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Abstract

We give two general constructions for the passage from unstable to stable homotopy that
apply to the known example of topological spaces, but also to new situations, such as the
A1-homotopy theory of Morel and Voevodsky (preprint, 1998) and Voevodsky (Proceedings of
the International Congress of Mathematicians, Vol. I, Berlin, Doc. Math. Extra Vol. I, 1998,
pp. 579–604 (electronic)). One is based on the standard notion of spectra originated by Vogt
(Boardman’s Stable Homotopy Category, Lecture Notes Series, Vol. 21, Matematisk Institut
Aarhus Universitet, Aarhus, 1970). Its input is a well-behaved model category D and an end-
ofunctor T , generalizing the suspension. Its output is a model category SpN(D; T ) on which T
is a Quillen equivalence. The second construction is based on symmetric spectra (Hovey et al.,
J. Amer. Math. Soc. 13(1) (2000) 149–208) and applies to model categories C with a compatible
monoidal structure. In this case, the functor T must be given by tensoring with a coCbrant object
K . The output is again a model category Sp�(C; K) where tensoring with K is a Quillen equiv-
alence, but now Sp�(C; K) is again a monoidal model category. We study general properties of
these stabilizations; most importantly, we give a suDcient condition for these two stabilizations
to be equivalent that applies both in the known case of topological spaces and in the case of
A1-homotopy theory. c© 2001 Elsevier Science B.V. All rights reserved.
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0. Introduction

The object of this paper is to give two very general constructions of the passage
from unstable homotopy theory to stable homotopy theory. Since homotopy theory in
some form appears in many diFerent areas of mathematics, this construction is useful
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beyond algebraic topology, where these methods originated. In particular, the two con-
structions we give apply not only to the usual passage from unstable homotopy theory
of pointed topological spaces (or simplicial sets) to the stable homotopy theory of spec-
tra, but also to the passage from the unstable A1-homotopy theory of Morel–Voevodsky
[19,27] to the stable A1-homotopy theory. This example is obviously important, and
the fact that it is an example of a widely applicable theory of stabilization may come
as a surprise to readers of [14], where speciCc properties of sheaves are used.
Suppose, then, that we are given a (Quillen) model category D and a functor T :D→

D that we would like to invert, analogous to the suspension. We will clearly need to
require that T be compatible with the model structure; speciCcally, we require T to be
a left Quillen functor. We will also need some technical hypotheses on the model cate-
gory D, which are complicated to state and to check, but which are satisCed in almost
all interesting examples, including A1-homotopy theory. It is well known what one
should do to form the category SpN(D; T ) of spectra, as Crst written down for topo-
logical spaces in [2]. An object of SpN(D; T ) is a sequence Xn of objects of D together
with maps TXn → Xn+1, and a map f :X → Y is a sequence of maps fn :Xn → Yn
compatible with the structure maps. There is an obvious model structure, called the
projective model structure, where the weak equivalences are the maps f :X → Y such
that fn is a weak equivalence for all n. It is not diDcult to show that this is a model
structure and that there is a left Quillen functor T :SpN(D; T )→ SpN(D; T ) extending
T on D. But, just as in the topological case, T will not be a Quillen equivalence.
So we must localize the projective model structure on SpN(D; T ) to produce the sta-
ble model structure, with respect to which T will be a Quillen equivalence. A new
feature of this paper is that we are able to construct the stable model structure with
minimal hypotheses on D, using the localization results of Hirschhorn [11] (based on
work of Dror Farjoun [7]). We must pay a price for this generality, of course. That
price is that stable equivalences are not stable homotopy isomorphisms, but instead are
cohomology isomorphisms on all cohomology theories, just as for symmetric spectra
[13]. If we put enough hypotheses on D and T , then stable equivalences coincide with
stable homotopy isomorphisms. Using the Nisnevitch descent theorem, Jardine [14] has
proved that stable equivalences coincide with stable homotopy isomorphisms in the sta-
ble A1-homotopy theory. His result does not follow from our general theorem, because
the hypotheses we need do not hold in the Morel–Voevodsky motivic model category.
However, Voevodsky (personal communication) has constructed a simpler model cat-
egory equivalent to the Morel–Voevodsky one that does satisfy our hypotheses.
As is well known in algebraic topology, the category SpN(D; T ) is not suDcient to

understand the smash product. That is, if C is a symmetric monoidal model category,
and T is the functor X �→ X ⊗ K for some coCbrant object K of C, it almost never
happens that SpN(C; T ) is symmetric monoidal. We therefore need a diFerent construc-
tion in this case. We deCne a category Sp�(C; K) just as in symmetric spectra [13]. An
object of Sp�(C; K) is a sequence Xn of objects of C with an action of the symmetric
group �n on Xn. In addition, we have �n-equivariant structure maps Xn ⊗ K → Xn+1,
but we must further require that the iterated structure maps Xn ⊗ K⊗p → Xn+p are
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�n×�p-equivariant, where �p acts on K⊗p by permuting the tensor factors. It is once
again straightforward to construct the projective model structure on Sp�(C; K). The
same localization methods developed for SpN(D; T ) apply again here to give a stable
model structure on which tensoring with K is a Quillen equivalence. Once again, stable
equivalences are cohomology isomorphisms on all possible cohomology theories, but
this time it is very diDcult to give a better description of stable equivalences even in
the case of simplicial symmetric spectra (but see [25] for the best such result I know).
We point out that our construction gives a diFerent construction of the stable model
category of simplicial symmetric spectra from the one appearing in [13].
We now have competing stabilizations of C under the tensoring with K functor

when C is symmetric monoidal. Naturally, we need to prove they are the same in an
appropriate sense. This was done in the topological (actually, simplicial) case in [13]
by constructing a functor SpN(C; T )→ Sp�(C; K), where K = S1 and T is the tensor
with S1 functor, and proving it is a Quillen equivalence. We are unable to generalize
this argument. Instead, following an idea of Hopkins, we construct a zigzag of Quillen
equivalences SpN(C; T ) → E ← Sp�(C; K). However, we need to require that the
cyclic permutation map on K ⊗ K ⊗ K be homotopic to the identity by an explicit
homotopy for our construction to work. This hypothesis holds in the topological case
with K = S1 and in the A1-local case with K equal to either the simplicial circle or
the algebraic circle A1 − {0}. This section of the paper is by far the most delicate,
and it is likely that we do not have the best possible result.
We also investigate the properties of these two stabilization constructions. There are

some obvious properties one would like a stabilization construction such as SpN(D; T )
to have. First of all, it should be functorial in the pair (D; T ). We prove this for
SpN(D; T ) and an appropriate analogue of it for symmetric spectra; the most diDcult
point is deCning what one should mean by a map from (D; T ) to (D′; T ′). Further-
more, stabilization should be homotopy invariant. That is, if the map (D; T )→ (D′; T ′)
is a Quillen equivalence, the induced map of stabilizations should also be a Quillen
equivalence. We also prove this for SpN(D; T ) and an appropriate analogue of it for
symmetric spectra; one corollary is that the Quillen equivalence class of Sp�(C; K) de-
pends only on the homotopy type of K . Finally, the stabilization map D→ SpN(D; T )
should be the initial map to a model category E with an extension of T to a Quillen
equivalence. However, this last statement seems to be asking for too much, because the
category of model categories is itself something like a model category. This statement
is analogous to asking for an initial map in a model category from X to a Cbrant object,
and such things do not usually exist. The best we can do is to say that if T is already
a Quillen equivalence, then the map from D → SpN(D; T ) is a Quillen equivalence.
This gives a weak form of uniqueness, and is the basis for the comparison between
SpN(D; T ) and symmetric spectra. See also see [22,23] for uniqueness results for the
usual stable homotopy category.
We point out that this paper leaves some obvious questions open. We do not have

a good characterization of stable equivalences or stable Cbrations in either spectra or
symmetric spectra, in general, and we are unable to prove that spectra or symmetric
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spectra are right proper. We do have such characterizations for spectra when the original
model category D is suDciently well behaved, and the adjoint U of T preserves
sequential colimits. These hypotheses include the cases of ordinary simplicial spectra
and spectra in a new motivic model category of Voevodsky (but not the original Morel–
Voevodsky motivic model category). We also prove that spectra are right proper in this
situation. But we do not have a characterization of stable equivalences of symmetric
spectra even with these strong assumptions. Also, we have been unable to prove that
symmetric spectra satisfy the monoid axiom. Without the monoid axiom, we do not
get model categories of monoids or of modules over an arbitrary monoid, though we
do get a model category of modules over a coCbrant monoid. The question of whether
commutative monoids form a model category is even more subtle and is not addressed
in this paper. See [18] for commutative monoids in symmetric spectra of topological
spaces.
There is a long history of work on stabilization, much of it not using model cat-

egories. As far as this author knows, Boardman was the Crst to attempt to construct
a good point-set version of spectra; his work was never published (but see [28]),
but it was the standard for many years. Generalizations of Boardman’s construction
were given by Heller in several papers, including [8,9]. Heller has continued work on
these lines, most recently in [10]. The review of this paper in Mathematical Reviews
by Tony Elmendorf (MR98g:55021) captures the response of many algebraic topolo-
gists to Heller’s approach. I believe the central idea of Heller’s approach is that the
homotopy theory associated to a model category D is the collection of all possible
homotopy categories of diagram categories ho DI and all functors between them. With
this deCnition, one can then forget one had the model category in the Crst place, as
Heller does. Unfortunately, the resulting complexity of deCnition is overwhelming at
present.
Of course, there has also been very successful work on stabilization by May and

coauthors, the two major milestones being [16,6]. At Crst glance, May’s approach
seems wedded to the topological situation, relying as it does on homeomorphisms
Xn → 
Xn+1. This is the reason we have not tried to use it in this paper. However,
there has been considerable recent work showing that this approach may be more
Nexible than one might have expected. I have mentioned [18] above, but perhaps
the most ambitious attempt to generalize S-modules has been initiated by Johnson
[15].
Finally, we point out that Schwede [21] has shown that the methods of BousCeld and

Friedlander [2] apply to certain more general model categories. His model categories
are always simplicial and proper, and he is always inverting the ordinary suspension
functor. Nevertheless, the paper [21] is the Crst serious attempt to deCne a general
stabilization functor of which the author is aware.
This paper is organized as follows. We begin by deCning the category SpN(D; T )

and the associated projective model structure in Section 1. Then there is the brief Sec-
tion 2 recalling Hirschhorn’s approach to localization of model categories. We construct
the stable model structure modulo certain technical lemmas in Section 3. The technical
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lemmas we need assert that if a model category D is left proper cellular, then so is
the projective model structure on SpN(D; T ), and therefore we can apply the localiza-
tion technology of Hirschhorn. We prove these technical lemmas, and the analogous
lemmas for the projective model structure on symmetric spectra, in the appendix. In
Section 4, we study the simpliCcations that arise when the adjoint U of T preserves
sequential colimits and D is suDciently well behaved. We characterize stable equiva-
lences as the appropriate generalization of stable homotopy isomorphisms in this case,
and we show the stable model structure is right proper, giving a description of the
stable Cbrations as well. In Section 5, we prove the functoriality, homotopy invariance,
and homotopy idempotence of the construction (D; T ) �→ SpN(D; T ). We investigate
monoidal structure in Section 6, showing that SpN(C; T ) is almost never a symmetric
monoidal model category even when C is so.
This demonstrates the need for a better construction, and Section 7 begins the study

of symmetric spectra. Since we have developed all the necessary techniques in the Crst
part, the proofs in this part are more concise. In Section 7 we discuss the category
of symmetric spectra. In Section 8 we construct the projective and stable model struc-
tures on symmetric spectra, and in Section 9, we discuss some properties of symmetric
spectra. This includes functoriality, homotopy invariance, and homotopy idempotence
of the stable model structure. We conclude the paper in Section 10 by constructing
the chain of Quillen equivalences between SpN(C; T ) and Sp�(C; K), under the cyclic
permutation hypothesis mentioned above. Finally, as stated previously, there is an ap-
pendix verifying that the techniques of Hirschhorn can be applied to the projective
model structures on SpN(D; T ) and symmetric spectra.
Obviously, considerable familiarity with model categories will be necessary to un-

derstand this paper. The original reference is [20], but a better introductory reference
is [5]. More in depth references include [4,11,12]. In particular, we rely heavily on the
localization technology in [11].

1. Spectra

In this section and throughout the paper, D will be a model category and T :D→ D

will be a left Quillen endofunctor of D with right adjoint U . In this section, we deCne
the category SpN(D; T ) of spectra and construct the projective model structure on
SpN(D; T ).
The following deCnition is a straightforward generalization of the usual notion of

spectra [2].

De�nition 1.1. Suppose T is a left Quillen endofunctor of a model category D. De-
Cne SpN(D; T ), the category of spectra, as follows. A spectrum X is a sequence
X0; X1; : : : ; Xn; : : : of objects of D together with structure maps � :TXn → Xn+1 for all
n. A map of spectra from X to Y is a collection of maps fn :Xn → Yn commuting
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with the structure maps; this means that the diagram below

TXn
�X−−−−−→ Xn+1

Tfn

�

� fn+1

TYn −−−−−→
�Y

Yn+1

is commutative for all n.

Note that if D is either the model category of pointed simplicial sets or the model
category of pointed topological spaces, and T is the suspension functor given by smash-
ing with the circle S1, then SpN(D; T ) is the BousCeld–Friedlander category of spectra
[2].

De�nition 1.2. Given n ≥ 0, the evaluation functor Evn :SpN(D; T ) → D takes X to
Xn. The evaluation functor has a left adjoint Fn :D→ SpN(D; T ) deCned by (FnA)m=
Tm−nA if m ≥ n and (FnA)m = 0 otherwise, where 0 is the initial object of D. The
structure maps are the obvious ones.

Note that F0 is an full and faithful embedding of the category D into SpN(D; T ).

Lemma 1.3. The category of spectra is bicomplete.

Proof. Given a functor G from a small category I into SpN(D; T ), we deCne

(colimG)n = colim Evn ◦ G and (lim X )n = lim Evn ◦ G:

Since T is a left adjoint, it preserves colimits. The structure maps of the colimit are
then the composites

T (colim Evn ◦ G) ∼= colim(T ◦ Evn ◦ G)
colim(�◦G)−−−−−→ colim Evn+1 ◦ G:

Although T does not necessarily preserve limits, there is still a natural map

T (limH)→ lim TH

for any functor H :I→ D. Then the structure maps of the limit are the composites

T (lim Evn ◦ G)→ lim(T ◦ Evn ◦ G)
lim(�◦G)−−−−→ lim Evn+1 ◦ G:

Remark 1.4. The evaluation functor Evn :SpN(D; T ) → D also has a right adjoint
Mn :D → SpN(D; T ). We deCne (MnA)i = Un−iA if i ≤ n, and (MnA)i = 1 if i¿n,
where 1 denotes the terminal object of D. The structure map TUn−iA → Un−i−1A is
adjoint to the identity map of Un−iA when i¡n. We leave it to the reader to verify
that Mn is right adjoint to Evn.
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We wish to prolong the adjunction (T; U ) to an adjunction of functors between
spectra. We will discuss prolonging more general adjunctions in Section 5.

Lemma 1.5. Suppose T is a left Quillen endofunctor of a model category D; with
right adjoint U. De5ne a functor T :SpN(D; T ) → SpN(D; T ) by (TX )n = TXn; with
structure map

T (TXn)
T�−→TXn+1;

where � is the structure map of X. De5ne a functor U :SpN(D; T )→ SpN(D; T ) by
(UX )n = UXn; with structure map adjoint to

UXn
U�̃−→U (UXn+1);

where �̃ is adjoint to the structure map of X. Then T is left adjoint to U.

Proof. We leave it to the reader to verify the functoriality of T and U . We show they
are adjoint. For convenience, let us denote the extensions of T and U to functors of
spectra by T̃ and Ũ . It suDces to construct unit maps X → Ũ T̃X and counit maps
T̃ ŨX → X verifying the triangle identities, by Mac Lane [17, Theorem 4.1.2(v)]. But
we can take these unit and counit maps to be the maps which are the unit and counit
maps of the (T; U ) adjunction in each degree. The reader should verify that these
are maps of spectra. The triangle identities then follow immediately from the triangle
identities of the (T; U ) adjunction.

The following remark is critically important to the understanding of our approach to
spectra.

Remark 1.6. The deCnition we have just given of the prolongation of T to an endo-
functor of SpN(D; T ) is the only possible deCnition under our very general hypotheses.
However, this deCnition does not generalize the de5nition of the suspension when D

is the category of pointed topological spaces and TA= A ∧ S1. Indeed, recall from [2]
that the suspension of a spectrum X in this case is deCned by (X ⊗ S1)n = Xn ∧ S1,
with structure map given by

Xn ∧ S1 ∧ S1
1∧t−→Xn ∧ S1 ∧ S1

�∧1−→Xn+1 ∧ S1;
where t is the twist isomorphism. On the other hand, if we apply our deCnition of the
prolongation of T above, we get a functor X �→ X P⊗S1 deCned by (X P⊗S1)n=Xn ∧ S1
with structure map

Xn ∧ S1 ∧ S1
�∧1−→Xn+1 ∧ S1:

This is a crucial and subtle diFerence whose ramiCcations we will study in Section 10.

