which is to be determined later.

Set

\[\mu = k^{\frac{N - 2 - m}{N - 2}} \]

to be the scaling parameter.

Let \(2^* = \frac{2N}{N - 2} \). Using the transformation \(u(y) \mapsto \mu^{-\frac{N - 2}{2}} u(\frac{y}{\mu}) \), we find that (1.6) becomes

\[
\begin{cases}
\Delta u = K\left(\frac{|y|}{\mu}\right) u^{2^* - 1}, \quad u > 0, \ y \in \mathbb{R}^N, \\
u \in D^{1,2}(\mathbb{R}^N).
\end{cases}
\] (1.8)

It is well known that the functions

\[U_{x, \Lambda}(y) = \left(N(N - 2)\right)^{\frac{N - 2}{2}} \left(\frac{\Lambda}{1 + \Lambda^2 |y - x|^2}\right)^{\frac{N - 2}{2}}, \quad \mu > 0, \ x \in \mathbb{R}^N, \]

are the only solutions to the problem

\[-\Delta u = u^{\frac{N + 2}{N - 2}}, \quad u > 0 \text{ in } \mathbb{R}^N. \]
Let \(y = (y', y'') \), \(y' \in \mathbb{R}^2 \), \(y'' \in \mathbb{R}^{N-2} \). Define

\[
H_s = \left\{ u: u \in D^{1,2}(\mathbb{R}^N), \text{ } u \text{ is even in } y_h, \ h = 2, \ldots, N, \right. \\
u(r \cos \theta, r \sin \theta, y') = u \left(r \cos \left(\theta + \frac{2\pi j}{k} \right), \ r \sin \left(\theta + \frac{2\pi j}{k} \right), y'' \right) \}
\]

Let

\[
x_j = \left(r \cos \frac{2(j-1)\pi}{k}, r \sin \frac{2(j-1)\pi}{k}, 0 \right), \quad j = 1, \ldots, k,
\]

where 0 is the zero vector in \(\mathbb{R}^{N-2} \), and let

\[
W_{r, \Lambda}(y) = (N(N - 2))^{N\cdot2} \sum_{j=1}^{k} \frac{\Lambda^{N\cdot2}}{1 + \Lambda^2 |y - x_j|^2}^{N\cdot2}.
\]

In this paper, we always assume that

\[
r \in \left[r_0 \mu - \frac{1}{\mu^\theta}, r_0 \mu + \frac{1}{\mu^\theta} \right], \quad \text{for some small } \bar{\theta} > 0,
\]

and

\[
L_0 \leq \Lambda \leq L_1, \quad \text{for some constants } L_1 > L_0 > 0.
\]

Theorem 1.1 is a direct consequence of the following result:

Theorem 1.6. Suppose that \(N \geq 5 \). If \(K(r) \) satisfies \((K) \), then there is an integer \(k_0 > 0 \), such that for any integer \(k \geq k_0 \), (1.8) has a solution \(u_k \) of the form

\[
u_k = W_{r_k, \Lambda_k}(y) + \omega_k,
\]

where \(\omega_k \in H_s \), and as \(k \to +\infty \), \(||\omega||_{L^\infty} \to 0 \), \(r_k \in [r_0 \mu - \frac{1}{\mu^\theta}, r_0 \mu + \frac{1}{\mu^\theta}] \), and \(L_0 \leq \Lambda_k \leq L_1 \).

We will use the techniques in the singularly perturbed elliptic problems to prove Theorem 1.6. We know that there is always a small parameter in a singularly perturbed elliptic problem. In Theorem 1.6, we only know that the number of the bubbles in the solutions are large. This suggests that although there is no parameter in (1.6), we can use \(k \), the number of the bubbles of the solutions, as the parameter in the construction of bubbles solutions for (1.6). This is the new idea of this paper. This is partly motivated by recent paper of Lin, Ni and Wei [22] where they constructed multiple spikes to a singularly perturbed problem. There they allowed the number of spikes to depend on the small parameter.

The main difficulty in constructing solution with \(k \)-bubbles is that we need to obtain a better control of the error terms. Since the number of the bubbles is large, it is very hard to carry out the reduction procedure by using the standard norm as in [2,25]. Noting that the maximum norm will
not be affected by the number of the bubbles, we will carry out the reduction procedure in a space with weighted maximum norm. Similar weighted maximum norm has been used in [12,26–28]. But the estimates in the reduction procedure in this paper are much more complicated than those in [12,26–28], because the number of the bubbles is large.

2. Finite-dimensional reduction

In this section, we perform a finite-dimensional reduction.

Let
\[
\|u\|_* = \sup_{y \in \mathbb{R}^N} \left(\sum_{j=1}^{k} \frac{1}{1 + |y - x_j|^N} \right)^{-1} |u(y)|,
\] (2.1)

and
\[
\|f\|_{**} = \sup_{y \in \mathbb{R}^N} \left(\sum_{j=1}^{k} \frac{1}{1 + |y - x_j|^N} \right)^{-1} |f(y)|,
\] (2.2)

where \(\tau = 1 + \bar{\eta}\) and \(\bar{\eta} > 0\) is small.

Let
\[
Z_{i,1} = \frac{\partial U_{x_i,\Lambda}}{\partial r}, \quad Z_{i,2} = \frac{\partial U_{x_i,\Lambda}}{\partial \Lambda}.
\]

Consider
\[
\begin{cases}
-\Delta \phi_k - (2^* - 1) K \left(\frac{|y|}{\mu} \right) W_{r,\Lambda}^2 \phi_k = h_k + \sum_{j=1}^{2} c_j \sum_{i=1}^{k} U_{x_i,\Lambda}^{2^* - 2} Z_{i,j}, & \text{in } \mathbb{R}^N, \\
\phi_k \in H_i, \\
\langle U_{x_i,\Lambda}^{2^* - 2} Z_{i,l}, \phi_k \rangle = 0 & i = 1, \ldots, k, \quad l = 1, 2,
\end{cases}
\] (2.3)

for some numbers \(c_i\), where \(\langle u, v \rangle = \int_{\mathbb{R}^N} uv\).

Lemma 2.1. Assume that \(\phi_k\) solves (2.3) for \(h = h_k\). If \(\|h_k\|_{**}\) goes to zero as \(k\) goes to infinity, so does \(\|\phi_k\|_*\).

Proof. We argue by contradiction. Suppose that there are \(k \to +\infty, \ h = h_k, \ \Lambda_k \in [L_1, L_2], \ r_k \in [r_0 \mu - \frac{1}{\mu^p}, r_0 \mu + \frac{1}{\mu^p}]\), and \(\phi_k\) solving (2.3) for \(h = h_k, \ \Lambda = \Lambda_k, \ r = r_k, \) with \(\|h_k\|_{**} \to 0\), and \(\|\phi_k\|_* \geq c'> 0\). We may assume that \(\|\phi_k\|_* = 1\). For simplicity, we drop the subscript \(k\).
We rewrite (2.3) as
\[
\phi(y) = (2^* - 1) \int_{\mathbb{R}^N} \frac{1}{|z - y|^{N-2}} K\left(\frac{|z|}{\mu}\right) W_{r, \Lambda}^{2^*-2} \phi(z) \, dz
\]
\[+ \int_{\mathbb{R}^N} \frac{1}{|z - y|^{N-2}} \left(h(z) + \sum_{j=1}^2 c_j \sum_{i=1}^k Z_{i,j}(z) U_{x_i, \Lambda}^{2^*-2} (z) \right) \, dz. \tag{2.4}
\]

Using Lemma B.3, we have
\[
\left| (2^* - 1) \int_{\mathbb{R}^N} \frac{1}{|z - y|^{N-2}} K\left(\frac{|z|}{\mu}\right) W_{r, \Lambda}^{2^*-2} \phi(z) \, dz \right|
\leq C \|\phi\| \int_{\mathbb{R}^N} \frac{1}{|z - y|^{N-2}} W_{r, \Lambda}^{2^*-2} \sum_{j=1}^k \frac{1}{(1 + |z - x_j|)^{\frac{N-2}{2} + \tau}} \, dz
\leq C \|\phi\| \sum_{j=1}^k \frac{1}{(1 + |y - x_j|)^{\frac{N-2}{2} + \tau}}. \tag{2.5}
\]

It follows from Lemma B.2 that
\[
\left| \int_{\mathbb{R}^N} \frac{1}{|z - y|^{N-2}} h(z) \, dz \right| \leq C \|h\| \int_{\mathbb{R}^N} \frac{1}{|z - y|^{N-2}} \sum_{j=1}^k \frac{1}{(1 + |z - x_j|)^{\frac{N-2}{2} + \tau}} \, dz
\leq C \|h\| \sum_{j=1}^k \frac{1}{(1 + |y - x_j|)^{\frac{N-2}{2} + \tau}}, \tag{2.6}
\]
and
\[
\left| \int_{\mathbb{R}^N} \frac{1}{|z - y|^{N-2}} \sum_{i=1}^k Z_{i,l}(z) U_{x_i, \Lambda}^{2^*-2}(z) \, dz \right| \leq C \sum_{i=1}^k \int_{\mathbb{R}^N} \frac{1}{|z - y|^{N-2}} \frac{1}{(1 + |z - x_i|)^{N+2}} \, dz
\leq C \sum_{i=1}^k \frac{1}{(1 + |y - x_i|)^{\frac{N-2}{2} + \tau}}. \tag{2.7}
\]

Next, we estimate \(c_l, l = 1, 2\). Multiplying (2.3) by \(Z_{1,l}\) and integrating, we see that \(c_l\) satisfies
\[
\sum_{i=1}^k \sum_{l=1}^2 \left(U_{x_i, \Lambda}^{2^*-2} Z_{i,l} \right) c_l = \left(-\Delta \phi - (2^* - 1) K\left(\frac{|y|}{\mu}\right) W_{r, \Lambda}^{2^*-2} \phi, Z_{1,l} \right) - \left(h, Z_{1,l} \right). \tag{2.8}
\]
It follows from Lemma B.1 that

$$\left| \langle h, Z_{1,l} \rangle \right| \leq C \|h\|_{**} \int_{\mathbb{R}^N} \frac{1}{(1 + |z - x_1|)^{N-2}} \sum_{j=1}^{k} \frac{1}{(1 + |z - x_j|)^{N-2 + \tau}} dz \leq C \|h\|_{**}.$$