We now show that SpN(D; T ) inherits a model structure from D, called the projective
model structure. The functor T :SpN(D; T )→ SpN(D; T ) will be a left Quillen functor
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with respect to the projective model structure, but it will not be a Quillen equivalence.
Our approach to the projective model structure owes much to [2,13, Section 5:1]. At
this point, we will slip into the standard model category terminology and notation, all
of which can be found in [12], mostly in Section 2:1.

De�nition 1.7. A map f∈SpN(D; T ) is a level equivalence if each map fn is a weak
equivalence in D. Similarly, f is a level 5bration (resp. level co5bration, level trivial
5bration, level trivial co5bration) if each map fn is a Cbration (resp. coCbration, trivial
Cbration, trivial coCbration) in D. The map f is a projective co5bration if f has the
left lifting property with respect to every level trivial Cbration.

Note that level equivalences satisfy the two out of three property, and each of the
classes deCned above is closed under retracts. Thus, we might be able to construct a
model structure using these classes. To do so, we need the small object argument, and
hence we assume that D is coCbrantly generated (see [12, Section 2:1] for a discussion
of coCbrantly generated model categories).

De�nition 1.8. Suppose D is a coCbrantly generated model category with generating
coCbrations I and generating trivial coCbrations J . Suppose T is a left Quillen end-
ofunctor of D, and form the category of spectra SpN(D; T ). DeCne sets of maps in
SpN(D; T ) by IT =

⋃
n FnI and JT =

⋃
n FnJ .

The sets IT and JT will be the generating coCbrations and trivial coCbrations for
a model structure on SpN(D; T ). There is a standard method for proving this, based
on the small object argument [12, Theorem 2:1:14]. The Crst step is to show that the
domains of IT and JT are small, in the sense of [12, DeCnition 2:1:3].

Proposition 1.9. Suppose A is small relative to the co5brations in D; and n ≥ 0.
Then FnA is small relative to the level co5brations in SpN(D; T ). Similarly; if A is
small relative to the trivial co5brations in D; then FnA is small relative to the level
trivial co5brations in SpN(D; T ).

Proof. The main point is that Evn commutes with colimits. We leave the remainder
of the proof to the reader.

To apply this to the domains of IT , we need to know that the maps of IT -cof are
level coCbrations. See [12, DeCnition 2:1:7] for the deCnition of IT -cof, and similar
notations such as IT -inj. Recall the right adjoint Mn of Evn constructed in Remark 1.4.

Lemma 1.10. A map f in SpN(D; T ) is a level co5bration if and only if it has the
left lifting property with respect to Mnp for all n ≥ 0 and all trivial 5brations p
in D. Similarly; f is a level trivial co5bration if and only if it has the left lifting
property with respect to Mnp for all n ≥ 0 and all 5brations p ∈ D.
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Proof. By adjunction, a map f has the left lifting property with respect to Mnp if
and only if Evn f has the left lifting property with respect to p. Since a map is a
coCbration (resp. trivial coCbration) in D if and only if it has the left lifting property
with respect to all trivial Cbrations (resp. Cbrations), the lemma follows.

Proposition 1.11. Every map in IT -cof is a level co5bration. Every map in JT -cof is
a level trivial co5bration.

Proof. Since T is a left Quillen functor, every map in IT is a level coCbration. By
Lemma 1.10, this means that Mnp ∈ IT -inj for all n ≥ 0 and all trivial Cbrations p.
Since a map in IT -cof has the left lifting property with respect to every map in IT -inj,
in particular it has the left lifting property with respect to Mnp. Another application
of Lemma 1.10 completes the proof for IT -cof. The proof for JT -cof is similar.

Corollary 1.12. The domains of IT are small relative to IT -cof. The domains of JT
are small relative to JT -cof.

Proof. Since D is coCbrantly generated, the domains of I are small relative to the
coCbrations in D, and the domains of J are small relative to the trivial coCbrations in
D (see [12, Proposition 2:1:18]). Propositions 1.9 and 1.11 complete the proof.

We remind the reader that a model structure is left proper if the pushout of a weak
equivalence through a coCbration is again a weak equivalence. Similarly, a model
structure is right proper if the pullback of a weak equivalence through a Cbration
is again a weak equivalence. A model structure is proper if it is both left and right
proper. See [11, Chapter 11] for more information about properness.

Theorem 1.13. Suppose D is co5brantly generated. Then the projective co5brations;
the level 5brations; and the level equivalences de5ne a co5brantly generated model
structure on SpN(D; T ); with generating co5brations IT and generating trivial co5bra-
tions JT . We call this the projective model structure. The projective model structure is
left proper (resp. right proper; proper) if D is left proper (resp. right proper; proper.)

Note that if D is either the model category of pointed simplicial sets or pointed
topological spaces, and T is the suspension functor, the projective model structure on
SpN(D; T ) is the strict model structure on the BousCeld–Friedlander category of spectra
[2].

Proof. The retract and two out of three axioms are immediate, as is the lifting axiom
for a projective coCbration and a level trivial Cbration. By adjointness, a map is a level
trivial Cbration if and only if it is in IT -inj. Hence a map is a projective coCbration if
and only if it is in IT -cof. The small object argument [12, Theorem 2:1:14] applied to
IT then produces a functorial factorization into a projective coCbration followed by a
level trivial Cbration.
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Adjointness implies that a map is a level Cbration if and only if it is in JT -inj. We
have already seen in Proposition 1.11 that the maps in JT -cof are level equivalences,
and they are projective coCbrations since they have the left lifting property with respect
to all level Cbrations, and in particular level trivial Cbrations. Hence the small object
argument applied to JT produces a functorial factorization into a projective coCbration
and level equivalence followed by a level Cbration.
Conversely, we claim that any projective coCbration and level equivalence f is in

JT -cof, and hence has the left lifting property with respect to level Cbrations. To see
this, write f=pi where i is in JT -cof and p is in JT -inj. Then p is a level Cbration.
Since f and i are both level equivalences, so is p. Thus f has the left lifting property
with respect to p, and so f is a retract of i by the retract argument [12, Lemma 1:1:9].
In particular f ∈ JT -cof.
Since colimits and limits in SpN(D; T ) are taken levelwise, and since every projec-

tive coCbration is in particular a level coCbration, the statements about properness are
immediate.

We also characterize the projective coCbrations. We denote the pushout of two maps
A→ B and A→ C by B � AC.

Proposition 1.14. A map i :A→ B of spectra is a projective coCbration if and only if
the induced maps i0 :A0 → B0 and jn: An�TAn−1 TBn−1 → Bn for n ≥ 1 are coCbrations
in D. Similarly; i is a projective trivial coCbration if and only if i0 and jn for n ≥ 1
are trivial coCbrations in D.

Proof. We only prove the coCbration case, leaving the similar trivial coCbration case
to the reader. First suppose i :A→ B is a projective coCbration. We have already seen
in Proposition 1.11 that A0 → B0 is a coCbration. We show that jn is a coCbration
by showing that jn has the left lifting property with respect to any trivial Cbration
p :X → Y in D. So suppose we have the commutative diagram below:

An � TAn−1TBn−1 −−−−−→ X

jn

�

� p

Bn −−−−−−−−−→ Y:

We must construct a lift in this diagram. By adjointness, it suDces to construct a lift
in the induced diagram below:

A −−−−−−−−−−−→ MnX

i

�

�
B −−−−−→ MnY ×Mn−1UY Mn−1UX;



M. Hovey / Journal of Pure and Applied Algebra 165 (2001) 63–127 73

where Mn is the right adjoint of Evn. Using the description of Mn given in Remark 1.4,
one can check that the map MnX → MnY ×Mn−1UY Mn−1UX is a level trivial Cbration,
so a lift exists.
Conversely, suppose that i0 and jn are coCbrations in D for n¿ 0. We show that i is

a projective coCbration by showing that i has the left lifting property with respect to any
level trivial Cbration p :X → Y in SpN(D; T ). So suppose we have the commutative
diagram below:

A
f−−−−−→ X

i

�

� p

B −−−−−→
g

Y:

We construct a lift hn :Bn → Xn, compatible with the structure maps, by induction on
n. There is no diDculty deCning h0, since i0 has the left lifting property with respect
to the trivial Cbration p0. Suppose we have deCned hj for j¡n. Then by lifting in
the induced diagram below:

An � TAn−1TBn−1
(fn;�◦Thn−1)−−−−−−−−−−−→ Xn�

� pn

Bn −−−−−−−−−−−−−−−−−→
gn

Yn;

we Cnd the required map hn :Bn → Xn.

Finally, we point out that the prolongation of T is still a Quillen functor.

Proposition 1.15. Give SpN(D; T ) the projective model structure. Then the prolonga-
tion T :SpN(D; T )→ SpN(D; T ) of T is a Quillen functor. Furthermore; the functor
Fn :D→ SpN(D; T ) is a Quillen functor.

Proof. The functor Evn obviously takes level Cbrations to Cbrations and level trivial
Cbrations to trivial Cbrations. Hence Evn is a right Quillen functor, and so its left
adjoint Fn is a left Quillen functor. Similarly, the prolongation of U to a functor
U :SpN(D; T ) → SpN(D; T ) preserves level Cbrations and level trivial Cbrations, so
its left adjoint T is a Quillen functor.

2. Bous�eld localization

We will deCne the stable model structure on SpN(D; T ) in Section 3 as a BousCeld
localization of the projective model structure on SpN(D; T ). In this section we recall
the theory of BousCeld localization of model categories from [11].
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To do so, we need some preliminary remarks related to function complexes. Details
can be found in [4; 11, Chapter 18; 12, Chapter 5]. First of all, given an object A in
a model category, we denote by QA a functorial coCbrant replacement of A [12, p. 5].
This means that QA is coCbrant and there is a natural trivial Cbration QA→ A. Simi-
larly, RA denotes a functorial Cbrant replacement of A, so that RA is Cbrant and there
is a natural trivial coCbration A → RA. By repeatedly using functorial factorization,
we can construct, given an object A in a model category C, a functorial cosimplicial
resolution of A. By mapping out of this cosimplicial resolution we get a simplicial set
Map‘(A; X ). Similarly, there is a functorial simplicial resolution of X , and by mapping
into it we get a simplicial set Mapr(A; X ). One should think of these as replacements
for the simplicial structure present in a simplicial model category. These function com-
plexes will not be homotopy invariant in general, so we deCne the homotopy function
complex as map (A; X ) = Mapr(QA; RX ). Then map (A; X ) is canonically isomorphic
in the homotopy category HoSSet of simplicial sets to Map‘(QA; RX ), and deCnes a
functor HoCop×HoC→ HoSSet. The homotopy function complex deCnes an enrich-
ment of HoC over HoSSet. In fact, HoC is naturally tensored and cotensored over
HoSSet, as well as enriched over it. In particular, if $ is an arbitrary left Quillen
functor between model categories with right adjoint %, we have map ((L$)X; Y ) ∼=
map (X; (R%)Y ) in HoSSet, where (L$)X = $QX is the total left derived functor of
$ and (R%)Y = %RY is the total right derived functor of %.

De�nition 2.1. Suppose we have a set S of maps in a model category C′.

1. A S-local object of C is a Cbrant object W such that, for every f :A→ B in S,
the induced map map (B;W )→ map (A;W ) is an isomorphism in HoSSet.

2. A S-local equivalence is a map g :A → B in C such that the induced map
map (B;W )→ map (A;W ) is an isomorphism in HoSSet for all S-local objects W .

By Hirschhorn [11, Theorem 3:3:8], S-local equivalences between S-local objects
are in fact weak equivalences. In outline, one proves this by Crst reducing to the case
where f: A → B is a coCbration and S-local equivalence between coCbrant S-local
objects. Then, since f is a coCbration and A is Cbrant, Mapr(f; A) : Mapr(B; A) →
Mapr(A; A) is a Cbration of simplicial sets [12, Corollary 5:4:4]. Since f is an S-local
equivalence and A is S-local, Mapr(f; A) is also a weak equivalence, and so a trivial
Cbration of simplicial sets. In particular, Mapr(f; A) is surjective. Any preimage of the
identity map is a homotopy inverse to f.
We will deCne cellular model categories, a special class of coCbrantly generated

model categories, in the appendix. The main theorem of [11] is that BousCeld local-
izations of cellular model categories always exist. More precisely, Hirschhorn proves
the following theorem.

Theorem 2.2. Suppose S is a set of maps in a left proper cellular model category C.
Then there is a left proper cellular model structure on C where the weak equivalences
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are the S-local equivalences and the co5brations remain unchanged. The S-local
objects are the 5brant objects in this model structure. We denote this new model
category by LSC and refer to it as the BousCeld localization of C with respect to
S. Left Quillen functors from LSC to D are in one to one correspondence with
left Quillen functors $: C → D such that $(Qf) is a weak equivalence for all
f∈S.

We will also need the following fact about localizations, which is implicit in [11,
Chapter 4].

Proposition 2.3. Suppose C and C′ are left proper cellular model categories; S is a
set of maps in C; and S′ is a set of maps in C′. Suppose $ :C → C′ is a Quillen
equivalence with right adjoint %; and suppose $(Qf) is a S′-local equivalence for all
f ∈ S. Then $ induces a Quillen equivalence $ :LSC → LS′C′ if and only if; for
every S-local X ∈ C; there is a S′-local Y in C′ such that X is weakly equivalent
in C to %Y . This condition will hold if; for all 5brant Y in C′ such that %Y is
S-local; Y is S′-local.

Proof. Suppose Crst that $ does induce a Quillen equivalence on the localizations, and
suppose that X is S-local. Then QX is also S-local, by Hirschhorn [11, Lemma 3:3:1].
Let LS′ denote a Cbrant replacement functor in LS′C′. Then, because $ is a Quillen
equivalence on the localizations, the map QX → %LS′$QX is a weak equivalence in
LSC (see [12, Section 1:3:3]). But both QX and %LS′$QX are S-local, so QX →
%LS′$QX is a weak equivalence in C. Hence X is weakly equivalent in C to %Y ,
where Y is the S′-local object LS′$QX .
The Crst step in proving the converse is to note that, since $ is a Quillen equivalence

before localizing, the map $Q%X → X is a weak equivalence for all Cbrant X . Since
the functor Q does not change upon localization, $Q%X → X is a S′-local equivalence
for every S′-local object of C′. Thus $ is a Quillen equivalence after localization if
and only if $ reNects local equivalences between coCbrant objects, by Hovey [12,
Corollary 1:3:16].
Suppose, then, that f: A→ B is a map between coCbrant objects such that $f is a

S′-local equivalence. We must show that map (f; X ) is an isomorphism in HoSSet for
all S-local X . Adjointness implies that map (f;%Y ) is an isomorphism for all S′-local
Y , and our condition then guarantees that this is enough to conclude that map (f; X )
is an isomorphism for all S-local X . This completes the proof of the converse.
We still need to prove the last statement of the proposition. So suppose X is S-local.

Then QX is also S-local, again by Hirschhorn [11, Lemma 3:3:1], and, in C, we have
a weak equivalence QX → %R$QX . Our assumption then guarantees that Y = R$QX
is S′-local, and X is indeed weakly equivalent to %Y .

The Cbrations in LSC are not completely understood [11, Section 3:6]. The S-local
Cbrations between S-local Cbrant objects are just the usual Cbrations. In case both
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C and LSC are right proper, there is a characterization of the S-local Cbrations in
terms of homotopy pullbacks analogous to the characterization of stable Cbrations of
spectra in [2]. However, LSC need not be right proper even if C is, as is shown by the
example of %-spaces in [2], where it is also shown that the expected characterization
of S-local Cbrations does not hold.

3. The stable model structure

Our plan now is to apply BousCeld localization to the projective model structure on
SpN(D; T ) to obtain a model structure with respect to which T is a Quillen equiva-
lence. In order to do this, we will have to prove that the projective model structure
makes SpN(D; T ) into a cellular model category when D is left proper cellular. We
will prove this technical result in the appendix. In this section, we will assume that
SpN(D; T ) is cellular, Cnd a good set S of maps to form the stable model structure
as the S-localization of the projective model structure, and prove that T is a Quillen
equivalence with respect to the stable model structure.
Just as in symmetric spectra [13], we want the stable equivalences to be maps

which induce isomorphisms on all cohomology theories. Cohomology theories will be
represented by the appropriate analogue of 
-spectra.

De�nition 3.1. A spectrum X is a U -spectrum if X is level Cbrant and the adjoint

Xn
�̃→UXn+1 of the structure map of X is a weak equivalence for all n ≥ 0.