On the other hand,

$$\left\langle \frac{\Delta}{1} \phi - (2^* - 1) K \left(\frac{|z|}{\mu} \right) W_{r,A}^{2^*-2} \phi, Z_{1,l} \right\rangle$$

$$= \left\langle \frac{\Delta}{1} Z_{1,l} - (2^* - 1) K \left(\frac{|z|}{\mu} \right) W_{r,A}^{2^*-2} Z_{1,l}, \phi \right\rangle$$

$$= (2^* - 1) \left(1 - K \left(\frac{|z|}{\mu} \right) W_{r,A}^{2^*-2} Z_{1,l}, \phi \right)$$

$$= \|\phi\|_{O} \left(\int_{\mathbb{R}^N} K \left(\frac{|z|}{\mu} \right) - 1 \left| W_{r,A}^{2^*-2}(z) \right| \right.$$

$$\left. \times \frac{1}{(1 + |z - x_1|)^{N-2}} \sum_{j=1}^{k} \frac{1}{(1 + |z - x_j|)^{N-2 + \tau}} dz \right),$$

(2.9)

Similar to the proof of Lemma B.3, we obtain

$$\int_{|z| - \mu r_0 \leq \sqrt{\mu}} \left| K \left(\frac{|z|}{\mu} \right) - 1 \right| W_{r,A}^{2^*-2}(z) \frac{1}{(1 + |z - x_1|)^{N-2}} \sum_{j=1}^{k} \frac{1}{(1 + |z - x_j|)^{N-2 + \tau}} dz$$

$$\leq C \sqrt{\mu} \int_{\mathbb{R}^N} W_{r,A}^{2^*-2}(z) \frac{1}{(1 + |z - x_1|)^{N-2}} \sum_{j=1}^{k} \frac{1}{(1 + |z - x_j|)^{N-2 + \tau}} dz$$

$$\leq C \sqrt{\mu},$$

and

$$\int_{|z| - \mu r_0 \geq \sqrt{\mu}} \left| K \left(\frac{|z|}{\mu} \right) - 1 \right| W_{r,A}^{2^*-2}(z) \frac{1}{(1 + |z - x_1|)^{N-2}} \sum_{j=1}^{k} \frac{1}{(1 + |z - x_j|)^{N-2 + \tau}} dz$$

$$\leq C \mu^\sigma \int_{\mathbb{R}^N} W_{r,A}^{2^*-2}(z) \frac{1}{(1 + |z - x_1|)^{N-2}} \sum_{j=1}^{k} \frac{1}{(1 + |z - x_j|)^{N-2 + \tau - 2\sigma}} dz$$

$$\leq C \mu^\sigma,$$
since if \(|z| - \mu r_0 \geq \sqrt{\mu}\), then
\[|z| - |x_1| \geq |z| - \mu r_0 - |x_1| - \mu r_0 \geq \sqrt{\mu} - \frac{1}{\mu^{\theta}} \geq \frac{1}{2} \sqrt{\mu}. \]

Thus,
\[
\int_{\mathbb{R}^N} |K\left(\frac{|z|}{\mu}\right) - 1| W_{r, A}^{2^* - 2}(z) \frac{1}{(1 + |z - x_1|)^{N-2}} \sum_{j=1}^{k} \frac{1}{(1 + |z - x_j|)^{\frac{N-2}{2} + \tau}} dz \leq \frac{C}{\mu^{\sigma}},
\]
which, together with (2.9), gives
\[
\left\langle -\Delta \phi - (2^* - 1) K\left(\frac{|z|}{\mu}\right) W_{r, A}^{2^* - 2} \phi, Z_{1,l}\right\rangle = \|\phi\|_\ast O\left(\frac{1}{\mu^{\sigma}}\right). \tag{2.10}
\]

But there is a constant \(\tilde{c} > 0\),
\[
\sum_{i=1}^{k} \left\langle U_{x_i, A}^{2^* - 2} Z_{i,l}, Z_{1,l}\right\rangle = (\tilde{c} + o(1)) \delta_{tl}.
\]

Thus we obtain from (2.8) that
\[
c_l = O\left(\frac{1}{\mu^{\sigma}} \|\phi\|_\ast + \|h\|_{**}\right). \tag{2.11}
\]

So,
\[
\|\phi\|_\ast \leq \left(\|h_k\|_{**} + \sum_{j=1}^{k} \frac{1}{(1 + |y - x_j|)^{\frac{N-2}{2} + \tau + \theta}}\right). \tag{2.12}
\]

Since \(\|\phi\|_\ast = 1\), we obtain from (2.12) that there is \(R > 0\), such that
\[
\|\phi(y)\|_{B_R(x_i)} \geq a > 0, \tag{2.13}
\]
for some \(i\). But \(\hat{\phi}(y) = \phi(y - x_i)\) converges uniformly in any compact set to a solution \(u\) of
\[
-\Delta u - (2^* - 1) U_{0, A}^{2^* - 2} u = 0, \quad \text{in } \mathbb{R}^N, \tag{2.14}
\]
for some \(A \in [L_1, L_2]\), and \(u\) is perpendicular to the kernel of (2.14). So, \(u = 0\). This is a contradiction to (2.13). \(\square\)

From Lemma 2.1, using the same argument as in the proof of Proposition 4.1 in [12], we can prove the following result:
Proposition 2.2. There exists $k_0 > 0$ and a constant $C > 0$, independent of k, such that for all $k \geq k_0$ and all $h \in L^\infty(\mathbb{R}^N)$, problem (2.3) has a unique solution $\phi \equiv L_k(h)$. Besides,

$$\|L_k(h)\|\ast \leq C\|h\|\ast\ast, \quad |c_l| \leq C\|h\|\ast\ast. \quad (2.15)$$

Now, we consider

$$\begin{cases}
-\Delta (W_{r,A} + \phi) = K \left(\frac{|y|}{\mu} \right) (W_{r,A} + \phi)^{2^* - 1} + \sum_{t=1}^{2} c_t \sum_{i=1}^{k} U_{x_i,A}^{2^* - 2} Z_{i,t}, \quad \text{in } \mathbb{R}^N, \\
\phi_k \in H_s, \quad \langle U_{x_i,A}^{2^* - 2} Z_{i,l}, \phi_k \rangle = 0, \quad i = 1, \ldots, k, \quad l = 1, 2.
\end{cases} \quad (2.16)$$

We have

Proposition 2.3. There is an integer $k_0 > 0$, such that for each $k \geq k_0$, $L_0 \leq A \leq L_1$, $|r - \mu r_0| \leq \frac{1}{\mu^\theta}$, where $\theta > 0$ is a fixed small constant, (2.16) has a unique solution $\phi = \phi(r,A)$, satisfying

$$\|\phi\|\ast \leq C \left(\frac{1}{\mu} \right)^{\frac{m}{2} + \sigma}, \quad |c_l| \leq C \left(\frac{1}{\mu} \right)^{\frac{m}{2} + \sigma},$$

where $\sigma > 0$ is a small constant.

Rewrite (2.16) as

$$\begin{cases}
-\Delta \phi - (2^* - 1) K \left(\frac{|y|}{\mu} \right) W^{2^* - 2}_{r,A} \phi = N(\phi) + l_k + \sum_{t=1}^{2} c_t \sum_{i=1}^{k} U_{x_i,A}^{2^* - 2} Z_{i,t}, \quad \text{in } \mathbb{R}^N, \\
\phi \in H_s, \quad \langle U_{x_i,A}^{2^* - 2} Z_{i,l}, \phi \rangle = 0, \quad i = 1, \ldots, k, \quad l = 1, 2,
\end{cases} \quad (2.17)$$

where

$$N(\phi) = K \left(\frac{|y|}{\mu} \right) ((W_{r,A} + \phi)^{2^* - 1} - W_{r,A}^{2^* - 1} - (2^* - 1) W_{r,A}^{2^* - 2} \phi),$$

and

$$l_k = K \left(\frac{|y|}{\mu} \right) W_{r,A}^{2^* - 1} - \sum_{j=1}^{k} U_{x_j,A}^{2^* - 1}.$$
Lemma 2.4. If \(N \geq 5 \), then

\[
\| N(\phi) \|_{**} \leq C \| \phi \|_{*}^{\min(2^*-1, 2)}.
\]

Proof. We have

\[
| N(\phi) | \leq \begin{cases}
C |\phi|^{2^*-1}, & N \geq 6; \\
CW_{r, A}^{\frac{1}{2}} \phi^2 + C |\phi|^{\frac{7}{3}}, & N = 5.
\end{cases}
\]

Firstly, we consider \(N \geq 6 \). Using the Hölder inequality, we obtain

\[
| N(\phi) | \leq C \| \phi \|_{*}^{2^*-1} \left(\sum_{j=1}^{k} \frac{1}{(1 + |y - x_j|)^{\frac{N-2}{2} + \tau}} \right)^{2^*-1}
\]

\[
\leq C \| \phi \|_{*}^{2^*-1} \sum_{j=1}^{k} \frac{1}{(1 + |y - x_j|)^{\frac{N+2}{2} + \tau}} \left(\sum_{j=1}^{k} \frac{1}{(1 + |y - x_j|)^{\tau}} \right)^{\frac{4}{N-2}}
\]

\[
\leq C \| \phi \|_{*}^{2^*-1} \sum_{j=1}^{k} \frac{1}{(1 + |y - x_j|)^{\frac{N+2}{2} + \tau}},
\]

(2.18)

since

\[
\sum_{j=1}^{k} \frac{1}{(1 + |y - x_j|)^{\tau}} \leq C + \sum_{j=2}^{k} \frac{C}{|x_1 - x_j|^\tau} \leq C.
\]

Thus, the result follows.

It remains to prove the result for \(N = 5 \). Similar to (2.18), we have

\[
| N(\phi) | \leq C \| \phi \|_{*}^{2} \left(\sum_{i=1}^{k} \frac{1}{(1 + |y - x_i|)^{\frac{5}{3}}} \right)^{\frac{1}{3}} \left(\sum_{j=1}^{k} \frac{1}{(1 + |y - x_j|)^{\frac{2}{3} + \tau}} \right)^{\frac{2}{3}}
\]

\[
+ \| \phi \|_{*}^{\frac{7}{3}} \left(\sum_{i=1}^{k} \frac{1}{(1 + |y - x_i|)^{\frac{3}{2} + \tau}} \right)^{\frac{2}{3}}
\]

\[
\leq C (\| \phi \|_{*}^{2} + \| \phi \|_{*}^{\frac{7}{3}}) \left(\sum_{i=1}^{k} \frac{1}{(1 + |y - x_i|)^{\frac{3}{2} + \tau}} \right)^{\frac{2}{3}}
\]

\[
\leq C \| \phi \|_{*}^{2} \sum_{i=1}^{k} \frac{1}{(1 + |y - x_i|)^{\frac{7}{2} + \tau}}.
\]
Thus, for $N = 5$,

$$
\| N(\phi) \|_{*}^{**} \leq C \| \phi \|_{*}^{2}.
$$

Next, we estimate l_k.

Lemma 2.5. Assume that $| |x_1| - \mu r_0| \leq \frac{1}{\mu^\theta}$, where $\theta > 0$ is a fixed small constant. If $N \geq 5$, then there is a small $\sigma > 0$, such that

$$
\| l_k \|_{*}^{**} \leq C \left(\frac{1}{\mu} \right)^{\frac{m}{2} + \sigma}.
$$

Proof. Define

$$
\Omega_j = \left\{ y: y = (y', y'') \in \mathbb{R}^2 \times \mathbb{R}^{N-2}, \left(\frac{y'}{|y'|}, \frac{x_j}{|x_j|} \right) \geq \cos \frac{\pi}{k} \right\}.
$$

We have

$$
l_k = K \left(\frac{|y|}{\mu} \right) \left(W^{2s-1}_{r, \Lambda} - \sum_{j=1}^{k} U^{2s-1}_{x_j, \Lambda} \right) + \sum_{j=1}^{k} U^{2s-1}_{x_j, \Lambda} \left(K \left(\frac{|y|}{\mu} \right) - 1 \right)
= : J_1 + J_2.
$$

From the symmetry, we can assume that $y \in \Omega_1$. Then,

$$
|y - x_j| \geq |y - x_1|, \quad \forall y \in \Omega_1.
$$

Thus,

$$
|J_1| \leq C \frac{1}{(1 + |y - x_1|)^4} \sum_{j=2}^{k} \frac{1}{(1 + |y - x_j|)^{N-2}}
+ C \left(\sum_{j=2}^{k} \frac{1}{(1 + |y - x_j|)^{N-2}} \right)^{2s-1}.
$$

(2.19)

Using Lemma B.1, for any $0 < \alpha \leq \min(4, N - 2)$, we obtain

$$
\frac{1}{(1 + |y - x_1|)^4} \sum_{j=2}^{k} \frac{1}{(1 + |y - x_j|)^{N-2}}
\leq C \sum_{j=2}^{k} \left(\frac{1}{(1 + |y - x_1|)^{N+2-\alpha}} + \frac{1}{(1 + |y - x_j|)^{N+2-\alpha}} \right) \frac{1}{|x_j - x_1|^{\alpha}}
$$
\[
\begin{align*}
\leq C \frac{1}{(1 + |y - x_1|)^{N+2-\alpha}} \sum_{j=2}^{k} \frac{1}{|x_j - x_1|^\alpha} & \leq C \frac{1}{(1 + |y - x_1|)^{N+2-\alpha}} \frac{k^\alpha}{\mu^\alpha}.
\end{align*}
\] (2.20)

Since \(\tau < 2 \), we can choose \(\alpha > \frac{N-2}{2} \) with \(N + 2 - \alpha > \frac{N+2}{2} + \tau \). Thus

\[
\frac{1}{(1 + |y - x_1|)^{N-2}} \sum_{j=2}^{k} \frac{1}{(1 + |y - x_j|)^{N-2}} \leq C \frac{1}{(1 + |y - x_1|)^{\frac{N+2}{2} + \tau}} \left(\frac{1}{\mu} \right)^{\frac{m}{2} + \sigma}.
\] (2.21)

On the other hand, for \(y \in \Omega_1 \), using Lemma B.1 again,

\[
\frac{1}{(1 + |y - x_1|)^{N-2}} \leq \frac{1}{(1 + |y - x_1|)^{\frac{N-2}{2}} (1 + |y - x_j|)^{\frac{N-2}{2}}}
\leq C \frac{1}{|x_j - x_1|^{\frac{N-2}{2}} - \frac{N-2}{N+2} \tau}
\times \left(\frac{1}{(1 + |y - x_1|)^{\frac{N-2}{2} + \frac{N-2}{N+2} \tau}} + \frac{1}{(1 + |y - x_j|)^{\frac{N-2}{2} + \frac{N-2}{N+2} \tau}} \right)
\leq \frac{C}{|x_j - x_1|^{\frac{N-2}{2}} - \frac{N-2}{N+2} \tau} \frac{1}{(1 + |y - x_1|)^{\frac{N-2}{2} + \frac{N-2}{N+2} \tau}}.
\]

If \(N \geq 5 \), \(\tau = 1 + \bar{\eta} \) and \(\bar{\eta} > 0 \) is small, then \(\frac{N-2}{2} - \frac{N-2}{N+2} \tau > 1 \). Thus

\[
\sum_{j=2}^{k} \frac{1}{(1 + |y - x_j|)^{N-2}} \leq C \left(\frac{k}{\mu} \right)^{\frac{N-2}{2} - \frac{N-2}{N+2} \tau} \frac{1}{(1 + |y - x_1|)^{\frac{N-2}{2} + \frac{N-2}{N+2} \tau}},
\]

which gives

\[
\left(\sum_{j=2}^{k} \frac{1}{(1 + |y - x_j|)^{N-2}} \right)^{2^\alpha - 1} \leq C \left(\frac{k}{\mu} \right)^{\frac{N+2}{2} - \tau} \frac{1}{(1 + |y - x_1|)^{\frac{N+2}{2} + \tau}}.
\]

Thus, we have proved

\[
\| J_1 \|_{**} \leq C \left(\frac{1}{\mu} \right)^{\frac{m}{2} + \sigma}.
\]

Now, we estimate \(J_2 \). For \(y \in \Omega_1 \), and \(j > 1 \), using Lemma B.1, we have

\[
U_{x_j,A}^{2^\alpha - 1}(y) \leq C \frac{1}{(1 + |y - x_1|)^{\frac{N+2}{2}}} \frac{1}{(1 + |y - x_j|)^{\frac{N+2}{2}}}
\leq C \frac{1}{(1 + |y - x_1|)^{\frac{N+2}{2} + \tau}} \frac{1}{|x_1 - x_j|^{\frac{N+2}{2} - \tau}}.
\]
which implies
\[
\left| \sum_{j=2}^{k} \left(K\left(\frac{|y|}{\mu} \right) - 1 \right) U_{x_{j-1}}^{\ast} \right| \leq C \frac{1}{(1 + |y - x_{1}|)^{N+2+\tau}} \sum_{j=2}^{k} \frac{1}{|x_{1} - x_{j}|^{N+2-\tau}} \\
\leq C \frac{1}{(1 + |y - x_{1}|)^{N+2+\tau}} \left(\frac{k}{\mu} \right)^{N+2-\tau}.
\] (2.22)

For \(y \in \Omega_{1} \) and \(||y| - \mu r_{0}|| \geq \delta \mu \), where \(\delta > 0 \) is a fixed constant, then
\[
||y| - |x_{1}|| \geq ||y| - \mu r_{0}| - |x_{1}| - \mu r_{0}| \geq \frac{1}{2} \delta \mu.
\]
As a result,
\[
\left| U_{x_{1},\Lambda}^{\ast} \left(K\left(\frac{|y|}{\mu} \right) - 1 \right) \right| \leq C \frac{1}{(1 + |y - x_{1}|)^{N+2+\tau}} \frac{1}{\mu^{N+2-\tau}}.
\] (2.23)

If \(y \in \Omega_{1} \) and \(||y| - \mu r_{0}|| \leq \delta \mu \), then
\[
\left| K\left(\frac{|y|}{\mu} \right) - 1 \right| \leq C \frac{|y| - r_{0}|}{\mu^{m}} \leq C \frac{|y| - r_{0}|}{\mu^{m}} \left((||y| - |x_{1}|||^{m} + |x_{1}| - \mu r_{0}|^{m}) \right)
\leq C \frac{|y| - |x_{1}||^{m}}{\mu^{m}} + C \frac{C}{\mu^{m+\sigma}},
\]
and
\[
||y| - |x_{1}|| \leq ||y| - \mu r_{0}| + |\mu r_{0} - |x_{1}|| \leq 2 \delta \mu.
\]
As a result,
\[
\frac{||y| - |x_{1}||^{m}}{\mu^{m}} \leq C \frac{1}{(1 + |y - x_{1}|)^{N+2}}
\leq C \frac{|y| - |x_{1}|}{\mu^{N+2+\sigma}} (1 + |y - x_{1}|)^{N+2}
\leq C \frac{1}{\mu^{N+2+\sigma}} (1 + |y - x_{1}|)^{N+2+\tau} \frac{1}{(1 + |y - x_{1}|)^{N+2+\tau}}
\leq C \frac{1}{\mu^{N+2+\tau}}.
\]

since \(\frac{N+2}{2} - \tau - \frac{m}{2} - \sigma \geq \frac{N+2}{2} - \tau - \frac{N-2}{2} - \sigma > 0 \). Thus, we obtain
\[
\left| U_{x_{1},\Lambda}^{\ast} \left(K\left(\frac{|y|}{\mu} \right) - 1 \right) \right| \leq C \frac{1}{\mu^{N+2+\tau}} (1 + |y - x_{1}|)^{N+2+\tau} |y| - \mu r_{0} \leq \delta \mu.
\] (2.24)
Combining (2.22), (2.23) and (2.24), we reach
\[\| J_2 \|_{**} \leq C \left(\frac{1}{\mu} \right)^{\frac{m}{2} + \sigma}. \quad \Box \]

Now, we are ready to prove Proposition 2.3.

Proof of Proposition 2.3. Let us recall that\[\mu = k N - 2 N - m - 2. \]

Let \[E = \left\{ u: u \in C(\mathbb{R}^N) \cap H_s, \| u \|_s \leq \left(\frac{1}{\mu} \right)^{\frac{m}{2}}, \int_{\mathbb{R}^N} U_{x_i}^{2s-2} Z_{i,l} \phi = 0, \quad i = 1, \ldots, k, \quad l = 1, 2 \right\}. \]

Then, (2.17) is equivalent to
\[\phi = A(\phi) =: L_k(N(\phi)) + L_k(l_k), \]
where \(L_k \) is defined in Proposition 2.2. We will prove that \(A \) is a contraction map from \(E \) to \(E \).