Of course, if D is the category of pointed simplicial sets or pointed topological
spaces, and T is the suspension functor, U -spectra are just 
-spectra. We will Cnd a
set S of maps of SpN(D; T ) such that the S-local objects are the U -spectra. To do
so, note that if map (A; Xn) → map (A;UXn+1) is an isomorphism in HoSSet for all
coCbrant A in D, then Xn → UXn+1 is a weak equivalence by Hirschhorn [11, Theorem
18:8:7]. Since D is coCbrantly generated, we should not need all coCbrant A, but only
those A related to the generating coCbrations. This is true, but the proof is somewhat
technical.

Proposition 3.2. Suppose C is a left proper co5brantly generated model category
with generating co5brations I; and f :X → Y is a map in C. Then f is a weak
equivalence if and only if map (C; X )→ map (C; Y ) is an isomorphism in HoSSet for
all domains and codomains C of maps of I .

This proof will depend on the fact that Mapr(−; RZ) converts colimits in C to limits
of simplicial sets, coCbrations in C to Cbrations of simplicial sets, trivial coCbrations
in C to trivial Cbrations of simplicial sets, and weak equivalences between coCbrant
objects in C to weak equivalences between Cbrant simplicial sets. These properties
follow from [12, Corollary 5.4.4] and Ken Brown’s lemma [12, Lemma 1.1.12].
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Proof. The only if half follows from [11, Theorem 18.8.7]. Conversely, suppose that
map(C;f) is an isomorphism in HoSSet for all domains and codomains of maps of
I . It suDces to show that map(A; f) is an isomorphism for all coCbrant objects A, by
Hirschhorn [11, Theorem 18.8.7]. But every coCbrant object is a retract of an I -cell
complex (i.e. an object A such that the map 0 → A is a transCnite composition of
pushouts of maps of I), so it suDces to prove that map(A; f) is an isomorphism
for all cell complexes A. This is equivalent to showing that Mapr(A; Rf) is a weak
equivalence for all cell complexes A. Given a cell complex A, there is an ordinal )
and a )-sequence

0 = A0 → A1 → · · · → A* → · · ·

with colimit A) = A, where each map i* :A* → A*+1 is a pushout of a map of I . We
will show by transCnite induction on * that Mapr(A*; Rf) is a weak equivalence for
all * ≤ ). Taking * = ) completes the proof.
The base case of the induction is trivial, since A0=0. For the successor ordinal case,

we suppose Mapr(A*; Rf) is a weak equivalence and prove that Mapr(A*+1; Rf) is a
weak equivalence. We have the pushout square below:

C −−−−−→ A*

g

�

� i*

D −−−−−→ A*+1;

where g is a map of I . We must Crst replace this pushout square by a weakly equivalent
pushout square in which all the objects are coCbrant, which we can do because C

is left proper. Begin by factoring the composite QC → C → D into a coCbration
g̃ :QC → D̃ followed by a trivial Cbration D̃ → D. In the terminology of [11], g̃
is a coCbrant approximation to g. By Hirschhorn [11, Proposition 11.3.2], there is a
coCbrant approximation ĩ* : Ã* → Ã*+1 to i* which is a pushout of g̃. That is, we have
constructed the pushout square below:

QC −−−−−→ Ã*

g̃

�

� ĩ*

D̃ −−−−−→ Ã*+1

and a map from this pushout square to the original one that is a weak equivalence at
each corner. By the properties of Mapr(−; RZ) mentioned in the paragraph preceding
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this proof, we have two pullback squares of Cbrant simplicial sets as below:

Mapr(Ã*+1; RZ) −−−−−→ Mapr(D̃; RZ)�

�
Mapr(Ã*; RZ) −−−−−→ Mapr(QC; RZ);

where Z =X and Z = Y , respectively. Here the vertical maps are Cbrations. There is a
map from the square with Z=X to the square with Z=Y induced by f. By hypothesis,
this map is a weak equivalence on every corner except possibly the upper left. But
then Dan Kan’s cube lemma (see [12, Lemma 5.2.6], where the dual of the version we
need is proved, or [4]) implies that the map on the upper left corner Mapr(Ã*+1; Rf)
is also a weak equivalence. Since Mapr(−; RZ) preserves weak equivalences between
coCbrant objects for any Z (see the paragraph preceding this proof), it follows that
Mapr(A*+1; Rf) is a weak equivalence.
We must still carry out the limit ordinal case of the induction. Suppose * is a

limit ordinal and Mapr(A,; Rf) is a weak equivalence for all ,¡*. We must show
that Mapr(A*; Rf) is a weak equivalence. For Z = X or Z = Y , the simplicial sets
Mapr(A,; RZ) deCne a limit-preserving functor *

op → SSet such that each map
Mapr(A,+1; RZ) → Mapr(A,; RZ) is a Cbration of Cbrant simplicial sets, using the
properties of Mapr(−; RZ) mentioned in the paragraph preceding this proof. There is a
natural transformation from the functor with Z = X to the functor with Z = Y , and by
hypothesis this map is a weak equivalence at every stage. As explained in Section 5:1
of [12], there is a model structure on functors *op → SSet where the weak equivalences
and Cbrations are taken levelwise. Both diagrams Mapr(A,; RX ) and Mapr(A,; RY ) are
Cbrant, since each simplicial set in them is Cbrant. The inverse limit is a right Quillen
functor [12, Corollary 5.1.6], and so preserves weak equivalences between Cbrant ob-
jects by Ken Brown’s lemma [12, Lemma 1.1.12]. Thus the inverse limit Mapr(A*; Rf)
is a weak equivalence, as required. This completes the transCnite induction and the
proof.

Note that the left properness assumption in Proposition 3.2 is unnecessary when the
domains of the generating coCbrations are themselves coCbrant, since there is then no
need to apply coCbrant approximation.
In view of Proposition 3.2, we need to choose our set S so as to make

map(C; Xn)→ map(C;UXn+1)

an isomorphism in HoSSet for all S-local objects X and all domains and codomains
C of the generating coCbrations I . Adjointness implies that, if X is level Cbrant,
map(C; Xn) ∼= map(FnQC; X ) in HoSSet, since FnQC=(LFn)C, where LFn is the total
left derived functor of Fn. Also, map(C;UXn+1) ∼= map(Fn+1TQC; X ). In view of this,
we make the following deCnition.
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De�nition 3.3. Suppose D is a left proper cellular model category with generating
coCbrations I , and T is a left Quillen endofunctor of D. DeCne the set S of maps

in SpN(D; T ) as {Fn+1TQC -QCn→ FnQC}, as C runs through the set of domains and
codomains of the maps of I and n runs through the non-negative integers. Here the
map -QCn is adjoint to the identity map of TQC, and so is an isomorphism in degrees
greater than n. DeCne the stable model structure on SpN(D; T ) to be the localization
of the projective model structure on SpN(D; T ) with respect to this set S. We refer
to the S-local weak equivalences as stable equivalences, and to the S-local Cbrations
as stable 5brations.

The referee points out that DeCnition 3.3 is an implementation of Adams’ “cells
now – maps later” philosophy [1, p. 142]. Indeed, a map FnQC

e→X can be thought
of as a cell of the spectrum X , at least when C is a codomain of one of the generating
coCbrations of I . Inverting the map Fn+1TQC → FnQC is tantamount to allowing a
map from X to Y to be deCned on the cell e only after applying T some number of
times.

Theorem 3.4. Suppose D is a left proper cellular model category and T is a left
Quillen endofunctor of D. Then the stably 5brant objects in SpN(D; T ) are the
U-spectra. Furthermore; for all co5brant A ∈ D and for all n ≥ 0; the map

Fn+1TA
-An→FnA is a stable equivalence.

Proof. By deCnition, X is S-local if and only if X is level Cbrant and

map(FnQC; X )→ map(Fn+1TQC; X )

is an isomorphism in HoSSet for all n ≥ 0 and all domains and codomains C of maps
of I . By the comments preceding DeCnition 3.3, this is equivalent to requiring that X
be level Cbrant and that the map map(C; Xn)→ map(C;UXn+1) be an isomorphism for
all n ≥ 0 and all domains and codomains C of maps of I . By Proposition 3.2, this is
equivalent to requiring that X be a U -spectrum.
Now, by deCnition, -An is a stable equivalence if and only if map(-

A
n ; X ) is a weak

equivalence for all U -spectra X . But by adjointness, map(-An ; X ) can be identiCed with
map(A; Xn) → map(A;UXn+1). Since Xn → UXn+1 is a weak equivalence between
Cbrant objects, map(-An ; X ) is an isomorphism in HoSSet, by Hovey [12, Corollary
5.4.8].

We would now like to claim that the stable model structure on SpN(D; T ) that
we have just deCned is a generalization of the stable model structure on spectra of
topological spaces or simplicial sets deCned in [2]. This cannot be a trivial observation,
however, both because our approach is totally diFerent and because of Remark 1.6.

Corollary 3.5. If D is either the category of pointed simplicial sets or pointed topo-
logical spaces; and T is the suspension functor given by smashing with S1; then the
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stable model structure on SpN(D; T ) coincides with the stable model structure on the
category of Bous5eld–Friedlander spectra [2].

Proof. We know already that the coCbrations are the same in the stable model struc-
ture on SpN(D; T ) and the stable model structure of [2]. We will show that the weak
equivalences are the same. In any model category at all, a map f is a weak equiv-
alence if and only if map(f; X ) is an isomorphism in HoSSet for all Cbrant X , by
Hirschhorn [11, Theorem 18.8.7]. Construction of map(f; X ) requires replacing f by
a coCbrant approximation f′ and building cosimplicial resolutions of the domain and
codomain of f′. In the case at hand, we can do the coCbrant replacement and build
the cosimplicial resolutions in the projective model category of spectra, since the coC-
brations do not change under localization. Thus map(f; X ) is the same in both the
stable model structure on SpN(D; T ) and in the stable model category of BousCeld
and Friedlander. Since the stably Cbrant objects are also the same, the corollary holds.

We now begin the process of proving that the prolongation of T is a Quillen equiv-
alence with respect to the stable model structure on SpN(D; T ).

Lemma 3.6. Suppose D is a left proper cellular model category and T is a left
Quillen endofunctor of D. Then the prolongation of T to a functor T :SpN(D; T )→
SpN(D; T ) is a left Quillen functor with respect to the stable model structure.

Proof. In view of Hirschhorn’s localization Theorem 2.2, we must show that T (Qf)
is a stable equivalence for all f ∈ S. Since the domains and codomains of the maps
of S are already coCbrant, it is equivalent to show that Tf is a stable equivalence for
all f ∈S. Since TFn = FnT , we have T (-An ) = -

TA
n . In view of Theorem 3.4, this map

is a stable equivalence whenever A, and hence TA, is coCbrant. Taking A=QC, where
C is a domain or codomain of a map of I , completes the proof.

We will now show that T is in fact a Quillen equivalence with respect to the stable
model structure. To do so, we introduce the shift functors.

De�nition 3.7. Suppose D is a model category and T is a left Quillen endofunctor
of D. De5ne the shift functors s+ :SpN(D; T ) → SpN(D; T ) and s− :SpN(D; T ) →
SpN(D; T ) by (s−X )n = Xn+1, (s+X )n = Xn−1 for n¿ 0; and (s+X )0 = 0; with the
evident structure maps. Note that s+ is left adjoint to s−.

Lemma 3.8. Suppose D is a left proper cellular model category and T is a left
Quillen endofunctor of D. Then
(a) the shift functor s+ is a left Quillen functor with respect to the projective model

structure on SpN(D; T );
(b) the shift functor s+ commutes with T and s− commutes with U;
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(c) we have s+Fn = Fn+1 and Evns− = Evn+1.
(d) the shift functor s+ is a left Quillen functor with respect to the stable model

structure on SpN(D; T ).

Proof. For part (a), it is clear that s− preserves level equivalences and level Cbrations,
so s− is a right Quillen functor with respect to the projective model structure. Parts
(b) and (c) we leave to the reader, except to note that adjointness makes the two
halves of part (b) equivalent, and similarly the two halves of part (c). For part (d),
note that Theorem 2.2 implies that s+ deCnes a left Quillen functor with respect to the
stable model structure as long as s+(-

QC
n ) is a stable equivalence for all domains and

codomains C of the generating coCbrations of D. However, parts (b) and (c) imply
that s+(-

QC
n ) = -

QC
n+1, which is certainly a stable equivalence.

We now prove that T is a Quillen equivalence with respect to the stable model
structure by comparing the T and U adjunction to the s+ and s− adjunction.

Theorem 3.9. Suppose D is a left proper cellular model category and T is a left
Quillen endofunctor of D. Then the functors T :SpN(D; T ) → SpN(D; T ) and
s+ :SpN(D; T )→ SpN(D; T ) are Quillen equivalences with respect to the stable model
structures. Furthermore; Rs− is naturally isomorphic to LT; and RU is naturally iso-
morphic to Ls+.

Proof. The maps Xn → UXn+1 adjoint to the structure maps of a spectrum X deCne
a natural map of spectra X → s−UX . This map is a stable equivalence (in fact, a
level equivalence) when X is a stably Cbrant object of SpN(D; T ). This means that the
total right derived functor R(s−U ) is naturally isomorphic to the identity functor on
HoSpN(D; T ) (where we use the stable model structure). On the other hand, R(s−U )
is naturally isomorphic to Rs− ◦ RU and also to RU ◦ Rs−, since s− and U commute
with each other. Thus the natural isomorphism from the identity to R(s−U ) gives rise
to an natural isomorphism 1 → Rs− ◦ RU and a natural isomorphism RU ◦ Rs− → 1.
Therefore Rs− and RU are inverse equivalences of categories, and so both s− and U
are Quillen equivalences. Since inverse equivalences of categories can always be made
into adjoint equivalences, Rs− and RU are in fact adjoint equivalences. Since LT and
Rs− are both left adjoint to RU , LT and Rs− are naturally isomorphic. Similarly, since
Ls+ and RU are both left adjoint to Rs−, Ls+ and RU are naturally isomorphic.

We note that Theorem 3.9, when applied to the BousCeld–Friedlander model category
of spectra [2], shows that the suspension functor without the twist (see Remark 1.6),
X �→ X P⊗S1, is a Quillen equivalence. However, Theorem 3.9 does not show that the
suspension functor with the twist, X �→ X ⊗ S1, is a Quillen equivalence. Indeed, the
maps Xn → 
Xn+1 only deCne a map of spectra if we do not put in the extra twist.
We will discuss this issue further in Section 10. See also Remark 6.4.
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4. The almost �nitely generated case

The reader may well object at this point that we have deCned the stable model
structure on SpN(D; T ) without ever deCning stable homotopy groups. This is because
stable homotopy groups do not detect stable equivalences in general. The usual sim-
plicial and topological situation is very special. The goal of this section is to put some
hypotheses on D and T so that the stable model structure on SpN(D; T ) behaves sim-
ilarly to the stable model structure on ordinary simplicial spectra. In particular, we
show that, if D is almost Cnitely generated (deCned below), sequential colimits in D

preserve Cnite products, and U preserves sequential colimits, then the usual 
∞�∞

kind of construction gives a stable Cbrant replacement functor. This implies that a map
f is a stable equivalence if and only if the analogue of 
∞�∞f is a level equiva-
lence. This allows us to characterize HoSpN(D; T )(F0A; X ) for well-behaved A as the
usual sort of colimit colim HoD(TnA; Xn). It also allows us to prove that the stable
model structure is right proper, under slightly more hypotheses, so we get the expected
characterization of stable Cbrations.
Most of the results in this section do not depend on the existence of the stable model

structure on SpN(D; T ), so we do not usually need to assume D is left proper cellular.
We now deCne almost Cnitely generated model categories, as suggested to the author

by Voevodsky.

De�nition 4.1. An object A of a category C is called 5nitely presented if the func-
tor C(A;−) preserves direct limits of sequences X0 → X1 → · · · → Xn → · · · . A
coCbrantly generated model category C is said to be 5nitely generated if the domains
and codomains of the generating coCbrations and the generating trivial coCbrations are
Cnitely presented. A coCbrantly generated model category is said to be almost 5nitely
generated if the domains and codomains of the generating coCbrations are Cnitely pre-
sented, and if there is a set of trivial coCbrations J ′ with Cnitely presented domains
and codomains such that a map f whose codomain is 5brant is a Cbration if and only
if f has the right lifting property with respect to J ′.

This deCnition diFers slightly from other deCnitions. In particular, an object A is
usually said to be Cnitely presented [26, Section V:3] if C(A;−) preserves all directed
(or, equivalently, Cltered) colimits. We are trying to assume the minimum necessary.
Finitely generated model categories were introduced in [12, Section 7:4], but in that
deCnition we assumed only that C(A;−) preserves (transCnitely long) direct limits of
sequences of co5brations. The author would now prefer to call such model categories
compactly generated. Thus, the model category of simplicial sets is Cnitely generated,
but the model category on topological spaces is only compactly generated. Since we
will only be working with (almost) Cnitely generated model categories in this section,
our results will not apply to topological spaces. We will indicate where our results fail
for compactly generated model categories, and a possible way to amend them in the
compactly generated case.
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The deCnition of an almost Cnitely generated model category was suggested by Vo-
evodsky. The problem with Cnitely generated, or, indeed, compactly generated, model
categories is that they are not preserved by localization. That is, if C is a Cnitely gen-
erated left proper cellular model category, and S is a set of maps, then the BousCeld
localization [11] LSC will not be Cnitely generated, because we lose control of the
generating trivial coCbrations in LSC. However, we will show in the following propo-
sition that BousCeld localization sometimes does preserve almost Cnitely generated
model categories.
Recall from [12, Chapter 5] that it is possible to deCne X ⊗K for an object X in a

model category and a simplicial set K , even if the model category is not simplicial.

Proposition 4.2. Let C be a left proper; cellular; almost 5nitely generated model
category; and S be a set of co5brations in C. Suppose that; for every domain or
codomain X of S and every 5nite simplicial set K; X ⊗K is 5nitely presented. Then
the Bous5eld localization LSC is almost 5nitely generated.

Proof. Since C is almost Cnitely generated, there is a set J ′ of trivial coCbrations so
that a map p whose codomain is Cbrant is a Cbration if and only if p has the right
lifting property with respect to J ′. Let 0(S) denote the set of maps

(A⊗ 1[n])� A⊗0k [n](B⊗ 0k [n])→ B⊗ 1[n];
where A → B is a map of S, n ≥ 0, 1[n] is the standard n-simplex, and 0k [n] for
0 ≤ k ≤ n is the horn obtained from 1[n] by removing the nondegenerate n-simplex
and the nondegenerate (n − 1)-simplex not containing vertex k. As explained in [11,
Proposition 4.2.4], a Cbrant object X is S-local if and only if the map X → 1 has
the right lifting property with respect to 0(S). Since an S-local Cbration between
S-local objects is just an ordinary Cbration [11, Section 3:6], the set 0(S) ∪ J ′ will
detect Cbrations between Cbrant objects in LSC, and therefore LSC is almost Cnitely
generated.

Voevodsky has informed the author that he can make an unstable motivic model
category that is almost Cnitely generated. For the reader’s beneCt, we summarize his
construction. This summary will of necessity assume some familiarity with both the
language of algebraic geometry and Voevodsky’s central idea [27]. We begin with the
category E of simplicial presheaves (of sets) on the category of smooth schemes over
some base scheme k. There is a projective model structure on this category, where a
map of simplicial presheaves X → Y is a weak equivalence (resp. Cbration) if and only
if the map X (U )→ Y (U ) is a weak equivalence (resp. Cbration) of simplicial sets for
all U . The projective model structure is Cnitely generated (using the fact that smooth
schemes over k is an essentially small category). There is an embedding of smooth
schemes into E as representable functors. We need to localize this model structure to
take into account both the Nisnevich topology and the fact that the functor X �→ X×A1
should be a Quillen equivalence. To do so, we deCne a set S′ to consist of the maps
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X ×A1 → X for every smooth scheme X and maps P → X for every pullback square
of smooth schemes

B −−−−−→ Y�

� p

A −−−−−→
j

X;

where p is etale, j is an open embedding, and p−1(X−A)→ X−A is an isomorphism.
Here P is the mapping cylinder (B�Y )� B�B(A×1[1]). We then deCne S to consist
of mapping cylinders on the maps of S′. The maps of S are then coCbrations whose
domains and codomains are Cnitely presented (and remain so after tensoring with any
Cnite simplicial set), so the BousCeld localization C = LSE will be almost Cnitely
generated.
There is then some work involving properties of the Nisnevich topology to show

that this model category is equivalent to the Morel–Voevodsky motivic model category
of [19], and to the model category used by Jardine [14]. Given this, if we let T be the
endofunctor of C which takes X to X×A1, then SpN(C; T ) is a model for Voevodsky’s
stable motivic category.
The essential properties of almost Cnitely generated model categories that we need

are contained in the following lemma.

Lemma 4.3. Suppose C is an almost 5nitely generated model category:

1. If

X0 → X1 → · · · → Xn → · · ·

is a sequence of 5brant objects; then colim Xn is 5brant.
2. Suppose we have the commutative diagram below:

X0 −−−−−→ X1 −−−−−→ X2 −−−−−→ · · · −−−−−→ Xn −−−−−→ · · ·

p0

� p1

� p2

� pn

�
Y0 −−−−−→ Y1 −−−−−→ Y2 −−−−−→ · · · −−−−−→ Yn −−−−−→ · · ·

If each pn is a trivial 5bration; so is colimpn. If each pn is a 5bration between
5brant objects; so is colimpn.

Proof. Let J ′ denote a set of trivial coCbrations in C with Cnitely presented domains
and codomains that detect Cbrations with Cbrant codomain. For part (a), it suDces to
show that colim Xn → 1 has the right lifting property with respect to J ′. But this is
clear, since any map from a domain of J ′ to colim Xn factors through some Xk , and
Xk is Cbrant. The second part is proved similarly.
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We now consider the stable model structure on SpN(D; T ) when D is an almost
Cnitely generated model category and T is a left Quillen endofunctor of D. In analogy
with ordinary BousCeld–Friedlander spectra, there is an obvious candidate for a stable
Cbrant replacement of a spectrum X .

De�nition 4.4. Suppose T is a left Quillen endofunctor of a model category D with
right adjoint U . DeCne 4 :SpN(D; T )→ SpN(D; T ) to be the functor s−U , where s−
is the shift functor. Then we have a natural map 5X :X → 4X , and we deCne

4∞X = colim(X
5X−→4X

45X−−→42X
425X−−→· · ·4

n−15X−−−→4nX
4n5X−−→ : : :):

Let jX :X → 4∞X denote the obvious natural transformation.

The following lemma, though elementary, is crucial.

Lemma 4.5. The maps 54X ;45X :4X → 42X coincide.

Proof. The map 5X :Xn → UXn+1 is the adjoint �̃ of the structure map of X . Hence
45X is just U�̃ in each degree. Since the adjoint of the structure map of UX is just
U�̃ (see Lemma 1.5), 54X =45X .

We stress that Lemma 4.5 fails for symmetric spectra, and it is the major reason we
must work with Cnitely generated model categories rather than compactly generated
model categories. Indeed, in the compactly generated case, 4∞ is not a good functor,
since maps out of one of the domains of the generating coCbrations will not preserve
the colimit that deCnes 4∞X . The obvious thing to try is to replace the functor 4 by
a functor W , obtained by factoring X → 4X into a projective coCbration X → WX
followed by a level trivial Cbration WX → 4X . The diDculty with this plan is that
we do not see how to prove Lemma 4.5 for W . An alternative plan would be to use
the mapping cylinder X → W ′X on X → 4X ; this might make Lemma 4.5 easier to
prove, but the map X → W ′X will not be a coCbration. The map X → W ′X may,
however, be good enough for the required smallness properties to hold. It is a closed
inclusion if D is topological spaces, for example. The author knows of no good general
theorem in the compactly generated case.
This lemma leads immediately to the following proposition.

Proposition 4.6. Suppose T is a left Quillen endofunctor of a model category D;
and suppose that its right adjoint U preserves sequential colimits. Then the map
54∞X :4∞X → 4(4∞X ) is an isomorphism. In particular; if X is level 5brant; D
is almost 5nitely generated; and U preserves sequential colimits; then 4∞X is a
U-spectrum.
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Proof. The map 54∞X is the colimit of the vertical maps in the diagram below:

X
5X−−−−−→ 4X

45X−−−−−→ 42X
425X−−−−−→ · · · 4n−15X−−−−−→ 4nX

4n5X−−−−−→ · · ·

5X

� 54X

� 542X

� 54nX

�
4X −−−−−→

45X
42X −−−−−→

425X
43X −−−−−→

435X
· · · −−−−−→

4n5X
4n+1X −−−−−→

4n+15X
· · · :

Since the vertical and horizontal maps coincide, the result follows. For the second
statement, we note that if X is level Cbrant, then each 4nX is level Cbrant since 4 is
a right Quillen functor (with respect to the projective model structure). Since sequential
colimits in D preserve Cbrant objects by Lemma 4.3, 4∞X is level Cbrant, and hence
a U -spectrum.

Proposition 4.7. Suppose T is a left Quillen endofunctor of a model category D with
right adjoint U. If D is almost 5nitely generated; and X is a U-spectrum; then the
map jX :X → 4∞X is a level equivalence.

Proof. By assumption, the map 5X :X → 4X is a level equivalence between level
Cbrant objects. Since 4 is a right Quillen functor, 4n5X is a level equivalence as
well. Then the method of [12, Corollary 7:4:2] completes the proof. Recall that this
method is to use factorization to construct a sequence of projective trivial coCbrations
Yn → Yn+1 with Y0 =X and a level trivial Cbration of sequences Yn → 4nX . Then the
map X → colim Yn will be a projective trivial coCbration. Since sequential colimits in
D preserve trivial Cbrations by Lemma 4.3, the map colim Yn → 4∞X will still be a
level trivial Cbration.

Proposition 4.7 gives us a slightly better method of detecting stable equivalences.

Corollary 4.8. Suppose T is a left Quillen endofunctor of a model category D with
right adjoint U . Suppose D is almost 5nitely generated and U preserves sequential
colimits. Then a map f :A → B is a stable equivalence in SpN(D; T ) if and only
if map(f; X ) is an isomorphism in HoSSet for all level 5brant spectra X such that
5X :X → 4X is an isomorphism.

Proof. By deCnition, f is a stable equivalence if and only if map(f; Y ) is an isomor-
phism for all U -spectra Y . But we have a level equivalence Y → 4∞Y by Proposition
4.7, and so it suDces to know that map(f;4∞Y ) is an isomorphism for all U -spectra
Y . But, by Proposition 4.6, 54∞Y is an isomorphism.

This corollary, in turn, allows us to prove that 4∞ detects stable equivalences. The
following theorem is similar to [13, Theorem 3:1:11].
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Theorem 4.9. Suppose T is a left Quillen endofunctor of a model category D with
right adjoint U. Suppose that D is almost 5nitely generated and sequential colimits
in D preserve 5nite products. Suppose also that U preserves sequential colimits. If
f :A→ B is a map in SpN(D; T ) such that 4∞f is a level equivalence; then f is a
stable equivalence.

Before we can prove this theorem, however, we need to study how 4∞ interacts
with the enrichment map (X; Y ). This requires some model category theory based on
[12, Chapter 5].

Lemma 4.10. Suppose H :D → E is a functor between model categories that pre-
serves 5brant objects; weak equivalences between 5brant objects, 5brations between
5brant objects; and 5nite products. Let C be a co5brant object of D and let X be
a 5brant object of D. Then there is a natural map map(C; X )

6→map(HC;HX ) in
HoSSet.

Proof. This proof will assume familiarity with [12, Chapter 5]. In particular, we need
the notions of a simplicial frame X∗ on a Cbrant object X in a model category C from
[12, Section 5:2] and the associated functor SSet → C that takes K to (X∗)K . Here
(X∗)n=(X∗)T[n], and the recipe for building (X∗)K from the (X∗)T[n]’s is derived from
the recipe for building K rom the T[n]’s (see [12, Proposition 3.1.5]). Recall that a
simplicial frame X∗ on X is a simplicial object in D with X0 ∼= X and a factorization
‘•X → X∗ → r•X into a weak equivalence followed by a Cbration in the category of
simplicial objects in D. Here ‘•X is the constant simplicial object on X , (r•X )n+1 is
the (n+1)-fold product of X , the map ‘•X → r•X is the diagonal map. The hypotheses
on H guarantee that, if X∗ is a simplicial frame on the Cbrant object X , then H (X∗)
is a simplicial frame on HX . This is the key fact that this lemma relies on.
Now, given a choice of functorial factorization on C, there is a canonical simplicial

frame X◦ associated to X , and the associated functor deCnes the cotensor action of
HoSSet on HoD by taking (K; X ) to XK = (X◦)K . For any other simplicial frame X∗
there is a weak equivalence X∗ → X◦ inducing an isomorphism (X∗)K → XK in HoC
that is natural in K and only depends on the isomorphism (X∗)0 → X (see [12, Lemma
5:5:2]). In particular, there is a weak equivalence of simplicial frames H (X◦)→ (HX )◦
inducing an isomorphism H (XK)→ (HX )K in HoE that is natural in both X and K .
Finally, we have an adjointness isomorphism

HoSSet(K;map(C; X )) ∼= HoD(C; X K):

Thus, the identity map of map(C; X ) gives us a map C → Xmap(C;X ) in HoD. Since C
is coCbrant and X is Cbrant, this map is represented by a map C → Xmap(C;X ) in D.
By applying H , we get a map

HC → H (Xmap(C;X )) ∼= (HX )map(C;X ):
Then, applying adjointness again, we get the desired natural map map(C; X ) →
map(HC;HX ).
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With this lemma in hand, we can prove Theorem 4.9.

Proof of Theorem 4.9. We are given a map f such that 4∞f is a level equivalence.
Since D is almost Cnitely generated and U preserves sequential colimits, 4∞ preserves
level trivial Cbrations. Therefore, 4∞(Qf) is also a level equivalence. Hence we may
as well assume that f is a map of coCbrant spectra. Now, suppose X is a U -spectrum
such that the map 5X : X → 4X is an isomorphism. By Corollary 4.8, it suDces to
show that map(f; X ) is an isomorphism in HoSSet. Since 4∞f is a level equivalence,
map(4∞f;4∞X ) is an isomorphism. It therefore suDces to show that map(f; X ) is a
retract of map(4∞f;4∞X ). We will prove this by showing that map(C; X ) is naturally
a retract of map(4∞C;4∞X ) for any coCbrant spectrum C. Our hypotheses guarantee
that 4∞ preserves level Cbrant objects, level Cbrations between level Cbrant objects,
and all level trivial Cbrations, since D is almost Cnitely generated. Furthermore, 4∞

preserves Cnite products, since sequential colimits commute with Cnite products. Thus,
Lemma 4.10 gives us a natural map map(C; X )→ map(4∞C;4∞X ). There is also a
natural map 7C : map(4∞C;4∞X )→ map(C; X ) deCned as the composite

map(4∞C;4∞X )
map( jC ;4∞X )−−−−−−−→map(C;4∞X )

map(C;j−1X )
−−−−−→map(C; X );

where we have used the fact that iX is an isomorphism to conclude that jX is also an
isomorphism. Naturality means that, given a map g :C → D, we have the commutative
diagram below:

map(4∞D;4∞X )
map(4∞g;4∞X )−−−−−−−−−−−−−−−→ map(4∞C;4∞X )

7D

�

� 7C

map(D; X ) −−−−−−−−−−−−−−−−−−−−−→
map(g;X )

map(C; X ):

We claim that the composite map(C; X ) → map(4∞C;4∞X ) → map(C; X ) is the
identity, so that map(C; X ) is naturally a retract of map(4∞C;4∞X ). This argument,
which will depend heavily on the method of Lemma 4.10, will complete the proof. Let
, :C → Xmap(C;X ) denote the adjoint of the identity of map(C; X ). Then the composite
map(C; X ) → map(4∞C;4∞X ) → map(C; X ) is adjoint to the counter-clockwise
composite in the following commutative diagram:

C −−−−−→
,

Xmap(C;X ) Xmap(C;X )

j

�

� j

� 8

4∞C −−−−−→
Q,

4∞(Xmap(C;X )) −−−−−→∼=
(4∞X )map(C;X )

∼=−−−−−−→
( jmap(C; X )X )−1

Xmap(C; X ):
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The left square of this diagram is commutative because j is natural. There is some
choice of 8 that makes the right square commutative, but we claim that 8 = jmap(C;X )X

will work. This completes the proof, and follows from [12, Lemma 5:5:2], because the
natural isomorphism 4∞(XK) → (4∞X )K is induced by a map of simplicial frames
which is the identity in degree 0.

Corollary 4.11. Let T be a left Quillen endofunctor of a model category D with right
adjoint U . Suppose that D is almost 5nitely generated; that sequential colimits in D

preserve 5nite products; and that U preserves sequential colimits. Then jA :A→ 4∞A
is a stable equivalence for all A ∈ SpN(D; T ).

Proof. One can easily check that 4∞jA is an isomorphism, using Proposition 4.6.

Finally, we get the desired characterization of stable equivalences.

Theorem 4.12. Let T be a left Quillen endofunctor of a model category D with right
adjoint U . Suppose that D is almost 5nitely generated; that sequential colimits in
D preserve 5nite products; and that U preserves sequential colimits. Let L′ denote a
5brant replacement functor in the projective model structure on SpN(D; T ). Then; for
all A ∈ SpN(D; T ); the map A→ 4∞L′A is a stable equivalence into a U -spectrum.
Also, a map f :A → B is a stable equivalence if and only if 4∞L′f is a level
equivalence.