In fact,
\[
\| A(\phi) \|_* \leq C \| N(\phi) \|_{**} + C \| l_k \|_{**} \\
\leq C \| \phi \|_*^{\min(2^*-1,2)} + C \left(\frac{1}{\mu} \right)^{\frac{m}{2} + \sigma} \\
\leq C \left(\frac{1}{\mu} \right)^{\frac{m}{2} \min(2^*-1,2)} + C \left(\frac{1}{\mu} \right)^{\frac{m}{2} + \sigma} \\
\leq C \left(\frac{1}{\mu} \right)^{\frac{m}{2} + \sigma} \leq \left(\frac{1}{\mu} \right)^{\frac{m}{2}}. \quad (2.25)
\]

Thus, \(A \) maps \(E \) to \(E \).

On the other hand,
\[\| A(\phi_1) - A(\phi_2) \|_* = \| L_k(N(\phi_1)) - L_k(N(\phi_2)) \|_* \leq C \| N(\phi_1) - N(\phi_2) \|_{**}. \]

If \(N \geq 6 \), then
\[|N'(t)| \leq C|t|^{2^*-2}. \]

As a result,
\[|N(\phi_1) - N(\phi_2)| \leq C \left(|\phi_1|^{2^* - 2} + |\phi_2|^{2^* - 2} \right) |\phi_1 - \phi_2| \]

\[\leq C \left(\|\phi_1\|_a^{2^* - 2} + \|\phi_2\|_a^{2^* - 2} \right) \|\phi_1 - \phi_2\|_* \left(\sum_{j=1}^{k} \frac{1}{(1 + |y - x_j|)^{N-2+\tau}} \right)^{2^* - 1} \]

\[\leq C \left(\|\phi_1\|_a^{2^* - 2} + \|\phi_2\|_a^{2^* - 2} \right) \|\phi_1 - \phi_2\|_* \leq \frac{1}{2} \|\phi_1 - \phi_2\|_* . \]

Thus, \(A \) is a contraction map.

The case \(N = 5 \) can be discussed in a similar way.

It follows from the contraction mapping theorem that there is a unique \(\phi \in E \), such that

\[\phi = A(\phi) . \]

Moreover, it follows from Proposition 2.2 that

\[\|\phi\|_* \leq C \left(\frac{1}{\mu} \right)^{\frac{m}{2} + \sigma} . \]

Finally, the estimate of \(c_I \) comes from (2.15). See also (2.11). \(\square \)

3. Proof of Theorem 1.6

Let

\[F(r, A) = I(W_{r, A} + \phi), \]

where \(r = |x_1| , \phi \) is the function obtained in Proposition 2.3, and

\[I(u) = \frac{1}{2} \int_{\mathbb{R}^N} |Du|^2 - \frac{1}{2^*} \int_{\mathbb{R}^N} K\left(\frac{|y|}{\mu} \right) |u|^{2^*} . \]

Proposition 3.1. We have

\[F(r, A) = I(W_{r, A}) + O\left(\frac{k}{\mu^{m+\sigma}} \right) = k \left(A + \frac{B_1}{A^m \mu^m} + \frac{B_2}{A^{m-2} \mu^m} (\mu r_0 - |x_1|)^2 \right) \]

\[\quad - \sum_{j=2}^{k} \frac{B_3}{A^{N-2} |x_1 - x_j|^{N-2}} + O\left(\frac{1}{\mu^{m+\sigma}} + \frac{1}{\mu^m} |\mu r_0 - |x_1||^3 \right) , \]

where \(\sigma > 0 \) is a fixed constant, \(B_i > 0 , i = 1, 2, 3 \), is some constant.
Proof. Since
\[\langle I'(Wr, \Lambda + \phi), \phi \rangle = 0, \quad \forall \phi \in E, \]
there is \(t \in (0, 1) \) such that
\[
F(r, \Lambda) = I(Wr, \Lambda) - \frac{1}{2} D^2 I(Wr + t\phi)(\phi, \phi)
\]
\[
= I(Wr, \Lambda) - \frac{1}{2} \int_{\mathbb{R}^N} \left(|D\phi|^2 - (2^* - 1) K \left(\frac{|y|}{\mu} \right) (Wr, \Lambda + t\phi)^{2^* - 2} \phi^2 \right)
\]
\[
= I(Wr, \Lambda) + \frac{2^* - 1}{2} \int_{\mathbb{R}^N} K \left(\frac{|y|}{\mu} \right) ((Wr + t\phi)^{2^* - 2} - Wr^{2^* - 2}) \phi^2
\]
\[
- \frac{1}{2} \int_{\mathbb{R}^N} (N(\phi) + l_k) \phi
\]
\[
= I(Wr, \Lambda) + O \left(\int_{\mathbb{R}^N} (|\phi|^{2^*} + |N(\phi)||\phi| + |l_k||\phi|) \right).
\]

But
\[
\int_{\mathbb{R}^N} \left(|N(\phi)||\phi| + |l_k||\phi| \right) \leq C \left(\|N(\phi)\|_* + \|l_k\|_* \right) \|\phi\|_*
\]
\[
\times \int_{\mathbb{R}^N} \sum_{j=1}^k \frac{1}{(1 + |y - x_j|)^{\frac{N+2}{2} + \tau}} \sum_{i=1}^k \frac{1}{(1 + |y - x_i|)^{\frac{N-2}{2} + \tau}}.
\]
Using Lemma B.1
\[
\sum_{j=1}^k \frac{1}{(1 + |y - x_j|)^{\frac{N+2}{2} + \tau}} \sum_{i=1}^k \frac{1}{(1 + |y - x_i|)^{\frac{N-2}{2} + \tau}}
\]
\[
= \sum_{j=1}^k \frac{1}{(1 + |y - x_j|)^{N+2\tau}} + \sum_{j=1}^k \sum_{i \neq j} \frac{1}{(1 + |y - x_j|)^{\frac{N+2}{2} + \tau}} \frac{1}{(1 + |y - x_i|)^{\frac{N-2}{2} + \tau}}
\]
\[
\leq \sum_{j=1}^k \frac{1}{(1 + |y - x_j|)^{N+2\tau}} + C \sum_{j=1}^k \frac{1}{(1 + |y - x_j|)^{N+\tau}} \sum_{j=2}^k \frac{1}{|x_j - x_i|^\tau}
\]
\[
\leq C \sum_{j=1}^k \frac{1}{(1 + |y - x_j|)^{N+\tau}} ,
\]
since \(\tau > 1 \). Thus, we obtain
\[
\int_{\mathbb{R}^N} (|N(\phi)||\phi| + |I_k||\phi|) \leq C k \left(\|N(\phi)\|_{**} + \|I_k\|_{**} \right) |\phi|_* \leq C k \left(\frac{1}{\mu} \right)^{m+\sigma}.
\]

On the other hand,
\[
\int_{\mathbb{R}^N} |\phi|^{2*} \leq C \|\phi\|_*^{2*} \int_{\mathbb{R}^N} \left(\sum_{j=1}^{k} \frac{1}{(1 + |y - x_j|)^{\frac{N-2}{2} + \tau}} \right)^{2*}.
\]

But using Lemma B.1, if \(y \in \Omega_1 \),
\[
\sum_{j=2}^{k} \frac{1}{(1 + |y - x_j|)^{\frac{N-2}{2} + \tau}} \leq \sum_{j=2}^{k} \frac{1}{(1 + |y - x_1|)^{\frac{N-2}{2} + \tau}} \frac{1}{(1 + |y - x_j|)^{\frac{N-2}{2} + \frac{1}{2} \bar{\eta}}}
\]
\[
\leq C \frac{1}{(1 + |y - x_1|)^{\frac{N-2}{2} + \frac{1}{2} \bar{\eta}}} \sum_{j=2}^{k} \frac{1}{|x_j - x_1|^{\bar{\eta} - \frac{1}{2} \bar{\eta}}}
\]
\[
\leq C \frac{1}{(1 + |y - x_1|)^{\frac{N-2}{2} + \frac{1}{2} \bar{\eta}}}, \quad y \in \Omega_1.
\]

Thus,
\[
\left(\sum_{j=1}^{k} \frac{1}{(1 + |y - x_j|)^{\frac{N-2}{2} + \tau}} \right)^{2*} \leq \frac{C}{(1 + |y - x_1|)^{N + 2* \frac{1}{2} \bar{\eta}}}, \quad y \in \Omega_1.
\]

Thus,
\[
\int_{\mathbb{R}^N} \left(\sum_{j=1}^{k} \frac{1}{(1 + |y - x_j|)^{\frac{N-2}{2} + \tau}} \right)^{2*} \leq C k.
\]

So, we have proved
\[
\int_{\mathbb{R}^N} |\phi|^{2*} \leq C k \|\phi\|_*^{2*} \leq C k \left(\frac{1}{\mu} \right)^{m+\sigma}. \quad \square
\]

Proposition 3.2. We have

\[
\frac{\partial F(r, \Lambda)}{\partial \Lambda} = k \left(- \frac{B_1 m}{\Lambda^{m+1} \mu^m} + \sum_{j=2}^{k} \frac{B_3 (N-2)}{\Lambda^{N-1} |x_1 - x_j|^{N-2}} \right.
\]
\[
+ O \left(\frac{1}{\mu^{m+\sigma}} + \frac{1}{\mu^m} |\mu r_0 - |x_1|^2| \right).
\]
where \(\sigma > 0 \) is a fixed constant.