Proof. The Crst statement follows immediately from Proposition 4.6 and Corollary
4.11. By the Crst statement, if f is a stable equivalence, so is 4∞L′f. Since 4∞L′f
is a map between U -spectra, it is a stable equivalence if and only if it is a level
equivalence. The converse follows from Theorem 4.9.

Since we did not need the existence of the stable model structure to prove Theorem
4.12, one can imagine attempting to construct it from the functor 4∞L′. This is, of
course, the original approach of BousCeld–Friedlander [2], and this approach has been
generalized by Schwede [21]. Also, if there is some functor F , like homotopy groups,
that detects level equivalences in D, then Theorem 4.12 implies that F ◦ 4∞ ◦ L′
detects stable equivalences in SpN(D; T ). The functor F ◦4∞ ◦ L′ is a generalization
of the usual stable homotopy groups. One can see these generalizations in the following
corollary as well.

Corollary 4.13. Let D be a left proper; cellular; almost 5nitely generated model
category where sequential colimits preserve 5nite products. Suppose T :D → D is a
left Quillen functor whose right adjoint U commutes with sequential colimits. Finally;
suppose A is a 5nitely presented co5brant object of D that has a 5nitely presented
cylinder object A× I . Then

HoSpN(D; T )(FkA; Y ) = colimmHoD(A;UmYk+m)

for all level 5brant Y ∈ SpN(D; T ).
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Here we are using the stable model structure to form HoSpN(D; T ), of course.

Proof. We have HoSpN(D; T )(FkA; Y )=SpN(D; T )(FkA;4∞Y )= ∼, by Theorem 4.12,
where ∼ denotes the left homotopy relation. We can use the cylinder object
Fk(A × I) as the source for our left homotopies. Then adjointness implies that
SpN(D; T )(FkA;4∞Y )= ∼ =D(A; Evk4∞Y )= ∼. Since A and A × I are Cnitely pre-
sented, we get the required result.

By assuming slightly more about D, we can also characterize the stable Cbrations.

Corollary 4.14. Let D be a proper; cellular; almost 5nitely generated model category
such that sequential colimits preserve pullbacks. Suppose T :D→ D is a left Quillen
functor whose right adjoint U commutes with sequential colimits. Then the stable
model structure on SpN(D; T ) is proper. In particular; a map p :X → Y is a stable
5bration if and only if p is a level 5bration and the diagram

X −−−−−→ 4∞L′X

f

�

� Lp

Y −−−−−→ 4∞L′Y

is a homotopy pullback square in the projective model structure; where L′ is a 5brant
replacement functor in the projective model structure.

Proof. We will actually show that, if p :X → Y is a level Cbration and f :B→ Y is
a stable equivalence, the pullback B×Y X → X is a stable equivalence. This means the
the stable model structure on SpN(D; T ) is right proper, and then the characterization
of stable Cbrations follows from [11, Proposition 3:6:8].
The Crst step is to use the right properness of the projective model structure on

SpN(D; T ) to reduce to the case where B and Y are level Cbrant. Indeed, let Y ′=L′Y ,
B′ = L′B, and f′ = L′f. Then factor the composite X → Y → Y ′ into a projective
trivial coCbration X → X ′ followed by a level Cbration p′ :X ′ → Y ′. Then we have
the commutative diagram below:

B
f−−−−−→ Y

p←−−−−− X�

�

�
B′ −−−−−→

f′
Y ′ ←−−−−−

p′′
X ′;

where the vertical maps are level equivalences. Proposition 11:2:4 and Corollary 11:2:8
of [11], which depend on the projective model structure being right proper, imply that
the induced map B ×Y X → B′ ×Y ′ X ′ is a level equivalence. Hence B ×Y X → X is
a stable equivalence if and only if B′ ×Y ′ X ′ → X ′ is a stable equivalence, and so we
can assume B and X are level Cbrant.
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Now let S denote the pullback square below:

B×Y X −−−−−→ X�

� p

B −−−−−→
f

Y:

Then 4nS is a pullback square for all n, and there are maps 4nS
4n5S→ 4n+1S. Since

pullbacks commute with sequential colimits, 4∞S is a pullback square. Furthermore,
4∞p is a level Cbration, since sequential colimits in D preserve Cbrations between
level Cbrant objects. Since f is a stable equivalence between level Cbrant spectra,
4∞f is a level equivalence by Theorem 4.12. So, since the projective model structure
is right proper, the map 4∞(B×Y X → X ) is a level equivalence, and thus B×Y X → X
is a stable equivalence.

5. Functoriality of the stable model structure

In this section, we consider the stable model structure on SpN(D; T ) as a functor of
the pair (D; T ). The most important result in this section is that SpN(D; T ) is Quillen
equivalent to D if T is already a Quillen equivalence on D. This means that the functor
(D; T ) �→ (SpN(D; T ); T ) is idempotent up to Quillen equivalence. This is as close as
we can get to our belief that, up to Quillen equivalence, SpN(D; T ) should be the
initial stabilization of D with respect to T .
We also show that SpN(D; T ) is functorial in the pair (D; T ), with a suitable def-

inition of maps of pairs. Under mild hypotheses, we show that SpN(D; T ) preserves
Quillen equivalences in the pair (D; T ). Applying this to the BousCeld–Friedlander
category of spectra of simplicial sets, we Cnd that the choice of simplicial model of
the circle has no eFect on the Quillen equivalence class of the stable model category
of spectra.

Theorem 5.1. Suppose D is a left proper cellular model category; and suppose T is a
left Quillen endofunctor of D that is a Quillen equivalence. Then F0 :D→ SpN(D; T )
is a Quillen equivalence; where SpN(D; T ) has the stable model structure.

Proof. By Hovey [12, Corollary 1.3.16], it suDces to check two conditions. We Crst
show that Ev0 :SpN(D; T ) → D reNects weak equivalences between stably Cbrant
objects. We then show that the map A → Ev0LSF0A is a weak equivalence for all
coCbrant A ∈ D, where LS denotes a stable Cbrant replacement functor in SpN(D; T ).
Suppose X and Y are U -spectra, and f :X → Y is a map such that Ev0f=f0 is a

weak equivalence. We claim that f is a level equivalence, so that Ev0 reNects weak
equivalences between stably Cbrant objects. Since f is a map of spectra, we have
�Y ◦ Tfn−1 = fn ◦ �X for n ≥ 1. Using adjointness, we Cnd that Ufn ◦ �̃X = �̃Y ◦ fn−1
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for n ≥ 1. Since X and Y are U -spectra, we Cnd that fn−1 is a weak equivalence
if and only if Ufn is a weak equivalence. On the other hand, since T is a Quillen
equivalence on D, U reNects weak equivalences between Cbrant objects of D, by
Hovey [12, Corollary 1.3.16]. Therefore Ufn is a weak equivalence if and only if
fn is a weak equivalence. Altogether, fn−1 is a weak equivalence if and only if fn
is a weak equivalence. Since f0 is a weak equivalence by hypothesis, fn is a weak
equivalence for all n, and so f is a level equivalence, as required.
We now show that A → Ev0LSF0A is a weak equivalence for all coCbrant A ∈

D. Let R′ denote a Cbrant replacement functor in the projective model structure on
SpN(D; T ). We claim that R′F0A is already a U -spectrum. Suppose for the moment
that this is true. Then we have the commutative diagram below:

F0A
i−−−−−→ R′F0A

j

�

�
LSF0A −−−−−→ 0:

Since R′F0A is a U -spectrum, the right-hand vertical map is a stable Cbration. The
left-hand vertical map is a stable trivial coCbration, so there is a lift h :LSF0A

h→R′F0A
with hi = j. Since i is a level equivalence and j is a stable equivalence, h is a stable
equivalence. But both LSF0A and R′F0A are U -spectra, so h is a level equivalence (see
the discussion following DeCnition 2.1). This means that j is also a level equivalence.
Hence the map

A= Ev0 F0 A→ Ev0 LS F0 A

is a weak equivalence, as required.
It remains to prove that R′F0A is a U -spectrum when A is coCbrant. Let R denote

a Cbrant replacement functor in D. Since T is a Quillen equivalence, and TnA is
coCbrant, the map

(F0A)n = TnA→ URTn+1A= UR(F0A)n+1

is a weak equivalence, by Hovey [12, Corollary 1.3.16]. In the commutative diagram
below

(F0A)n+1 −−−−−−−→ (R′F0A)n+1�

�
R(F0A)n+1 −−−−−−−−−−−→ 0;

the right-hand vertical map is a Cbration, and the left-hand vertical map is a triv-
ial coCbration. Thus, there is a lift R(F0A)n+1 → (R′F0A)n+1, which must be a weak
equivalence by the two-out-of-three property. Applying U , which preserves weak
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equivalences between Cbrant objects, we Cnd that

(F0A)n → UR(F0A)n+1 → U (R′F0A)n+1

is a weak equivalence. This means that R′F0A is a U -spectrum, as required.

In particular, this theorem means that the passage (D; T ) �→ (SpN(D; T ); T ) is idem-
potent, up to Quillen equivalence. This suggests that we are doing some kind of Cbrant
replacement of (D; T ) in an appropriate model category of model categories, but the
author knows no way of making this precise.
We now examine the functoriality of the stable model structure on SpN(D; T ). We

Crst consider what information we need to extend a functor on a category to a functor
on the category of spectra.

Lemma 5.2. Suppose D and D′ are model categories equipped with left Quillen end-
ofunctors T :D→ D and T ′ :D′ → D′. Let U denote a right adjoint of T and let U ′

denote a right adjoint of T ′. Suppose % :D′ → D is a functor and 6 :%U ′ → U% is a
natural transformation. Then there is an induced functor SpN(%; 6) :SpN(D′; T ′) →
SpN(D; T ); sometimes denoted simply SpN(%) when the choice of 6 is clear; called
the prolongation of %.

Of course, the model structures are irrelevant to this lemma.

Proof. Given X ∈ SpN(D′; T ′), we deCne (SpN(%; 6)(X ))n = %Xn. The structure map
of SpN(%; 6)(X ) is adjoint to the composite

%Xn
%�̃→ %U ′Xn+1

6→ U%Xn+1;

where �̃ is adjoint to the structure map of X . Given a map f :X → Y , we deCne
SpN(%; 6)(f) by (SpN(%; 6)(f))n = %fn.

Note that the natural transformation 6 :%U ′ → U% is equivalent to a natural trans-
formation P6 :T%→ %T ′. Indeed, given 6, we deCne P6 to be the composite

T%X
T%:X−−−→ T%U ′T ′X

T6T′X−−−→ TU%T ′X
;%T′X−−−→ %T ′X;

where : denotes the unit and ; the counit of the appropriate adjunctions. Conversely,
given P6, we can recover 6 as the composite

%U ′X
:%U′X−−−→ UT%U ′X

U P6U′X−−−→ U%T ′U ′X
U%;X−−−→ U%X:

We can describe the prolongation SpN(%; 6) in terms of this associated natural trans-
formation P6. Indeed, the structure map of SpN(%; 6)(X ) is the composite

T%Xn
P6→ %T ′Xn

%�→ %Xn+1;

where � is the structure map of X .
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In practice, the functor % :D′ → D that we wish to prolong will usually have a
left adjoint $ :D → D′. We would like the prolongation SpN(%) to also have a left
adjoint. The following lemma deals with this issue.

Lemma 5.3. Suppose D and D′ are model categories equipped with left Quillen
endofunctors T :D → D and T ′ :D′ → D′. Let U denote a right adjoint of T
and let U ′ denote a right adjoint of T ′. Suppose that % :D′ → D is a functor with
left adjoint $, and 6 :%U ′ → U% is a natural transformation. Then the prolongation
SpN(%; 6) :SpN(D′; T ′) → SpN(D; T ) has a left adjoint $̃ satisfying $̃Fn ∼= Fn$. If
6 is a natural isomorphism; then $̃ is a prolongation of $.

The reason we do not denote $̃ by SpN($) is that $̃ is not generally a prolongation
of $.

Proof. Since Evn SpN(%; 6) = %Evn, if $̃ exists we must have $̃Fn ∼= Fn$. To con-
struct $̃, Crst note that the natural transformation 6 has a dual, or conjugate, natural
transformation <=D6 :$T → T ′$, discussed in [12, p. 24] and in [17, Section IV.7].
By iteration, we get induced natural transformations <q :$Tq → (T ′)q$ for all integers
q ≥ 1. We now deCne ($̃X )n to be the coequalizer of two maps

7n; *n:
∐

p+q+r=n

(T ′)p$TqXr �
∐
p+q=n

(T ′)p$Xq:

On the summand (T ′)p$TqXr , the top map 7n is (T ′)p$ applied to the iterated
structure map TqXr → Xq+r of X . On the same summand, the bottom map *n is
(T ′)p<q : (T ′)p$TqXr → (T ′)p+q$Xr . Note that T ′7n is the retract of 7n+1 consisting
of those terms (T ′)p$TqXr with p+ q+ r = n+ 1 and p¿ 0. A similar statement is
true for T ′*n. Since T ′ preserves coequalizers, there is an induced map T ′($̃X )n →
($̃X )n+1, which is the structure map of $̃X . We leave to the reader the deCnition of
$̃f for a map of spectra f :X → Y .
The argument that $̃ is left adjoint to SpN(%; 6) is intricate, but straightforward.

For example, a map $̃X → Y induces a map $Xn → Yn by restriction to the p =
0 summand in �p+q=n(T ′)p$Xq. The adjoint of this is a map Xn → %Yn, which
induces a map of spectra X → SpN(%; 6)(Y ). To see that this is indeed a map of
spectra, consider the $TXn summand in �p+q+r=n+1(T ′)p$TqXr . Conversely, a map

X
f→SpN(%; 6)Y consists of maps fn :Xn → %Yn. The adjoints f̃n :$Xn → Yn deCne a

map �p+q=n(T ′)p$Xq
gn→Yn via the composite

(T ′)p$Xq
(T ′)pf̃q−−−→ (T ′)pYq → Yn;

where the second map is a composite of structure maps of Y . The fact that the original
map f is a map of spectra implies that these maps gn descend to deCne a map ($̃X )n →
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Yn, which is automatically a map of spectra. We leave the rest of the argument to the
reader.
It remains to show that if 6 is a natural isomorphism, then $̃ is a prolongation of $.

If 6 is a natural isomorphism, then <=D6 :$T → T ′$ is also a natural isomorphism.
Let > :T ′$→ $T denote the inverse of <. Then, by Lemma 5.2, there is a prolongation
SpN($; >) of $. We claim that SpN($; >) is left adjoint to SpN(%; 6). Indeed, there
are natural candidates for the unit and counit of this purported adjunction; namely, the
maps which are levelwise the unit and counit of the ($;%) adjunction. We leave it to
the reader to check that these maps are maps of spectra and are natural. To ensure that
they are the unit and counit of an adjunction, we need to verify the triangle identities
[17, Theorem 4.1.2(v)], but these follow immediately from the triangle identities of
the ($;%) adjunction.

In view of the preceding lemma, we make the following deCnition.

De�nition 5.4. Suppose D and D′ are left proper cellular model categories, T is a left
Quillen endofunctor of D, and T ′ is a left Quillen endofunctor of D′. A map of pairs
($; <) : (D; T )→ (D′; T ′) is a functor $ :D→ D′ with a right adjoint %, and a natural
transformation < :$T → T ′$. We say that a map of pairs ($; <) is a Quillen map
of pairs if $ is a left Quillen functor and <A is a weak equivalence for all coCbrant
A ∈ D.

Note that the natural transformation < in this deCnition is the natural transformation
D6 in Lemma 5.3. Our goal is for a Quillen map of pairs to induce a corresponding
map of pairs on the stable model category of spectra. For this to be true, we need
some condition on <, and requiring <A to be a weak equivalence for all coCbrant A
seems to be the least we can assume.
Note that there is an obvious associative and unital composition of maps of pairs.

Proposition 5.5. Suppose ($; <) : (D; T ) → (D′; T ′) is a Quillen map of pairs. Then
there is an induced Quillen map of pairs

($̃; <̃) : (SpN(D; T ); T )→ (SpN(D′; T ′); T ′);

where SpN(D; T ) and SpN(D′; T ′) are given the stable model structures; such that
$̃ ◦ Fn ∼= Fn$. This induced map of pairs is compatible with composition and identi-
ties.

Proof. We constructed $̃ and its right adjoint SpN(%)=SpN(%; 6) in Lemma 5.3. Here
% denotes a right adjoint of $, and 6 is the dual natural transformation D< :%U ′ → U%,
where U is right adjoint to T and U ′ is right adjoint to T ′. Since SpN(%)(X )n=%Xn,
and % is a right Quillen functor, SpN(%) preserves level Cbrations and level trivial
Cbrations. Hence $̃ is a left Quillen functor with respect to the projective model
structures. To show that $̃ is a left Quillen functor with respect to the stable model
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structures, it suDces to show that $̃-An is a stable equivalence for all coCbrant A, by
Theorem 2.2. Since $̃Fn ∼= Fn$ by Lemma 5.3, $̃Fn+1TA ∼= Fn+1$TA and $̃FnA ∼=
Fn$A. Therefore, the map $̃-An diFers from the map -

$A
n by the map Fn+1<A. Since -$An

is a stable equivalence, and <A is a weak equivalence by hypothesis, $̃-An is a stable
equivalence. Therefore, $̃ is a left Quillen functor with respect to the stable model
structures.
We deCne <̃ by deCning its dual natural transformation

D<̃= SpN(6) :SpN(%)U ′ → USpN(%):

Indeed, we just deCne SpN(6) to be 6 in each degree. We leave it to the reader to verify
that this deCnes a natural map of spectra SpN(6). Since < is a weak equivalence on all
coCbrant objects of D, 6=D< is a weak equivalence on all Cbrant objects of D′. To see
this, note that < induces a natural isomorphism in the homotopy category. Adjointness
implies that 6 also induces a natural isomorphism in the homotopy category, and it
follows that 6 is a weak equivalence on all Cbrant objects of D. Thus SpN(6) will
be a level equivalence on all level Cbrant objects of SpN(D′; T ′), so, by reversing
the homotopy category argument just given, <̃ is a level equivalence on all coCbrant
objects of SpN(D; T ). We leave it to the reader to check compatibility of ($̃; <̃) with
compositions and identities.

Proposition 5.5 and Theorem 5.1 give us a weak universal property of SpN(D; T ).

Corollary 5.6. Suppose ($; <) : (D; T )→ (D′; T ′) is a Quillen map of pairs such that
T ′ is a Quillen equivalence. Give SpN(D; T ) its stable model structure. Then there is
a functor ? : HoSpN(D; T )→ HoD′ such that ? ◦ LF0 = L$ : HoD→ HoD′.

This corollary is trying to say that (SpN(D; T ); T ) is homotopy initial among Quillen
maps of pairs (D; T )→ (D′; T ′) where T ′ is a Quillen equivalence. Though the state-
ment of the corollary is the best statement of this concept we have been able to Cnd,
we suspect there is a better one.

Proof. By Proposition 5.5 there is a Quillen map of pairs

($̃; <̃) : (SpN(D; T ); T )→ (SpN(D′; T ′); T ′)

induced by ($; <). By Theorem 5.1, F0 :D′ → SpN(D′; T ′) is a Quillen equivalence.
DeCne ? to be the composite REv0 ◦ L$̃.

Proposition 5.5 shows that the correspondence (D; T ) �→ (SpN(D; T ); T ) is functorial.
We would like to know that it is homotopy invariant. In particular, we would like to
know that if ($; <) is a Quillen equivalence of pairs, then the induced Quillen map
of pairs ($̃; <̃) on spectra is a Quillen equivalence with respect to the stable model
structures. Our proof of this seems to require some hypotheses.
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Theorem 5.7. Suppose ($; <) : (D; T )→ (D′; T ′) is a Quillen map of pairs such that
$ is a Quillen equivalence. Suppose as well that either the domains of the generating
co5brations for D can be taken to be co5brant; or that <A is a weak equivalence for
all A. Then; in the induced Quillen map of pairs

($̃; <̃) : (SpN(D; T ); T )→ (SpN(D′; T ′); T ′);

the Quillen functor $̃ is a Quillen equivalence with respect to the stable model
structures.

Proof. We will Crst show that $̃ is a Quillen equivalence with respect to the projective
model structures. Use the same notation as in the proof of Proposition 5.5, so that %
denotes the right adjoint of $. Then % reNects weak equivalences between Cbrant
objects, by Hovey [12, Corollary 1.3.16]. Thus SpN(%) reNects level equivalences
between level Cbrant objects. By Hovey [12, Corollary 1.3.16], to show that $̃ is a
Quillen equivalence with respect to the projective model structures, it suDces to show
that X → SpN(%)R′$̃X is a level equivalence for all coCbrant X ∈ SpN(D; T ), where
R′ is a Cbrant replacement functor in the projective model structure on SpN(D′; T ′).
Let R denote a Cbrant replacement functor in D′. By a lifting argument, the weak
equivalence ($̃X )n : (R′$̃X )n factors through the trivial coCbration ($̃X )n → R($̃X )n.
We therefore get a weak equivalence R($̃X )n → (R′$̃X )n, and so a weak equivalence
%R($̃X )n → (SpN(%)R′$̃X )n. Therefore, it suDces to show that Xn → %R($̃X )n is
a weak equivalence for all n and all coCbrant X . Since Xn is coCbrant and $ is a
Quillen equivalence, it suDces to show that $Xn → ($̃X )n is a weak equivalence for
all n and all coCbrant X .
Since every coCbrant X is a retract of a transCnite composition of pushouts of maps

of IT , we can in fact assume that X is the colimit of a )-sequence

0 = X 0 → X 1 → X 2 → · · · → X * → · · · → X ) = X

for some ordinal ), where each map X * → X *+1 is a pushout of a map of IT . We
will prove by transCnite induction on * that $X *n → ($̃X *)n is a weak equivalence
for all n and all * ≤ ). The base case of the induction is trivial. The limit ordinal
step of the induction follows from [11, Proposition 18.10.1], since each of the maps
$X *n → $X *+1n and each of the maps ($̃X *)n → ($̃X *+1)n is a coCbration of coCbrant
objects.
For the succesor ordinal step of the induction, suppose X * → X *+1 is a pushout of

the map FmC
Fmf→ FmD of IT . Then we have a pushout diagram

$(FmC)n −−−−−→ $(FmD)n�

�
$X *n −−−−−→ $X *+1n
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and another pushout diagram

($̃FmC)n −−−−−→ ($̃FmD)n�

�
($̃X *)n −−−−−→ ($̃X *+1)n

in D′. Note that $(FmC)n=$Tn−mC, where we interpret Tn−mC to be the initial object
if n¡m. Similarly, ($̃FmC)n ∼= (Fm$C)n=(T ′)n−m$C. Thus the natural transformation
< induces a map from the Crst of these pushout squares to the second. If C (and hence
also D) is coCbrant, then this map of pushout squares is a weak equivalence at both
the upper left and upper right corners. Or, if <A is a weak equivalence for all A, then
again this map is a weak equivalence at both the upper left and upper right corners. It
is also a weak equivalence at the lower left corner, by the induction hypothesis. Since
both of the top horizontal maps are coCbrations in D′, Dan Kan’s cube lemma [12,
Lemma 5:2:6] implies that the map is a weak equivalence on the lower right corner.
This completes the induction.
We have now proved that $̃ is a Quillen equivalence with respect to the projective

model structures. We have already seen that $̃ is a Quillen functor with respect to the
stable model structures in Proposition 5.5. In view of Proposition 2.3, to show that $̃
is a Quillen equivalence with respect to the stable model structures, it suDces to show
that if Y is level Cbrant in SpN(D′; T ′) and SpN(%)Y is a U -spectrum, then Y is a
U ′-spectrum. Since SpN(%)Y is a U -spectrum, the composite

%Yn
%�̃→%U ′Yn+1

D<→U%Yn+1

is a weak equivalence for all n, where �̃ is adjoint to the structure map of Y and D< is
the natural transformation dual to <. Since <A is a weak equivalence for all coCbrant A,
(D<)X is a weak equivalence for all Cbrant X . This was explained in the last paragraph
of the proof of Proposition 5.5. Therefore,

%�̃ :%Yn → %U ′Yn+1

is a weak equivalence. But % reNects weak equivalences between Cbrant objects, by
Hovey [12, Corollary 1:3:16]. Hence �̃ is a weak equivalence for all n, and so Y is a
U ′-spectrum.

As an example of Theorem 5.7, suppose we take a pointed simplicial set K weakly
equivalent to S1. Then there is a weak equivalence K → RS1, where R is a Cbrant
replacement functor on simplicial sets. This induces a natural transformation of left
Quillen functors < : − ∧K → − ∧ RS1. In Theorem 5.7, take D = D′ equal to the
model category of pointed simplicial sets, take $ to be the identity, and take < to
be this natural transformation. Then we get a Quillen equivalence between the stable
model categories of spectra obtained by inverting K and inverting RS1. Therefore, the
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choice of simplicial circle does not matter, up to Quillen equivalence, for BousCeld–
Friedlander spectra.

6. Monoidal structure

In this section, we show that our stabilization construction preserves some monoidal
structure. For example, if D is a simplicial model category, and T is a simplicial
functor, then the category SpN(D; T ) of spectra is again a simplicial model category,
in both the projective and stable model structures, and the extension of T is again a
simplicial functor. However, if C is a symmetric monoidal model category (see [12,
Chapter 4]), and T :C → C is a monoidal functor, the category SpN(C; T ) of spectra
will almost never be a monoidal category. This is the reason we need the symmetric
spectra introduced in the next section.
Throughout this section, C will be a symmetric monoidal model category, and D

will be a C-model category. This means that C is both a closed symmetric monoidal
category and a model category, and the model structure is compatible with the sym-
metric monoidal structure in a precise sense that we will recall below. It also means
that D is a right C-module with a compatible model structure. That is, D is tensored,
cotensored, and enriched over C. See [12, Chapter 4] for complete deCnitions.
We remind the reader of the precise deCnition of the compatibility between the

monoidal structure and the model structure.

De�nition 6.1. Suppose C is a monoidal category. Given maps f :A→ B and g :C →
D in C, we deCne the pushout product f g of f and g to be the map

f g : (A⊗ D)�A⊗C(B⊗ C)→ B⊗ D

induced by the commutative square below:

A⊗ C f⊗1−−−−−→ B⊗ C

1⊗g

�

� 1⊗g

A⊗ D −−−−−→
f⊗1

B⊗ D:

Note that f g also makes perfect sense in case f ∈ D and g ∈ C, since D is a
right C-module.

De�nition 6.2. A symmetric monoidal model category is a symmetric monoidal cate-
gory C equipped with a model structure satisfying the following two conditions:

1. If f and g are coCbrations in C, then f g is a coCbration. If, in addition, one of
f or g is a trivial coCbration, so is f g.
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2. Let QS r→ S be a coCbrant replacement for the unit S of the monoidal structure,
so that QS is coCbrant and r is a trivial Cbration. Then, for all coCbrant X , the
induced map

X ⊗ QS 1⊗r→ X ⊗ S ∼= X
is a weak equivalence.

Similarly, if D is a model category that is enriched, tensored, and cotensored over C,
then D is a C-model category when the following two conditions are satisCed:

1. If f is a coCbration in D and g is a coCbration in C, then f g is a coCbration
in D. If, in addition, one of f or g is a trivial coCbration, so is f g.

2. For all coCbrant X in D, the induced map

X ⊗ QS 1⊗r→ X ⊗ S ∼= X
is a weak equivalence.

Note that a left Quillen functor between C-model categories is called a C-Quillen
functor if it preserves the action of C up to natural isomorphism. See [12, DeCnitions
4:1:7, 4:2:18]. A C-Quillen functor that is a Quillen equivalence is called a C-Quillen
equivalence.
We then have the following theorem.

Theorem 6.3. Let C be a co5brantly generated symmetric monoidal model category;
and suppose the domains of the generating co5brations of C can be taken to be
co5brant. Suppose D is a left proper cellular C-model category; and that T is a
left C-Quillen endofunctor of D. Then SpN(D; T ); with the stable model structure; is
again a C-model category; and the extension of T is a C-Quillen self-equivalence of
SpN(D; T ). The functors Fn :D→ SpN(D; T ) are C-Quillen functors.

Proof. We deCne the action of C on SpN(D; T ) levelwise. That is, given X∈SpN(D; T )
and K ∈ C, we deCne (X ⊗ K)n = Xn ⊗ K . The structure map is given by

T (Xn ∧ K) ∼= TXn ∧ K �∧1→ Xn+1 ∧ K;
where the Crst isomorphism comes from the fact that T preserves the C-action, and �
is the structure map of X . One can easily verify that this makes SpN(D; T ) tensored
over C. Similarly, if we denote the cotensor of Z ∈ D and K ∈ C by ZK , we can
deCne the cotensor XK of X ∈ SpN(D; T ) and K ∈ C by (XK)n = XKn . The structure
map T (XKn )→ XKn+1 of X

K is adjoint to the composite

T (XKn ) ∧ K ∼= T (XKn ∧ K)
T (ev)→ TXn

�→Xn+1;

where ev : XKn ∧ K is the evaluation map, adjoint to the identity of XKn . This makes
SpN(D; T ) cotensored over C. Finally, if we denote the enrichment of Z and W in D
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by Map(Z;W ) ∈ C, we deCne the enrichment Map(X; Y ) ∈ C of X and Y in SpN(D; T )
to be the equalizer of two maps

7; * :
∏
n

Map(Xn; Yn)�
∏
n

Map(Xn; UYn+1):

Here 7 is the product of the maps Map(Xn; Yn)
MapXn;�̃−−−→Map(Xn; UYn+1) where �̃ denotes

the adjoint of the structure map, and * is the product of the maps

Map(Xn+1; Yn+1)
Map(�̃;Yn+1)−−−−−→Map(TXn; Yn+1) ∼= Map(Xn; UYn+1);

where the isomorphism exists since T preserves the action of C. This functor Map(X; Y )
makes SpN(D; T ) enriched over C.
We must now check that these structures are compatible with the model structure.

We begin with the projective model structure on SpN(D; T ). One can easily check that
if h is a map in D and g is a map in C, then Fnh g=Fn(h g). Thus, if f=Fnh is
one of the generating coCbrations of the projective model structure on SpN(D; T ), and
g is a coCbration in C, then f g is a coCbration in SpN(D; T ). It follows that f g
is a coCbration for f an arbitrary coCbration of SpN(D; T ) (see [12, Corollary 4:2:5];
[13, Corollary 5:3:5], or [24, Lemma 2.3]). A similar argument shows that f g is
a projective trivial coCbration in SpN(D; T ) if, in addition, either f is a projective
trivial coCbration in SpN(D; T ) or g is a trivial coCbration in C. Finally, if QS → S
is a coCbrant approximation to the unit S in C, and X is coCbrant in SpN(D; T ), then
each Xn is coCbrant in D, so the map X ⊗QS → X is a level equivalence as required.
Thus SpN(D; T ) with its projective model structure is a C-model category.
Since the coCbrations in the projective and stable model structures on SpN(D; T )

coincide, to show that SpN(D; T ) with its stable model structure is also a C-model
category, we only need to show that, if f is a stable trivial coCbration in SpN(D; T )
and g is a coCbration in C, then f g is a stable equivalence. It suDces to check
this for g :K → L one of the generating coCbrations of C, again using [12, Corollary
4:2:5]. In this case, by hypothesis, K and L are coCbrant in C. Thus, the functor −⊗K
is a Quillen functor with respect to the projective model structure on SpN(D; T ), and
similarly for L. We will show that − ⊗ K is a Quillen functor with respect to the
stable model structure as well. To see this, note that if -QCn :Fn+1TQC → FnQC is an
element of the set S, then -QCn ⊗K ∼= -QC⊗Kn , since T preserves the C-action. In view
of Theorem 3.4, the map -QC⊗Kn is a stable equivalence. Theorem 2.2 then implies that
− ⊗ K is a Quillen functor with respect to the stable model structure on SpN(D; T ),
and similarly for − ⊗ L. Thus, if f is a stable trivial coCbration, so are f ⊗ K and
f⊗L. It follows from the two out of three property that f g is a stable equivalence,
as required.

Remark 6.4. Suppose that the functor T is actually given by TX = X ⊗ K for some
coCbrant object K of C. We then have two diCerent ways of tensoring with K on
SpN(D; T ). We have the functor X �→ X ⊗ K that we have just constructed as part
of the C-action on SpN(D; T ). We also have the functor X �→ X P⊗K which is the
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extension of T to a Quillen equivalence on the stable model structure on SpN(D; T ).
As explained in Remark 1.6, X P⊗K does not involve the twist map t of the symmetric
monoidal structure on C. However, the functor X ⊗ K does use the twist map as part
of its structure map; indeed, in order to construct the isomorphism T (X ⊗K) ∼= TX ⊗K
we need to permute the two diFerent copies of K . Therefore, we do not know that
X �→ X ⊗ K is a Quillen equivalence, even though X �→ X P⊗K is. We will have to
deal with this point more thoroughly in Section 10, when we compare SpN(D; T ) with
symmetric spectra.

Theorem 6.3 gives us a functorial stabilization. We Crst simplify the notation. Sup-
pose K is a coCbrant object of a symmetric monoidal model category C. Then T=−⊗K
is a left Quillen functor on any C-model category D. In this case, we denote SpN(D; T )
by SpN(D; K).

Corollary 6.5. Suppose K is a co5brant object of a co5brantly generated symmetric
monoidal model category C where the domains of the generating co5brations can be
taken to be co5brant. Then the correspondence D �→ SpN(D; K); where SpN(D; K) is
given the stable model structure; de5nes an endofunctor of the category of left proper
cellular D-model categories.