Proof. We have

\[
\frac{\partial F(r, \Lambda)}{\partial \Lambda} = \left[I'(W_{r, \Lambda} + \phi), \frac{\partial W_{r, \Lambda}}{\partial \Lambda} + \frac{\partial \phi}{\partial \Lambda} \right] = \left[I'(W_{r, \Lambda} + \phi), \frac{\partial W_{r, \Lambda}}{\partial \Lambda} \right] + \sum_{l=1}^{k} \sum_{i=1}^{l} c_l \int \left[U_{x_i, \Lambda}^{2^* - 2} Z_{i,l}, \frac{\partial \phi}{\partial \Lambda} \right].
\]

But

\[
\left(U_{x_i, \Lambda}^{2^* - 2} Z_{i,l}, \frac{\partial \phi}{\partial \Lambda} \right) = -\left(\frac{\partial (U_{x_i, \Lambda}^{2^* - 2} Z_{i,l})}{\partial \Lambda}, \phi \right).
\]

Thus, using Proposition 2.3,

\[
\left| \sum_{l=1}^{k} c_l \int \left[U_{x_i, \Lambda}^{2^* - 2} Z_{i,l}, \frac{\partial \phi}{\partial \Lambda} \right] \right| \leq C |c_l| \| \phi \| \int \frac{1}{(1 + |y - x_i|)^{N+2}} \times \sum_{j=1}^{k} \frac{1}{(1 + |y - x_j|)^{\frac{N-2}{2} + \tau}} \leq \frac{C}{\mu^{m+\sigma}}.
\]

On the other hand,

\[
\int_{\mathbb{R}^N} D(W_{r, \Lambda} + \phi)D \frac{\partial W_{r, \Lambda}}{\partial \Lambda} = \int_{\mathbb{R}^N} DW_{r, \Lambda}D \frac{\partial W_{r, \Lambda}}{\partial \Lambda},
\]

and

\[
\int_{\mathbb{R}^N} K \left(\frac{|y|}{\mu} \right) (W_{r, \Lambda} + \phi)^{2^* - 1} \frac{\partial W_{r, \Lambda}}{\partial \Lambda} \]

\[
= \int_{\mathbb{R}^N} K \left(\frac{|y|}{\mu} \right) W_{r, \Lambda}^{2^* - 1} \frac{\partial W_{r, \Lambda}}{\partial \Lambda} + (2^* - 1) \int_{\mathbb{R}^N} K \left(\frac{|y|}{\mu} \right) W_{r, \Lambda}^{2^* - 2} \frac{\partial W_{r, \Lambda}}{\partial \Lambda} \phi + O \left(\int_{\mathbb{R}^N} |\phi|^{2^*} \right).
\]

Moreover, from \(\phi \in E \),

\[
\int_{\mathbb{R}^N} K \left(\frac{|y|}{\mu} \right) W_{r, \Lambda}^{2^* - 2} \frac{\partial W_{r, \Lambda}}{\partial \Lambda} \phi = \int_{\mathbb{R}^N} K \left(\frac{|y|}{\mu} \right) \left(W_{r, \Lambda}^{2^* - 2} \frac{\partial W_{r, \Lambda}}{\partial \Lambda} - \sum_{j=1}^{k} U_{x_j, \Lambda}^{2^* - 2} \frac{\partial U_{x_j, \Lambda}}{\partial \Lambda} \right) \phi.
\]
\[+ \sum_{j=1}^{k} \int_{\mathbb{R}^N} \left(K \left(\frac{|y|}{\mu} \right) - 1 \right) U_{x_j, A}^{2^*-2} \frac{\partial U_{x_j, A}}{\partial A} \phi \]

\[= k \int_{\Omega_1} K \left(\frac{|y|}{\mu} \right) \left(W_{r, A}^{2^*-2} \frac{\partial W_{r, A}}{\partial A} - \sum_{j=1}^{k} U_{x_j, A}^{2^*-2} \frac{\partial U_{x_j, A}}{\partial A} \right) \phi \]

\[+ k \int_{\mathbb{R}^N} \left(K \left(\frac{|y|}{\mu} \right) - 1 \right) U_{x_1, A}^{2^*-2} \frac{\partial U_{x_1, A}}{\partial A} \phi, \]

\[\left| \int_{\Omega_1} K \left(\frac{|y|}{\mu} \right) \left(W_{r, A}^{2^*-2} \frac{\partial W_{r, A}}{\partial A} - \sum_{j=1}^{k} U_{x_j, A}^{2^*-2} \frac{\partial U_{x_j, A}}{\partial A} \right) \phi \right| \]

\[\leq C \int_{\Omega_1} \left(U_{x_1, A}^{2^*-2} \sum_{j=2}^{k} U_{x_j, A} + \sum_{j=2}^{k} U_{x_j, A}^{2^*-1} \right) |\phi| \]

\[\leq \frac{C}{\mu^{m+\sigma}}, \]

and

\[\left| \int_{\mathbb{R}^N} \left(K \left(\frac{|y|}{\mu} \right) - 1 \right) U_{x_1, A}^{2^*-2} \frac{\partial U_{x_1, A}}{\partial A} \phi \right| \]

\[\leq \left| \int_{||y|-\mu r_0| \leq \sqrt{\mu}} \left(K \left(\frac{|y|}{\mu} \right) - 1 \right) U_{x_1, A}^{2^*-2} \frac{\partial U_{x_1, A}}{\partial A} \phi \right| \]

\[+ \left| \int_{||y|-\mu r_0| \geq \sqrt{\mu}} \left(K \left(\frac{|y|}{\mu} \right) - 1 \right) U_{x_1, A}^{2^*-2} \frac{\partial U_{x_1, A}}{\partial A} \phi \right| \]

\[\leq \frac{C}{\mu^{m+\sigma}}. \]

Thus, we have proved

\[\frac{\partial F(r, A)}{\partial A} = \frac{\partial I(W_{r, A})}{\partial A} + O \left(\frac{1}{\mu^{m+\sigma}} \right), \]

and the result follows from Proposition A.2. \qed

Since

\[|x_j - x_1| = 2|x_1| \sin \left(\frac{j - 1}{k} \pi \right), \quad j = 2, \ldots, k, \]

we have
\[
\sum_{j=2}^{k} \frac{1}{|x_j - x_1|^{N-2}} = \frac{1}{(2|x_1|)^{N-2}} \sum_{j=2}^{k} \frac{1}{(\sin \left(\frac{(j-1)\pi}{k} \right))^{N-2}}
= \begin{cases} \\
\frac{1}{(2|x_1|)^{N-2}} \sum_{j=2}^{k} \frac{1}{(\sin \left(\frac{(j-1)\pi}{k} \right))^{N-2}} + \frac{1}{(2|x_1|)^{N-2}}, & \text{if } k \text{ is even;}
\frac{1}{(2|x_1|)^{N-2}} \sum_{j=2}^{\left\lfloor \frac{k}{2} \right\rfloor} \frac{1}{(\sin \left(\frac{(j-1)\pi}{k} \right))^{N-2}}, & \text{if } k \text{ is odd.}
\end{cases}
\]

But
\[
0 < c' \leq \frac{\sin \left(\frac{(j-1)\pi}{k} \right)}{(j-1)\pi} \leq c'', \quad j = 2, \ldots, \left\lceil \frac{k}{2} \right\rceil.
\]

So, there is a constant \(B_4 > 0 \), such that
\[
\sum_{j=2}^{k} \frac{1}{|x_j - x_1|^{N-2}} = B_4 k^{N-2} + O \left(\frac{k}{|x_1|^{N-2}} \right).
\]

Thus, we obtain
\[
F(r, \Lambda) = k \left(A + \frac{B_1}{\Lambda^m \mu^m} + \frac{B_2}{\Lambda^{m-2} \mu^m} (\mu r_0 - r)^2
- \frac{B_4 k^{N-2}}{\Lambda^{N-2} r^{N-2}} + O \left(\frac{1}{\mu^{m+\sigma}} + \frac{1}{\mu^m |\mu r_0 - r|^3 + \frac{k}{r^{N-2}}} \right) \right),
\]

and
\[
\frac{\partial F(r, \Lambda)}{\partial \Lambda} = k \left(-\frac{B_1 m}{\Lambda^{m+1} \mu^m} + \frac{B_4 (N-2) k^{N-2}}{\Lambda^{N-1} r^{N-2}}
+ O \left(\frac{1}{\mu^{m+\sigma}} + \frac{1}{\mu^m |\mu r_0 - r|^2 + \frac{k}{r^{N-2}}} \right) \right).
\]

Let \(A_0 \) be the solution of
\[
-\frac{B_1 m}{\Lambda^{m+1}} + \frac{B_4 (N-2)}{\Lambda^{N-1} r_0^{N-2}} = 0.
\]

Then
\[
A_0 = \left(\frac{B_4 (N-2)}{B_1 m r_0^{N-2}} \right)^{\frac{1}{N-2-m}}.
\]
Define
\[D = \{(r, \Lambda): r \in \left[\mu r_0 - \frac{1}{\mu^{\bar{\theta}}}, \mu r_0 + \frac{1}{\mu^{\bar{\theta}}} \right], \Lambda \in \left[\Lambda_0 - \frac{1}{\mu^{\frac{1}{2}\bar{\theta}}}, \Lambda_0 + \frac{1}{\mu^{\frac{1}{2}\bar{\theta}}} \right]\}, \]

where \(\bar{\theta} > 0\) is a small constant.
For any \((r, \Lambda) \in D\), we have
\[
\frac{r}{\mu} = r_0 + O\left(\frac{1}{\mu^{1+\bar{\theta}}}\right).
\]
Thus,
\[
r^{N-2} = \mu^{N-2}\left(r_0^{N-2} + O\left(\frac{1}{\mu^{1+\bar{\theta}}}\right)\right).
\]
So,
\[
F(r, \Lambda) = k\left(A + \left(\frac{B_1}{A^{m+1}} - \frac{B_4}{A^{N-2}r_0^{N-2}}\right)\frac{1}{\mu^{m}} + \frac{B_2}{A^{m-2}\mu^{m_1}}(\mu r_0 - r)^2\right.
\]
\[
+ O\left(\frac{1}{\mu^{m+\sigma}} + \frac{1}{\mu^{m}}|\mu r_0 - r|^3 + \frac{k}{\mu^{N-2}}\right)\), \quad (r, \Lambda) \in D, \quad (3.1)
\]
and
\[
\frac{\partial F(r, \Lambda)}{\partial \Lambda} = k\left(\left(-\frac{B_1 m}{A^{m+1}} + \frac{B_4(N-2)}{A^{N-1}r_0^{N-2}}\right)\frac{1}{\mu^m}\right.
\]
\[
+ O\left(\frac{1}{\mu^{m+\sigma}} + \frac{1}{\mu^{m}}|\mu r_0 - r|^2 + \frac{k}{\mu^{N-2}}\right)\), \quad (r, \Lambda) \in D. \quad (3.2)
\]
Now, we define
\[
\tilde{F}(r, \Lambda) = -F(r, \Lambda), \quad (r, \Lambda) \in D.
\]
Let
\[
\alpha_2 = k(-A + \eta), \quad \alpha_1 = k\left(-A - \left(\frac{B_1}{A_0^{m+1}} - \frac{B_4}{A_0^{N-2}r_0^{N-2}}\right)\frac{1}{\mu^{m}} + \frac{1}{\mu^{m+\bar{\theta}}}\right),
\]
where \(\eta > 0\) is a small constant.
Let
\[
\tilde{F}^\alpha = \{(r, \Lambda) \in D, \quad \tilde{F}(r, \Lambda) \leq \alpha\}.
\]
Consider
\[
\begin{align*}
\frac{dr}{dt} &= -D_r \bar{F}, \quad t > 0; \\
\frac{d\Lambda}{dt} &= -D_{\Lambda} \bar{F}, \quad t > 0; \\
(r, \Lambda) &\in F^{\alpha_2}.
\end{align*}
\]

Then

\textbf{Proposition 3.3.} The flow \((r(t), \Lambda(t))\) does not leave \(D\) before it reaches \(F^{\alpha_1}\).

\textbf{Proof.} If \(\Lambda = \Lambda_0 + \frac{1}{\mu^{\frac{2}{3}\theta}}\), noting that \(|r - \mu r_0| \leq \frac{1}{\mu^2}\), we obtain from (3.2) that
\[
\frac{\partial \bar{F}(r, \Lambda)}{\partial \Lambda} = k \left(c' \frac{1}{\mu^{m+\frac{3}{2}\theta}} + O\left(\frac{1}{\mu^{m+2\theta}} \right) \right) > 0.
\]

So, the flow does not leave \(D\).

Similarly, if \(\Lambda = \Lambda_0 - \frac{1}{\mu^{\frac{2}{3}\theta}}\), then we obtain from (3.2) that
\[
\frac{\partial \bar{F}(r, \Lambda)}{\partial \Lambda} = k \left(-c' \frac{1}{\mu^{m+\frac{3}{2}\theta}} + O\left(\frac{1}{\mu^{m+2\theta}} \right) \right) < 0.
\]

So, the flow does not leave \(D\).

Suppose now \(|r - \mu r_0| = \frac{1}{\mu^\theta}\). Since \(|\Lambda - \Lambda_0| \leq \frac{1}{\mu^{\frac{2}{3}\theta}}\), we see
\[
\begin{align*}
\frac{B_1}{\Lambda^m} &- \frac{B_4}{\Lambda^N - 2 r_0^{N-2}} = \frac{B_1}{\Lambda_0^m} - \frac{B_4}{\Lambda_0^{N-2} r_0^{N-2}} + O\left(|\Lambda - \Lambda_0|^2 \right) \\
&= \frac{B_1}{\Lambda_0^m} - \frac{B_4}{\Lambda_0^{N-2} r_0^{N-2}} + O\left(\frac{1}{\mu^{3\theta}} \right).
\end{align*}
\]

So, using (3.1), we obtain
\[
\bar{F}(r, \Lambda) = k \left(-A - \left(\frac{B_1}{\Lambda_0^m} - \frac{B_4}{\Lambda_0^{N-2} r_0^{N-2}} \right) \frac{1}{\mu^m} - \frac{B_2}{\Lambda_0^{m-2} \mu^m} (\mu r_0 - r)^2 + O\left(\frac{1}{\mu^{m+3\theta}} \right) \right)
\]
\[
\leq k \left(-A - \left(\frac{B_1}{\Lambda_0^m} - \frac{B_4}{\Lambda_0^{N-2} r_0^{N-2}} \right) \frac{1}{\mu^m} - \frac{B_2}{\Lambda_0^{m-2} \mu^{m+2\theta}} + O\left(\frac{1}{\mu^{m+3\theta}} \right) \right)
\]
\[
< \alpha_1. \quad \Box \quad (3.3)
\]
Proof of Theorem 1.6. We will prove that \bar{F}, and thus F, has a critical point in D.

Define

$$
\Gamma = \left\{ h: h(r, \Lambda) = (h_1(r, \Lambda), h_2(r, \Lambda)) \in D, (r, \Lambda) \in D, \right. \\
\left. h(r, \Lambda) = (r, \Lambda), \text{ if } |r - \mu r_0| = \frac{1}{\mu^\theta} \right\}.
$$

Let

$$
c = \inf_{h \in \Gamma} \max_{(r, \Lambda) \in D} \bar{F}(h(r, \Lambda)).
$$

We claim that c is a critical value of \bar{F}. To prove this, we need to prove

(i) $\alpha_1 < c < \alpha_2$;
(ii) $\sup_{|r - \mu r_0| = \frac{1}{\mu^\theta}} \bar{F}(h(r, \Lambda)) < \alpha_1$, $\forall h \in \Gamma$.

To prove (ii), let $h \in \Gamma$. Then for any \bar{r} with $|\bar{r} - \mu r_0| = \frac{1}{\mu^\theta}$, we have $h(\bar{r}, \Lambda) = (\bar{r}, \tilde{\Lambda})$ for some $\tilde{\Lambda}$. Thus, by (3.3),

$$
\bar{F}(h(r, \Lambda)) = \bar{F}(\bar{r}, \tilde{\Lambda}) < \alpha_1.
$$

Now we prove (i). It is easy to see that

$$
c < \alpha_2.
$$

For any $h = (h_1, h_2) \in \Gamma$. Then $h_1(r, \Lambda) = r$, if $|r - \mu r_0| = \frac{1}{\mu^\theta}$. Define

$$
\tilde{h}_1(r) = h_1(r, \Lambda_0).
$$

Then $\tilde{h}_1(r) = r$, if $|r - \mu r_0| = \frac{1}{\mu^\theta}$. So, there is an $\bar{r} \in (\mu r_0 - \frac{1}{\mu^\theta}, \mu r_0 + \frac{1}{\mu^\theta})$, such that

$$
\tilde{h}_1(\bar{r}) = \mu r_0.
$$

Let $\tilde{\Lambda} = h_2(\bar{r}, \Lambda_0)$. Then from (3.1)

$$
\max_{(r, \Lambda) \in D} \bar{F}(h(r, \Lambda)) \geq \bar{F}(h(\bar{r}, \Lambda_0)) = \bar{F}(\mu r_0, \tilde{\Lambda})
$$

$$
= k \left(-A - \left(\frac{B_1}{\tilde{\Lambda}_0} - \frac{B_4}{\tilde{\Lambda}_0^{N-2} r_0^{N-2}} \right) \frac{1}{\mu^m} + O \left(\frac{1}{\mu^m + \sigma} + \frac{k}{\mu^{N-2}} \right) \right)
$$

$$
= k \left(-A - \left(\frac{B_1}{\Lambda_0} - \frac{B_4}{\Lambda_0^{N-2} r_0^{N-2}} \right) \frac{1}{\mu^m} + O \left(\frac{1}{\mu^m + 3\sigma} \right) \right) > \alpha_1. \quad \Box
Acknowledgments

The first author is supported by an Earmarked Grant from RGC of Hong Kong. The second author is partially supported by ARC.

Appendix A. Energy expansion

In all of Appendixes A and B, we always assume that

\[x_j = \left(r \cos \left(\frac{2(j-1)\pi}{k} \right), r \sin \left(\frac{2(j-1)\pi}{k} \right), 0 \right), \quad j = 1, \ldots, k, \]

where 0 is the zero vector in \(\mathbb{R}^{N-2} \), and \(r \in [r_0 \mu - \frac{1}{\mu^\theta}, r_0 \mu + \frac{1}{\mu^\theta}] \) for some small \(\bar{\theta} > 0 \).

Let recall that

\[\mu = k^{\frac{N-2}{2}} \sum_{i=1}^{N-2}, \]

\[I(u) = \frac{1}{2} \int_{\mathbb{R}^N} |Du|^2 - \frac{1}{2\pi} \int_{\mathbb{R}^N} K\left(\frac{|y|}{\mu} \right) |u|^{2^*}, \]

\[U_{x_j,\Lambda}(y) = \left(N(N-2) \right)^{\frac{N-2}{4}} \frac{\Lambda^{N-2}}{(1 + A^2|y-x_j|^2)^{\frac{N-2}{2}}}, \]

and

\[W_{r,\Lambda}(y) = \left(N(N-2) \right)^{\frac{N-2}{4}} \sum_{j=1}^{k} \frac{\Lambda^{N-2}}{(1 + A^2|y-x_j|^2)^{\frac{N-2}{2}}}. \]

In this section, we will calculate \(I(W_r) \).

Proposition A.1. We have

\[I(W_{r,\Lambda}) = k \left(A + \frac{B_1}{A^m \mu^m} + \frac{B_2}{A^{m-2} \mu^m} (\mu r_0 - r)^2 \right. \]

\[- \sum_{j=2}^{k} \frac{B_3}{\Lambda^{N-2} |x_1 - x_j|^N} + O \left(\frac{1}{\mu^{m+\sigma}} \frac{1}{\mu^m |\mu r_0 - r|^3} \right) \), \]

where \(B_i, i = 1, 2, 3, \) is some positive constant, \(A > 0 \) is a constant, and \(r = |x_1| \).

Proof. By using the symmetry, we have

\[\int_{\mathbb{R}^N} |DW_{r,\Lambda}|^2 = \sum_{j=1}^{k} \sum_{i=1}^{k} \int_{\mathbb{R}^N} U_{x_j,\Lambda}^{2^*-1} U_{x_i,\Lambda} \]
\[k \left(\int_{\mathbb{R}^N} U_{0,1}^{2^*} + \sum_{i=2}^{k} \int_{\mathbb{R}^N} U_{x_i,\Lambda}^{2^*-1} U_{x_i,\Lambda} \right) \]

\[= k \left(\int_{\mathbb{R}^N} U_{0,1}^{2^*} + \sum_{j=2}^{k} B_0 \frac{1}{A^{N-2}|x_1-x_j|^{N-2}} + O \left(\sum_{j=2}^{k} \frac{1}{|x_1-x_j|^{N-2+\sigma}} \right) \right). \]

Let

\[\Omega_j = \left\{ y: y = (y', y'') \in \mathbb{R}^2 \times \mathbb{R}^{N-2}, \left\langle \frac{y'}{|y'|}, \frac{x_j}{|x_j|} \right\rangle \geq \cos \frac{\pi}{k} \right\}. \]

Then,

\[\int_{\Omega_1} K \left(\frac{|y|}{\mu} \right) |W_{r,\Lambda}|^{2^*} = k \int_{\Omega_1} K \left(\frac{|y|}{\mu} \right) |W_{r,\Lambda}|^{2^*} \]

\[= k \left(\int_{\Omega_1} K \left(\frac{|y|}{\mu} \right) U_{x_1,\Lambda}^{2^*} - 2^* \int_{\Omega_1} K \left(\frac{|y|}{\mu} \right) \sum_{i=2}^{k} U_{x_i,\Lambda}^{2^*-1} U_{x_i,\Lambda} \right. \]

\[+ O \left(\int_{\Omega_1} U_{x_1,\Lambda}^{2^*/2} \left(\sum_{i=2}^{k} U_{x_i,\Lambda} \right)^{2^*/2} \right) \right). \]