Note that the “category” of left proper cellular C-model categories is not really a
category, because the Hom-sets need not be sets. It is really a 2-category, and the
correspondence D �→ SpN(D; K) is actually a 2-functor. See [12] for a description of
this point of view on model categories.

Proof. Given a left proper cellular C-model category D, we have seen in Theorem
6.3 that SpN(D; K) is a C-model category. Given a left C-Quillen functor $ :D→ D′

between two left proper cellular C-model categories D and D′ with right adjoint %,
there is a natural isomorphism < :$(−⊗K)→ $(−)⊗K . Taking 6=D< in Lemma 5.3,
we get an induced functor $̃ :SpN(D; K)→ SpN(D′; K) with right adjoint SpN(%; 6).
Since < is an isomorphism, $̃ is a prolongation of $, and so one can easily check that
$̃ preserves the action of C. Proposition 5.5 guarantees that $̃ is a Quillen functor with
respect to the stable model structures.

We now point out that, if C is a symmetric monoidal model category, and T is
a C-Quillen endofunctor of C, then the category SpN(C; T ) is almost never itself
monoidal, though, as we have seen, it has an action of C. To see this, Crst note that T
is naturally isomorphic to −⊗K for K=TS. Now consider the category CN of sequences
from C. An object of CN is a sequence Xn of objects of C, and a map f :X → Y is a
sequence of maps fn :Xn → Yn. Then CN is a symmetric monoidal category, where we
deCne (X ⊗ Y )n =�p+q=nXp ⊗ Yq. Furthermore, if D is a C-model category, then DN

is a right CN-module, using the same deCnition of the tensor product. The sequence
F0S = (S; K; K ⊗ K; : : : ; K⊗n; : : :) is a monoid in CN.
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Lemma 6.6. Suppose C is a symmetric monoidal model category and T is a left
C-Quillen functor with K = TS. Then SpN(C; T ) is the category of right modules in
CN over the monoid F0S. Furthermore; if D is a C-model category; SpN(D; K) is the
category of right modules in DN over F0S.

We leave the proof of this lemma to the reader, as it is a matter of unwinding deC-
nitions. The important corollary of this lemma is that the monoid F0S is almost never
commutative, and therefore SpN(C; K) can not be a symmetric monoidal category with
unit F0S. Indeed, F0S is commutative if and only if the commutativity isomorphism
of C applied to K ⊗ K is the identity. This happens only very rarely.

7. Symmetric spectra

We have just seen that the stabilization functor SpN(C; T ) is not good enough in
case C is a symmetric monoidal model category and T is a C-Quillen functor, be-
cause SpN(C; T ) is not usually itself a symmetric monoidal model category. In this
section, we begin the construction of a better stabilization functor for this case. We
will concentrate on the category theory in this section, leaving the model structures for
the next section. The terms used for the algebra of symmetric monoidal categories and
modules over them are deCned in [12, Section 4:1].
Through most of this section, then, C will be a bicomplete closed symmetric monoidal

category with unit S, and K will be an object of C. The category D will be a bicom-
plete right C-module category; this means that D is enriched, tensored, and cotensored
over C. Note that any C-functor T on C itself is of the form T (L)=L⊗K for K=TS,
so we will only consider such functors. Because of this, we will drop the letter T from
our notations and replace it with K .
This section is based on the symmetric spectra and sequences of [13]. The main

idea of symmetric spectra is that the associativity and commutativity isomorphisms of
C make K⊗n into a �n-object of C, where �n is the symmetric group on n letters. We
must keep track of this action if we expect to get a symmetric monoidal category of
K-spectra.
The following deCnition is [13, DeCnition 2:1:1].

De�nition 7.1. Let �= �n≥0 �n be the category whose objects are the sets Pn =
{1; 2; : : : ; n} for n ≥ 0, where P0 = ∅. The morphisms of � are the isomorphisms of Pn.
Given a category E, a symmetric sequence in E is a functor �→ E. The category of
symmetric sequences is the functor category E�.

A symmetric sequence X in a category E is a sequence X0; X1; : : : ; Xn; : : : of objects
of E with an action of �n on Xn. It is sometimes more useful to consider a symmetric
sequence as a functor from the category of Cnite sets and isomorphisms to E. Since
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the category � is a skeleton of the category of Cnite sets and isomorphisms, there is
no diDculty in such a change of viewpoint.
As a functor category, the category of symmetric sequences in E is bicomplete if

E is so; limits and colimits are taken levelwise. Furthermore, since our category C is
closed symmetric monoidal, so is C�, as explained in [13, Section 2:1]. This result is
a special case of the much more general work of Day [3]. Recall that the monoidal
structure is given by

(X ⊗ Y )(C) =
∐

A∪B=C;A∩B=∅
X (A)⊗ Y (B);

where we think of X; Y , and X ⊗ Y as functors from Cnite sets to C. Equivalently,
though less canonically, we have

(X ⊗ Y )n =
∐
p+q=n

�n ×�p×�q (Xp ⊗ Yq):

This notation may need some explanation. Given a set % and an object A of a cocom-
plete category E; %×A is the coproduct of |%| copies of A. If % is a group, then %×A
has an obvious left %-action; %×A is the free %-object on A. Note that a %-action on
A is then equivalent to a map % × A → A satisfying the usual unit and associativity
conditions. Also, if % admits a right action by a group %′, and A is a left %′-object,
then we can form % ×%′ A as the colimit of the %′-action on % × A, where 7 ∈ %′

takes the copy of A corresponding to * ∈ % to the copy of A corresponding to *7−1
by the action of 7.
The unit of the monoidal structure on C� is the symmetric sequence (S; 0; 0; : : :),

where 0 is the initial object of C. To deCne the closed structure on C�, we Crst deCne
Hom�n(L; L

′) for �n-objects L and L′ in C in the usual way, as an equalizer of the
two maps Hom(L; L′) → Hom(�n × L; L′) deCned using the structure maps of L and
L′. The closed structure is then given by

Hom(X; Y )k =
∏
n

Hom�n(Xn; Yn+k):

Since our category D is enriched, tensored, and cotensored over C; D� is enriched,
tensored, and cotensored over C�, making D� a right C�-module category. Indeed, the
same deCnition as above works to deCne the tensor structure. The cotensor structure
is deCned as follows. First we deCne Hom�n(L; A) for �n-objects L of C and A of
D as an appropriate equalizer. Then, for X ∈ D� and Z ∈ C�, we deCne X Zk =∏
n Hom�n(Zn; Xn+k). The enrichment Map(X; Y ) ∈ C� for X and Y in D� is deCned

similarly. In the same way, if D is an enriched monoidal category over C (a C-algebra,
in the terminology of [12, Section 4:1]), then D� is an enriched monoidal category
over C�.
Consider the free commutative monoid Sym(K) on the object (0; K; 0; : : : ; 0; : : :)

of C�. One can easily check that Sym(K) is the symmetric sequence (S; K; K ⊗
K; : : : ; K⊗n; : : :) where �n acts on K⊗n by permutation, using the commutativity and
associativity isomorphisms.
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De�nition 7.2. Suppose C is a symmetric monoidal model category, D is a C-model
category, and K is an object of C. The category of symmetric spectra Sp�(D; K) is
the category of modules in D� over the commutative monoid Sym(K) in C�. That is,
a symmetric spectrum X is a sequence of �n-objects Xn ∈ C and �n-equivariant maps
Xn ⊗ K → Xn+1, such that the composite

Xn ⊗ K⊗p → Xn+1 ⊗ K⊗p−1 → · · · → Xn+p

is �n ×�p-equivariant for all n; p ≥ 0. A map of symmetric spectra is a collection of
�n-equivariant maps Xn → Yn compatible with the structure maps of X and Y .

Because Sym(K) is a commutative monoid, the category Sp�(C; K) is a bicomplete
closed symmetric monoidal category, with Sym(K) itself as the unit (see Lemmas 2.2.2
and 2.2.8 of [13]). We denote the monoidal structure by X ∧ Y = X ⊗Sym(K) Y , and
the closed structure by HomSym(K)(X; Y ). Similarly, Sp�(D; K) is bicomplete, enriched,
tensored, and cotensored over Sp�(C; K) with the tensor structure denoted X ∧Y again,
and, if D is a C-monoidal model category, then Sp�(D; K) will be a monoidal category
enriched over Sp�(C; K).
Of course, if we take C=SSet∗ and K=S1, we recover the deCnition of symmetric

spectra given in [13], except that we are using right Sym(K)-modules instead of left
Sym(K)-modules.

De�nition 7.3. Given n ≥ 0, the evaluation functor Evn: Sp�(D; K) → D takes X to
Xn. The evaluation functor has a left adjoint Fn: D → Sp�(D; K), deCned by FnA=
F̃nA⊗ Sym(K), where F̃nA is the symmetric sequence (0; : : : ; 0; �n × A; 0; : : :).

Note that F0A=(A; A⊗K; : : : ; A⊗K⊗n; : : :), and in particular F0S=Sym(K). In general,
we have (FnA)m = �m ×�m−n (A ⊗ K⊗(m−n)) for m ≥ n. Also, if A ∈ D and L ∈ C,
there is a natural isomorphism FnA ∧ FmL ∼= Fn+m(A ⊗ L), just as in [13, Proposition
2:2:6]. In particular, F0: C → Sp�(C; K) is a (symmetric) monoidal functor, and so
Sp�(D; K) is naturally enriched, tensored, and cotensored over C. In fact, this structure
is very simple. Indeed, if X ∈ Sp�(D; K) and L ∈ C; X ⊗ L = X ⊗Sym(K) F0L is just
the symmetric sequence whose nth term is Xn⊗ L. The structure map is the composite

Xn ⊗ L⊗ K 1⊗t→ Xn ⊗ K ⊗ L→ Xn+1 ⊗ L:
Note the presence of the twist map t; this is required even when L=K to get a symmet-
ric spectrum, unlike the case of ordinary spectra. Similarly, X L = HomSym(K)(F0L; X )
is the symmetric sequence whose nth term is X Ln , with the twist map again appearing
as part of the structure map.

Remark 7.4. The evaluation functor Evn has a right adjoint

Mn: D→ Sp�(D; K);

just as in the spectrum case (see Remark 1.4). Indeed, we deCne

MnA=Hom(Sym(K); M̃ nA);
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where M̃ nA is the symmetric sequence that is the terminal object in dimensions other
than n, and is the cofree �n-object C(�n; A) in dimension n. As an object of C, C(�n; A)
is just the n!-fold product of A. Given 6 ∈ �n and f ∈ C(�n; A), the �n-action is
deCned by (6f)(6′) = f(6′6). Just as in Remark 1.4, MnA is the terminal object in
dimensions greater than n.

8. Model structures on symmetric spectra

Throughout this section, C will denote a left proper cellular symmetric monoidal
model category, D will denote a left proper cellular C-model category, and K will
denote a coCbrant object of C. In this section, we discuss the projective and stable
model structures on the category Sp�(D; K) of symmetric spectra. The results in this
section are very similar to the corresponding results in Section 3, so we will leave
most of the proofs to the reader.

De�nition 8.1. A map f ∈ Sp�(D; K) is a level equivalence if each map fn is a weak
equivalence in D. Similarly, f is a level 5bration (resp. level co5bration, level trivial
5bration, level trivial co5bration) if each map fn is a Cbration (resp. coCbration, trivial
Cbration, trivial coCbration) in D. The map f is a projective co5bration if f has the
left lifting property with respect to every level trivial Cbration.

Then, just as in DeCnition 1.8, if we denote the generating coCbrations of D by I
and the generating trivial coCbrations by J , we deCne IK =

⋃
n FnI and JK =

⋃
n FnJ .

We have analogues of 1:9–1:12 with almost the same proofs. The only real diFerence
is that it is less obvious that the maps of IK are level coCbrations, and that the maps
of JK are level trivial coCbrations. If g: A→ B is a map in D, and m ≥ n, then (Fng)m
is the map

�m ×�m−n (g⊗ K⊗m−n) ∼= g⊗ (�m ×�m−n K
⊗m−n):

As a map in D, this is the coproduct of m!=(m − n)! copies of g ⊗ K⊗m−n. Since K
is coCbrant, if g is a coCbration (trivial coCbration), then Fng is a level coCbration
(level trivial coCbration). This uses the fact that D is a C-model category, and also
that (Fng)m = 0 for m¡n.
We then construct the projective model structure just as in the proof of Theorem

1.13.

Theorem 8.2. The projective co5brations; the level 5brations; and the level equiva-
lences de5ne a left proper cellular model structure on Sp�(D; K).

The set IK is the set of generating coCbrations of the projective model structure, and
JK is the set of generating trivial coCbrations. The cellularity of the projective model
structure is proved in the appendix.
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Note that Evn takes level (trivial) Cbrations to (trivial) Cbrations, so Evn is a right
Quillen functor and Fn is a left Quillen functor, with respect to the projective model
structure.

Theorem 8.3. The category Sp�(C; K); with the projective model structure; is a sym-
metric monoidal model category. The category Sp�(D; K); with its projective model
structure; is a Sp�(C; K)-model category.

See the discussion following DeCnition 6.1 for the deCnition of a symmetric monoidal
model category, or see [12, Chapter 4] for more detail.

Proof. We Crst show that the pushout product f g is a coCbration when f is a
coCbration in Sp�(D; K) and g is a coCbration in Sp�(C; K), and that f g is a
trivial coCbration when, in addition, one of f or g is a level equivalence. As explained
in [12, Corollary 4:2:5], we may as well assume that f and g belong to the sets
of generating coCbrations or generating trivial coCbrations. In either case, we have
f=Fmf′ and g=Fng′. But then f g=Fm+n(f′ g′). Since Fm+n is a left Quillen
functor, the result follows.
It remains to show that, if X is coCbrant in Sp�(D; K) and Q(Sym(K)) is a coCbrant

replacement for the unit Sym(K) of Sp�(C; K), then the map X ⊗ Q(Sym(K)) →
X ⊗ Sym(K) ∼= X is a level equivalence. Let QS denote a coCbrant replacement for
the unit S in C. Then we claim that F0QS is a coCbrant replacement for F0S=Sym(K)
in Sp�(C; K). Indeed, F0QS is coCbrant, and EvnF0QS is just QS ⊗ K⊗n. Since K is
coCbrant and C is a monoidal model category, the map F0QS → F0S is a level
equivalence. Now, since X is coCbrant in Sp�(D; K), each Xn is coCbrant. Hence the
map Xn ⊗ QS → Xn is a weak equivalence for all n, and so the map X ∧ F0QS → X
is a level equivalence, as required.

We point out that one can show that the projective model structure on Sp�(C; K)
satisCes the monoid axiom of [24], assuming that C itself does so. This means there
is a projective model structure on the category of monoids in Sp�(C; K) and on the
category of modules over any monoid. We do not include the proofs of these statements
since we have been unable to prove the analogous statements for the stable model
structure.
The projective coCbrations of symmetric spectra are more complicated than they

are in the case of ordinary spectra. The idea is the same as that for ordinary spectra.
Recall that an ordinary spectrum A is coCbrant if A0 is coCbrant and each map An−1⊗
K → An is a coCbration (see Proposition 1.14). This then implies that each map
Ak⊗K⊗(n−k) → An for k ¡n is a coCbration as well. However, in the case of symmetric
spectra, we need to guarantee that Ak ⊗ K⊗(n−k) → An is a coCbration in the category
of �k × �n−k objects. We therefore introduce a more complicated object, called the
latching space LnA, which is an amalgam of all the objects Ak ⊗ K⊗(n−k), induced up
from �k × �n−k -objects to �n-objects.
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De�nition 8.4. DeCne the symmetric spectrum Sym(K) in Sp�(C; K) to be 0 in degree
0 and K⊗n in degree n, for n¿ 0, with the obvious structure maps. DeCne the nth
latching space LnA of A ∈ Sp�(D; K) by LnA= Evn(A ∧ Sym(K)).

Note that LnA is precisely the colimit of the objects �n ×�k×�n−k (Ak ⊗ K⊗(n−k))
for k ¡n, where the colimit is taken using the Sym(K)-module structure. The obvious
map of spectra Sym(K) → Sym(K) induces a �n-equivariant natural transformation
i: LnA → An. When restricted to �n ×�k×�n−k (Ak ⊗ K⊗n−k), this map is just the
structure map of A.
Note that the latching space is a �n-object of D. There is a model structure on

�n-objects of D where the Cbrations and weak equivalences are the underlying ones.
This model structure is coCbrantly generated: if I is the set of generating coCbrations
of D, then the set of generating coCbrations of D�n is the set �n × I . Recall that, for
an object N; �n×N is the coproduct of n! copies of N , given the obvious �n-structure.
The coCbrations in D�n are coCbrations f in D where �n acts freely away from the
image of f.