Note that for \(y \in \Omega_1, |y-x_i| \geq |y-x_1| \). Using Lemma B.1, we find that for any \(\alpha \in (1, \frac{N-2}{2}) \),

\[\sum_{i=2}^{k} U_{x_i,\Lambda} \leq C \sum_{i=2}^{k} \frac{1}{(1+|y-x_1|)^{N-2}} \frac{1}{(1+|y-x_i|)^{N-2}} \]

\[\leq \frac{1}{(1+|y-x_1|)^{N-2-\alpha}} \sum_{i=2}^{k} \frac{1}{|x_i-x_1|^\alpha} \leq C \left(\frac{k}{\mu} \right)^\alpha \frac{1}{(1+|y-x_1|)^{N-2-\alpha}}. \]

As a result,

\[\int_{\Omega_1} U_{x_1,\Lambda}^{2^*/2} \left(\sum_{i=2}^{k} U_{x_i,\Lambda} \right)^{2^*/2} \leq \left(\frac{k}{\mu} \right)^\frac{N\alpha}{N-2} \int_{\Omega_1} \frac{1}{(1+|y-x_1|)^{N+\frac{N}{N-2}(N-2-\alpha)}}. \]
If we take the constant \(\alpha \) with \(\max(1, \frac{(N-2)^2}{N}) < \alpha < N - 2 \), then
\[
\int_{\Omega_1} U_{x_1,A}^{2^{*}/2} \left(\sum_{i=2}^{k} U_{x_i,A} \right)^{2^{*}/2} = O\left(\left(\frac{k}{\mu} \right)^{N-2+\alpha} \right).
\]

On the other hand, it is easy to show
\[
\int_{\Omega_1} K\left(\frac{|y|}{\mu} \right) \sum_{i=2}^{k} U_{x_i,A}^{2^{*}-1} U_{x_1,A} = \int_{\Omega_1} \sum_{i=2}^{k} U_{x_i,A}^{2^{*}-1} U_{x_1,A} + \int_{\Omega_1} K\left(\frac{|y|}{\mu} \right) - 1 \sum_{i=2}^{k} U_{x_i,A}^{2^{*}-1} U_{x_1,A}
\]
\[
= \sum_{j=2}^{k} \frac{B_0}{A^{N-2}|x_1 - x_j|^{N-2}} + O\left(\left(\frac{k}{\mu} \right)^{N-2+\alpha} \right).
\]

Finally,
\[
\int_{\Omega_1} K\left(\frac{|y|}{\mu} \right) U_{x_1,A}^{2^{*}} = \int_{\Omega_1} U_{x_1,A}^{2^{*}} - \frac{c_0}{\mu^m} \int_{\Omega_1} |y| - \mu r_0 |^m U_{x_1,A}^{2^{*}}
\]
\[
+ O\left(\mu^{-m-\theta} \int_{\Omega_1} |y| - \mu r_0 |^{m+\theta} U_{x_1,A}^{2^{*}} \right)
\]
\[
= \int_{\mathbb{R}^N} U_{0,1}^{2^{*}} - \frac{c_0}{\mu^m} \int_{\Omega_1} |y| - \mu r_0 |^m U_{x_1,A}^{2^{*}} + O\left(\frac{1}{\mu^{m+\theta}} \right)
\]
\[
= \int_{\mathbb{R}^N} U_{0,1}^{2^{*}} - \frac{c_0}{\mu^m} \int_{\mathbb{R}^N} |y - x_1| - \mu r_0 |^m U_{0,1,A}^{2^{*}} + O\left(\frac{1}{\mu^{m+\theta}} \right).
\]

But
\[
\frac{1}{\mu^m} \int_{\mathbb{R}^N \setminus B_{|x_1|/2}(0)} |y - x_1| - \mu r_0 |^m U_{0,1,A}^{2^{*}} \leq C \int_{\mathbb{R}^N \setminus B_{|x_1|/2}(0)} \left(\frac{|y|^m}{\mu^m} + 1 \right) U_{0,1,A}^{2^{*}}
\]
\[
\leq \frac{C}{\mu^N}.
\]

On the other hand, if \(y \in B_{|x_1|/2}(0) \), \(y = (y_1, y^*) \), \(y^* = (y_2, \ldots, y_N) \), then \(|x_1| - y_1 \geq \frac{|x_1|}{2} > 0 \). So,
\[
|y - x_1| = |x_1| - y_1 + O\left(\frac{|y^*|^2}{|x_1| - y_1} \right) = |x_1| - y_1 + O\left(\frac{|y^*|^2}{|x_1|} \right).
\]

As a result,
\[|y_1 - x_1| - \mu r_0|^m = |x_1 - y_1 + O\left(\frac{|y_1|^2}{|x_1|}\right) - \mu r_0|^m \]
\[= |y_1|^m + m|y_1|^{m-2}y_1\left(\mu r_0 - |x_1| + O\left(\frac{|y_1|^2}{|x_1|}\right)\right) \]
\[+ \frac{1}{2} m(m-1)|y_1|^{m-2}\left(\mu r_0 - |x_1| + O\left(\frac{|y_1|^2}{|x_1|}\right)\right)^2 \]
\[+ O\left(\left|\mu r_0 - |x_1| + O\left(\frac{|y_1|^2}{|x_1|}\right)\right|^{2+\sigma}\right). \]

Thus, using

\[\int_{B_{|x_1|/2}(0)} |y_1|^{m-2}y_1 U_{0,A}^{2*} = 0, \]

we obtain

\[\int_{B_{|x_1|/2}(0)} |y - x_1| - \mu r_0|^m U_{0,A}^{2*} \]
\[= \int_{\mathbb{R}^N} |y_1|^m U_{0,A}^{2*} + \frac{1}{2} m(m-1) \int_{\mathbb{R}^N} |y_1|^{m-2} U_{0,A}^{2*}(\mu r_0 - |x_1|)^2 \]
\[+ O\left(\left|\mu r_0 - |x_1|\right|^{2+\sigma} + \frac{1}{\mu}\right). \]

So, we have proved

\[\int_{\mathbb{R}^N} K\left(\frac{|y|}{\mu}\right)|W_{r,A}|^{2*} = k \left(\int_{\mathbb{R}^N} |U_{0,1}|^{2*} - \frac{c_0}{\Lambda^m \mu^m} \int_{\mathbb{R}^N} |y_1|^m U_{0,1}^{2*} \right) \]
\[- \frac{c_0}{\Lambda^{m-2} \mu^m} \frac{1}{2} m(m-1) \int_{\mathbb{R}^N} |y_1|^{m-2} U_{0,1}^{2*}(\mu r_0 - |x_1|)^2 \]
\[+ 2^* \sum_{j=2}^k \frac{B_0}{\Lambda^{N-2} |x_1 - x_j|^{N-2}} + O\left(\frac{1}{\mu^{m+\sigma}}\right). \]

We also need to calculate \(\frac{\partial I(W_r)}{\partial \Lambda} \).
Proposition A.2. We have

\[
\frac{\partial I(W_r, \Lambda)}{\partial \Lambda} = k \left(-\frac{mB_1}{\Lambda^{m+1}\mu^m} + \sum_{j=2}^{k} \frac{B_3(N-2)}{\Lambda^{N-1}|x_1 - x_j|^{N-2}} + O\left(\frac{1}{\mu^{m+\sigma}} + \frac{1}{\mu^m} |\mu r_0 - |x_1||^2 \right) \right),
\]

where \(B_i, i = 1, 2, 3 \), is same positive constant in Proposition A.1.

Proof. The proof of this proposition is similar to the proof of Proposition A.1. So we just sketch it.

We have

\[
\frac{\partial I(W_r, \Lambda)}{\partial \Lambda} = k \left((2^* - 1) \sum_{i=2}^{k} \int_{\Omega_1} U_{x_i, A}^{2^*-2} \frac{\partial U_{x_i, A}}{\partial \Lambda} U_{x_i, A} - \int_{\Omega_1} K \left(\frac{|y|}{\mu} \right) W_{2^*-1, A} \frac{\partial W_r, \Lambda}{\partial \Lambda} \right).
\]

It is easy to check that for \(y \in \Omega_1 \),

\[
\left| \frac{\partial}{\partial \Lambda} \left(W_{2^*, A} - U_{x_1, A}^{2^*} - 2^* U_{x_1, A}^{2^*-1} \sum_{i=2}^{k} U_{x_i, A} \right) \right| \leq C U_{x_1, A}^{2^*/2} \left(\sum_{i=2}^{k} U_{x_i, A} \right)^{2^*/2}.
\]

Thus,

\[
\frac{\partial}{\partial \Lambda} W_{2^*, A} = \frac{\partial}{\partial \Lambda} U_{x_1, A}^{2^*} + 2^* \frac{\partial}{\partial \Lambda} \left(U_{x_1, A}^{2^*-1} \sum_{i=2}^{k} U_{x_i, A} \right) + O \left(\left(\sum_{i=2}^{k} U_{x_i, A} \right)^{2^*/2} \right).
\]

As a result, we have

\[
2^* \int_{\Omega_1} K \left(\frac{|y|}{\mu} \right) W_{2^*-1, A} \frac{\partial W_r}{\partial \Lambda} = \int_{\Omega_1} K \left(\frac{|y|}{\mu} \right) \frac{\partial}{\partial \Lambda} U_{x_1, A}^{2^*} + 2^* \int_{\Omega_1} K \left(\frac{|y|}{\mu} \right) \frac{\partial}{\partial \Lambda} \left(U_{x_1, A}^{2^*-1} \sum_{i=2}^{k} U_{x_i, A} \right) + O \left(\left(\sum_{i=2}^{k} U_{x_i, A} \right)^{2^*/2} \right).
\]

So, we obtain the desired result. \(\square \)
Appendix B. Basic estimates

For each fixed i and j, $i \neq j$, consider the following function

$$g_{ij}(y) = \frac{1}{(1 + |y - x_j|)^\alpha} \frac{1}{(1 + |y - x_i|)^\beta}, \quad (B.1)$$

where $\alpha \geq 1$ and $\beta \geq 1$ are two constants.

Lemma B.1. For any constant $0 < \sigma \leq \min(\alpha, \beta)$, there is a constant $C > 0$, such that

$$g_{ij}(y) \leq \frac{C}{|x_i - x_j|^\sigma} \left(\frac{1}{(1 + |y - x_i|)^{\alpha + \beta - \sigma}} + \frac{1}{(1 + |y - x_j|)^{\alpha + \beta - \sigma}}\right),$$

Proof. Let $d_{ij} = |x_i - x_j|$. If $y \in B_{\frac{1}{2}d_{ij}}(x_i)$, then

$$|y - x_j| \geq \frac{1}{2} |x_j - x_i|, \quad |y - x_i| \geq \frac{1}{2} |y - x_i|,$$

which gives

$$g_{ij}(y) \leq \frac{C}{|x_i - x_j|^\sigma} \frac{1}{(1 + |y - x_i|)^{\alpha + \beta - \sigma}}, \quad y \in B_{\frac{1}{2}d_{ij}}(x_i).$$

Similarly, we can prove

$$g_{ij}(y) \leq \frac{C}{|x_i - x_j|^\sigma} \frac{1}{(1 + |y - x_j|)^{\alpha + \beta - \sigma}}, \quad y \in B_{\frac{1}{2}d_{ij}}(x_j).$$

Now we consider $y \in \mathbb{R}^N \setminus (B_{\frac{1}{2}d_{ij}}(x_i) \cup B_{\frac{1}{2}d_{ij}}(x_j))$. Then we have

$$|y - x_i| \geq \frac{1}{2} |x_j - x_i|, \quad |y - x_j| \geq \frac{1}{2} |x_j - x_i|.$$

If $|y - x_i| \geq 2|x_i - x_j|$, then

$$|y - x_j| \geq |y - x_i| - |x_i - x_j| \geq \frac{1}{2} |y - x_i|.$$

As a result,

$$g_{ij}(y) \leq \frac{C}{(1 + |y - x_i|)^{\alpha + \beta}} \leq \frac{C_1}{|x_i - x_j|^\sigma} \frac{1}{(1 + |y - x_i|)^{\alpha + \beta - \sigma}},$$

because $|y - x_i| \geq \frac{1}{2} |x_j - x_i|$.
If \(|y - x_i| \leq 2|x_i - x_j|\), then

\[
g_{ij}(y) \leq \frac{1}{(1 + |y - x_i|)^\alpha} \frac{C}{|x_i - x_j|^{\beta}} \leq \frac{C}{|x_i - x_j|^{\alpha} (1 + |y - x_i|)^{\alpha + \beta - \sigma}},
\]

because \(|y - x_j| \geq \frac{1}{2}|x_j - x_i|\). □

Lemma B.2. For any constant \(0 < \sigma < N - 2\), there is a constant \(C > 0\), such that

\[
\int_{\mathbb{R}^N} \frac{1}{|y - z|^{N-2}} \frac{1}{(1 + |z|)^{2+\sigma}} \, dz \leq \frac{C}{(1 + |y|)^\sigma}.
\]

Proof. The result is well known. For the sake of completeness, we give the proof.

We just need to obtain the estimate for \(|y| \geq 2\). Let \(d = \frac{1}{2}|y|\). Then, we have

\[
\int_{B_d(0)} \frac{1}{|y - z|^{N-2}} \frac{1}{(1 + |z|)^{2+\sigma}} \, dz \leq \frac{C}{d^{N-2}} \int_{B_d(0)} \frac{1}{(1 + |z|)^{2+\sigma}} \, dz \\
\leq \frac{C}{d^{N-2}} d^{N-2-\sigma} \leq \frac{C}{d^\sigma},
\]

and

\[
\int_{B_d(y)} \frac{1}{|y - z|^{N-2}} \frac{1}{(1 + |z|)^{2+\sigma}} \, dz \leq \frac{C}{d^{2+\sigma}} \int_{B_d(y)} \frac{1}{|z - y|^{N-2}} \, dz \leq \frac{C}{d^\sigma}.
\]

Suppose that \(z \in \mathbb{R}^N \setminus (B_d(0) \cup B_d(y))\). Then

\[
|z - y| \geq \frac{1}{2}|y|, \quad |z| \geq \frac{1}{2}|y|.
\]

If \(|z| \geq 2|y|\), then \(|z - y| \geq |z| - |y| \geq \frac{1}{2}|z|\). As a result,

\[
\frac{1}{|y - z|^{N-2}} \frac{1}{(1 + |z|)^{2+\sigma}} \leq \frac{C}{|z|^{N-2}(1 + |z|)^{2+\sigma}}.
\]

If \(|z| \leq 2|y|\), then

\[
\frac{1}{|y - z|^{N-2}} \frac{1}{(1 + |z|)^{2+\sigma}} \leq \frac{C}{|y|^{N-2}(1 + |z|)^{2+\sigma}} \leq \frac{C_1}{|z|^{N-2}(1 + |z|)^{2+\sigma}}.
\]

Thus, we have proved that

\[
\frac{1}{|y - z|^{N-2}} \frac{1}{(1 + |z|)^{2+\sigma}} \leq \frac{C}{|z|^{N-2}(1 + |z|)^{2+\sigma}}, \quad z \in \mathbb{R}^N \setminus (B_d(0) \cup B_d(y)),
\]

which, give
\[
\int_{\mathbb{R}^N \setminus (B_d(0) \cup B_d(y))} \frac{1}{|y - z|^{N-2}} \frac{1}{(1 + |z|)^{2+\sigma}} \, dz \leq \frac{C}{d^\sigma}. \quad \square
\]

Let recall that
\[
W_{r,\Lambda}(y) = (N(N - 2))^{N_2} \sum_{j=1}^{k} \frac{\Lambda^{N_2}}{(1 + \Lambda^2 |y - x_j|^2)^{N_2}}.
\]

Lemma B.3. Suppose that \(N \geq 5 \) and \(\tau \in (0, 2) \). Then there is a small \(\theta > 0 \), such that
\[
\int_{\mathbb{R}^N} \frac{1}{|y - z|^{N-2}} W_{r,\Lambda}^\frac{4}{N-2}(z) \sum_{j=1}^{k} \frac{1}{(1 + |z - x_j|)^{N_2 + \tau}} \, dz \leq C \sum_{j=1}^{k} \frac{1}{(1 + |y - x_j|)^{N_2 + \tau + \theta}}.
\]

Proof. Recall that
\[
\Omega_j = \left\{ y : y = (y', y'') \in \mathbb{R}^2 \times \mathbb{R}^{N-2}, \frac{y'}{|y'|} - \frac{x_j}{|x_j|} \geq \cos \frac{\pi}{k} \right\}.
\]

Note that for any \(\tau_1 \geq \frac{N - 2 - m}{N - 2} \),
\[
\sum_{j=2}^{k} \frac{1}{|x_j - x_1|^\tau_1} \leq \frac{C k^{\tau_1}}{\mu^{\tau_1}} \sum_{j=2}^{k} \frac{1}{j^{\tau_1}} \leq \begin{cases} \frac{C k^{\tau_1} \ln k}{\mu^{\tau_1}} \leq C, \quad \tau_1 \geq 1; \\ \frac{C k}{\mu^{\tau_1}} \leq C, \quad \tau_1 \leq 1, \end{cases}
\]
since \(\mu = k^{\frac{N - 2 - m}{N - 2}} \).

For \(z \in \Omega_1 \), we have \(|z - x_j| \geq |z - x_1|\). Using Lemma B.1, we obtain
\[
\sum_{j=2}^{k} \frac{1}{(1 + |z - x_j|)^{N-2}} \leq \frac{1}{(1 + |z - x_1|)^{N-2}} \sum_{j=2}^{k} \frac{1}{(1 + |z - x_j|)^{\frac{N-2}{2}}} \leq \frac{C}{(1 + |z - x_1|)^{N - 2 - \tau_1}} \sum_{j=2}^{k} \frac{1}{|x_j - x_1|^\tau_1} \leq \frac{C}{(1 + |z - x_1|)^{N - 2 - \tau_1}}.
\]

Thus,
\[
W_{r,\Lambda}^\frac{4}{N-2}(z) \leq \frac{C}{(1 + |z - x_1|)^{4 - \frac{4\tau_1}{N-2}}}.
\]
As a result, for $z \in \Omega_1$, using Lemma B.1 again, we find

$$W_{r, A}^{\frac{4}{N-2}}(z) \sum_{j=1}^{k} \frac{1}{(1 + |z - x_j|)^{\frac{N+2}{2} + \tau}} \leq \frac{C}{(1 + |z - x_1|)^{\frac{N+6}{2} + \tau}} + \frac{C}{(1 + |z - x_1|)^{\frac{4t_1}{N-2} - \tau}} \sum_{j=2}^{k} \frac{1}{|x_j - x_1|^t}
$$

$$\leq \frac{C}{(1 + |z - x_1|)^{\frac{N+6}{2} - \frac{(N+2)t_1}{N-2} + \tau}}.$$

So, we obtain

$$\int_{\Omega_1} \frac{1}{|y - z|^{N-2}} W_{r, A}^{\frac{4}{N-2}}(z) \sum_{j=1}^{k} \frac{1}{(1 + |z - x_j|)^{\frac{N+2}{2} + \tau}} \, dz \leq \int_{\Omega_1} \frac{1}{|y - z|^{N-2}} \frac{C}{(1 + |z - x_1|)^{\frac{N+6}{2} - \frac{(N+2)t_1}{N-2} + \tau}} \, dz \leq \frac{C}{(1 + |y - x_1|)^{\frac{N+6}{2} - \frac{(N+2)t_1}{N-2} + \tau}},$$

which gives

$$\int_{\Omega} \frac{1}{|y - z|^{N-2}} W_{r, A}^{\frac{4}{N-2}}(z) \sum_{j=1}^{k} \frac{1}{(1 + |z - x_j|)^{\frac{N+2}{2} + \tau}} \, dz = \sum_{i=1}^{k} \int_{\Omega_i} \frac{1}{|y - z|^{N-2}} W_{r, A}^{\frac{4}{N-2}}(z) \sum_{j=1}^{k} \frac{1}{(1 + |z - x_j|)^{\frac{N+2}{2} + \tau}} \, dz \leq \sum_{i=1}^{k} \frac{C}{(1 + |y - x_i|)^{\frac{N+2}{2} + \theta + \tau}} \leq \sum_{i=1}^{k} \frac{C}{(1 + |y - x_i|)^{\frac{N+2}{2} + \theta + \tau}},$$

since $2 - \frac{(N+2)t_1}{N-2} > 0$. \hfill \Box

References