Proposition 8.5. A map f: A → B in Sp�(D; K) is a projective co5bration if and
only if the induced map Evn(f i): An� LnALnB→ Bn is a co5bration in D�n for all
n. Similarly; f is a projective trivial co5bration if and only if Evn(f i) is a trivial
co5bration in D�n for all n.

Note the similarity of Proposition 8.5 to Proposition 1.14.

Proof. We only prove the coCbration case, as the trivial coCbration case is analogous.
Suppose Crst that each map Evn(f i) is a coCbration in D�n . We show that f is a
projective coCbration by showing f has the left lifting property with respect to every
level trivial Cbration p: X → Y . Suppose we have a commutative square as below:

A −−−−−→ X

f

�

� p

B −−−−−→ Y:

We construct a lift Bn → Xn in this diagram by induction on n. When n = 0, this
is easy since f0 is a coCbration and p0 is a trivial Cbration in D. Suppose we have
constructed compatible partial lifts Bk → Xk for k ¡n. These partial lifts assemble into
a �n-equivariant map LnB→ Xn. Combining this with the given map An → Xn, we get
the commutative diagram of �n-equivariant maps below:

An � LnALnB −−−−−→ Xn

Evn(f i)

�

� pn

Bn −−−−−→ Yn:
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Since Evn(f i) is a coCbration in D�n and pn is a trivial Cbration, there is a lift
Bn → Xn in this diagram. This completes the induction step. The resulting map B→ X
is a map of spectra, since the structure maps of B are encoded into the map LnB→ Bn,
and gives us the desired lift.
To prove the converse, we need to show that if f is a coCbration of symmetric spec-

tra, then Evn(f i) is a �n-coCbration. Since f is a retract of a transCnite composition
of pushouts of maps of IK , and Evn(− i) preserves retracts, transCnite compositions,
and pushouts, we can assume f is a map in IK . Then we can write f=Fmg for some
integer m and some map g: C → D in D. In this case, one can check that the map
LnFmC → FmC is an isomorphism except when n = m, in which case it is the map
from the initial object to �m × C. It follows that Evn(f i) is an isomorphism when
n �= m, and Evm(f i) = �m × g.

We must now localize the projective model structure to obtain the stable model
structure.

De�nition 8.6. A symmetric spectrum X ∈ Sp�(D; K) is an 
-spectrum if X is level
Cbrant and the adjoint Xn → XKn+1 of the structure map of X is a weak equivalence for
all n.

Just as with BousCeld–Friedlander spectra, we would like the 
-spectra to be the
Cbrant objects in the stable model structure. We therefore invert analogous maps.

De�nition 8.7. DeCne the set of maps S in Sp�(D; K) to be

{Fn+1(QC ⊗ K) -
QC
n→ FnQC}

as C runs through the domains and codomains of the generating coCbrations of D, and
n ≥ 0. The map -QCn is adjoint to the map

QC ⊗ K → Evn+1FnQC = �n+1 × (QC ⊗ K)
corresponding to the identity of �n+1. We then deCne the stable model structure on
Sp�(D; K) to be the BousCeld localization with respect to S of the projective model
structure on Sp�(D; K). The S-local weak equivalences are called the stable equiva-
lences, and the S-local Cbrations are called the stable 5brations.

The following theorem is then analogous to Theorem 3.4, and has the same proof.

Theorem 8.8. The stably 5brant symmetric spectra are the 
-spectra. Furthermore;

for all co5brant A ∈ D and for all n ≥ 0; the map Fn+1(A ⊗ K) -
A
n→FnA is a stable

equivalence.

Just as in Corollary 3.5, this theorem implies that, when D = SSet∗ or Top∗,
Sp�(C; K) is the same as the stable model category on (simplicial or topological)
symmetric spectra discussed in [13].
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The analog of Lemma 3.6 also holds, with the same proof, so that tensoring with K
is a Quillen endofunctor of Sp�(D; K). Of course, we want this functor to be a Quillen
equivalence. As in DeCnition 3.7, we prove this by introducing the shift functors.

De�nition 8.9. DeCne the right shift functor s−: Sp�(D; K)→ Sp�(D; K) by s−X =
HomSym(K)(F1S; X ). Thus (s−X )n = Xn+1, where the �n-action on Xn+1 is induced
by the usual inclusion �n → �n+1. The structure maps of s−X are the same as the
structure maps of X . DeCne the left shift functor s+: Sp�(D; K) → Sp�(D; K) by
s+X =X ⊗Sym(K) F1S, so that s+ is left adjoint to s−. We have (s+X )n=�n×�n−1 Xn−1
for n¿ 0, and (s+X )0 is the initial object of D. The structure maps of s+X are induced
from the structure maps of X .

Note that adjointness gives natural isomorphisms

(s−X )K ∼=HomSym(K)(F0K;HomSym(K)(F1S; X ))
∼=HomSym(K)(F0K ∧ F1S; X ) ∼= HomSym(K)(F1K; X ):

A similar chain of isomorphisms shows that s−(XK) is also naturally isomorphic to
HomSym(K)(F1K; X ).
There is a map F1K → F0S which is the identity in degree 1. By adjointness, this

map induces a map

X =HomSym(K)(F0S; X )→ HomSym(K)(F1K; X ) = (s−X )K :

By applying Evn, we get a map Xn → XKn+1. This map is adjoint to the structure map of
X , as is explained for simplicial symmetric spectra in [13, Remark 2:2:12]. Therefore,
X is an 
-spectrum if and only if this map X → (s−X )K is a level equivalence and
X is level Cbrant. Hence the same method used to prove Theorem 3.9 also proves the
following theorem.

Theorem 8.10. The functors X �→ X ⊗K and s+ are Quillen equivalences with respect
to the stable model structure on Sp�(D; K). Furthermore; Rs− is naturally isomorphic
to L(−⊗ K) and R((−)K) is naturally isomorphic to Ls+.

We have now shown that Sp�(D; K) is a K-stabilization of D. However, for sym-
metric spectra to be better than ordinary spectra, we must show that Sp�(C; K) is a
symmetric monoidal model category.

Theorem 8.11. Suppose that the domains of the generating co5brations of both C and
D are co5brant. Then the stable model structure makes Sp�(C; K) into a symmetric
monoidal model category; and the stable model structure makes Sp�(D; K) into a
Sp�(C; K)-model category.

Proof. We prove this theorem in the same way as Theorem 6.3. Since the coCbrations
in the stable model structure are the same as the coCbrations in the projective model
structure, the only thing to check is that f g is a stable equivalence when f and
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g are coCbrations and one of them is a stable equivalence. We may as well assume
that f: FnA → FnB is a generating coCbration in Sp�(D; K) and g is a stable trivial
coCbration in Sp�(C; K), by Hovey [12, Corollary 4:2:5]; the argument for f a stable
trivial coCbration and g a generating coCbration in Sp�(C; K) is the same. Then, by
hypothesis, A and B are coCbrant in D. We claim that FnA ∧ (−): Sp�(C; K) →
Sp�(D; K) is a Quillen functor with respect to the stable model structures, and similarly
for FnB ∧ (−). Indeed, in view of Theorem 2.2, it suDces to show that FnA ∧ -QCm is
a stable equivalence for all m ≥ 0 and all domains or codomains C of the generating
coCbrations of C. But one can easily check that FnA ∧ -QCm = -A⊗QCn+m . Then Theorem
8.8 implies that this map is a stable equivalence, as required.
Thus, both functors FnA ∧ (−) and FnB ∧ (−) are Quillen functors with respect to

the stable model structures. Consider the commutative diagram below:

FnA ∧ X
f∧X−−−−−→ FnB ∧ X FnB ∧ X

FnA∧g

� 7

�

� FnB∧g

FnA ∧ Y −−−−−→ P
f g−−−−−→ FnB ∧ Y;

where the left-hand square is a pushout square. Since g is a stable trivial coCbration,
so are FnA ∧ g and FnB ∧ g. Since the left-hand square is a pushout square 7 is also
a stable trivial coCbration. By the two out of three property of stable equivalences,
f g is a stable equivalence, as required.

The functor F0: C→ Sp�(C; K) is a symmetric monoidal Quillen functor, so, under
the hypotheses of Theorem 8.11, Sp�(D; K) is a C-model category as well. In fact, we
only need the domains of the generating coCbrations of C to be coCbrant to conclude
that Sp�(D; K) is a C-model category, using the argument of Theorem 8.11.
As we mentioned above, we do not know if the stable model structure satisCes the

monoid axiom. Given a particular monoid R, one could attempt to localize the projective
model structure on R-modules to obtain a stable model structure. However, for this to
work one would need to know that the projective model structure on R-modules is
cellular, and the author does not see how to prove this. This plan will certainly fail
for the category of monoids, since the projective model structure on monoids will not
be left proper in general.
We also point out that it may be possible to prove some of the results of Sec-

tion 4 for symmetric spectra. Not all of those results can hold, since stable homotopy
isomorphisms do not coincide with stable equivalences even for symmetric spectra
of simplicial sets. Nevertheless, in that case, every stable homotopy isomorphism is a
stable equivalence [13, Theorem 3:1:11]. Shipley [25] has constructed a Cbrant replace-
ment functor for simplicial symmetric spectra as well. We do not know if these results
hold for symmetric spectra over a general well-behaved almost Cnitely generated model
category.
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9. Properties of symmetric spectra

In this section, we point out that the arguments of Section 5 also apply to symmetric
spectra. In particular, if (−)⊗K is already a Quillen equivalence on D, then F0: D→
Sp�(D; K) is a Quillen equivalence. In this case, with some additional mild hypotheses,
the homotopy category of D is enriched, tensored, and cotensored over HoSp�(C; K).
We also show symmetric spectra are functorial in an appropriate sense. In particular, we
show that the Quillen equivalence class of Sp�(D; K) is an invariant of the homotopy
type of K .
Throughout this section, C will denote a left proper cellular symmetric monoidal

model category, D will denote a left proper cellular C-model category, and K will
denote a coCbrant object of C.
The proof of the following theorem is the same as the proof of Theorem 5.1.

Theorem 9.1. Suppose (−) ⊗ K is a Quillen equivalence of D. Then F0 :D →
Sp�(D; K) is a Quillen equivalence.

Corollary 9.2. Suppose that the domains of the generating co5brations of both C

and D are co5brant; and suppose that (−)⊗ K is a Quillen equivalence of D. Then
HoD is enriched; tensored; and cotensored over HoSp�(C; K).

Proof. Note that HoSp�(D; K) is certainly enriched, tensored, and cotensored over
HoSp�(C; K). Now use the equivalence of categories LF0 : HoD→ HoSp�(D; K) to
transport this structure back to HoD.

Recall that the homotopy category of any model category is naturally enriched, ten-
sored, and cotensored over HoSSet [12, Chapter 5]. Corollary 9.2 is the Crst step to
the assertion that the homotopy category of any stable (with respect to the suspension)
model category is naturally enriched, tensored, and cotensored over the homotopy cat-
egory of (simplicial) symmetric spectra. See [23] for further results along these lines.
Symmetric spectra are functorial in a natural way. The following theorem is analo-

gous to Proposition 5.5. We use the notation Sp�($) for the map of symmetric spectra
induced by a functor $ because Sp�($) is always a prolongation of $, unlike the
situation of Proposition 5.5.

Theorem 9.3. Suppose C is a left proper cellular symmetric monoidal model category;
and D and D′ are left proper cellular C-model categories. Suppose also that the
domains of the generating co5brations of C; D; and D′ can be taken to be co5brant.
Then any C-Quillen functor $ :D → D′ extends naturally to a Sp�(C; K)-Quillen
functor

Sp�($) :Sp�(D; K)→ Sp�(D′; K):

Furthermore; if $ is a Quillen equivalence; so is Sp�($).
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Proof. The functor $ induces a C�-functor D� → (D′)�, which takes the sym-
metric sequence (Xn) to the symmetric sequence ($Xn). It follows that $ induces
a Sp�(C; K)-functor Sp�($) :Sp�(D; K) → Sp�(C′; K), which takes the symmetric
spectrum (Xn) to the symmetric spectrum ($Xn), with structure maps

$Xn ⊗ K ∼= $(Xn ⊗ K) $�→$Xn+1;

where � denotes the structure map of X . Let % denote the right adjoint of $. Since
$ preserves the tensor action of C, % preserves the cotensor action of C. Then the
right adjoint of Sp�($) is Sp�(%), which takes the symmetric spectrum (Yn) to the
symmetric spectrum (%Yn), with structure maps adjoint to the composite

%Yn
%�̃→%YKn+1 ∼= (%Yn+1)K ;

where �̃ denotes the adjoint to the structure map of Y . Since EvnSp�(%) = %Evn, it
follows that Sp�($)Fn = Fn$.
It is clear that Sp�(%) preserves level Cbrations and level equivalences, so Sp�($) is

a Quillen functor with respect to the projective model structures. In view of Theorem
2.2, to see that Sp�($) deCnes a Quillen functor with respect to the stable model
structures, it suDces to show that Sp�($)(-QCn ) is a stable equivalence for all domains
and codomains of C of the generating coCbrations of C. But one can readily verify
that Sp�($)(-QCn ) = -

$QC
n , which is a stable equivalence as required. Thus Sp�($) is

a Quillen functor with respect to the stable model structures.
If $ is a Quillen equivalence, one can check that Sp�($) is a Quillen equivalence

with respect to the projective model structure. Indeed, in that case, % reNects weak
equivalences between Cbrant objects [12, Corollary 1:3:16]), so Sp�(%) reNects level
equivalences between level Cbrant objects. Let R′ denote a Cbrant replacement functor
in the projective model structure and let R denote a Cbrant replacement functor in
D′. Then, by using lifting as in the proof of Theorem 5.7, we Cnd that the map X →
Sp�(%)R′Sp�($)X is a level equivalence if and only if Xn → %R(Sp�($)X )n=%R$Xn
is a weak equivalence for all n. Note that the additional complexity of R′ coming from
the symmetric group actions is irrelevant to this reduction argument. The latter map is
a weak equivalence since $ is a Quillen equivalence.
To see that Sp�($) is still a Quillen equivalence with respect to the stable model

structures, it suDces to show that Sp�(%) reNects stably Cbrant objects, in view of
Proposition 2.3. Suppose X is level Cbrant and Sp�(%)(X ) is an 
-spectrum. Then
%Xn

%�̃→%(XKn+1) is a weak equivalence for all n. Since % reNects weak equivalences
between Cbrant objects by Hovey [12, Corollary 1.3.16], this means that X is an

-spectrum, as required.

Symmetric spectra are also functorial, in a limited sense, in the coCbrant object K .

Theorem 9.4. Suppose C is a left proper cellular symmetric monoidal model category;
and D is a left proper cellular C-model category. Suppose the domains of the generat-
ing co5brations of C and D can be taken to be co5brant. Finally; suppose f :K → K ′
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is a weak equivalence of co5brant objects of C. Then f induces a natural Quillen
equivalence (−)⊗Sym(K) Sym(K ′) :Sp�(D; K)→ Sp�(D; K ′).

Proof. The map f induces a map of commutative monoids Sym(K)→ Sym(K ′). This
induces the usual induction map

(−)⊗Sym(K) Sym(K ′) :Sp�(D; K)→ Sp�(D; K ′);

and its right adjoint, the restriction map that takes a Sym(K ′)-module X to X itself,
thought of as a Sym(K)-module via the map Sym(K) → Sym(K ′). Restriction obvi-
ously preserves level Cbrations and level equivalences, so is a Quillen functor with
respect to the projective model structure. Also, restriction preserves the evaluation
functors Evn, so, by adjointness, FnA⊗Sym(K) Sym(K ′) = FnA. Here we must interpret
FnA as an object of Sp�(D; K) on the left side of this equation and as an object
of Sp�(D; K ′) on the right side. It follows that, if C is a domain or codomain of a
generating coCbration of D, -QCn ⊗Sym(K) Sym(K ′) is the map

Fn+1(QC ⊗ K)→ FnQC

in Sp�(C; K ′). The weak equivalence QC⊗K → QC⊗K ′ induces a level equivalence
Fn+1(QC ⊗ K)→ Fn+1(QC ⊗ K ′). Since the map Fn+1(QC ⊗ K ′)→ FnQC is a stable
equivalence, so is -QCn ⊗Sym(K) Sym(K ′). Thus, by Theorem 2.2, induction is a Quillen
functor with respect to the stable model structures.
We now prove that induction is a Quillen equivalence between the projective model

structures. The proof of this is similar to the proof of Theorem 5.7. That is, restriction
certainly reNects level equivalences between level Cbrant objects. By a lifting argument
as in the proof of Theorem 5.7, it therefore suDces to show that the map X →
X ⊗Sym(K) Sym(K ′) is a level equivalence for all coCbrant X . The transCnite induction
argument of Theorem 5.7 will prove this without diDculty.
To show that induction is a Quillen equivalence between the stable model structures,

we need only check that restriction reNects stably Cbrant objects. This follows from
the fact that the map ZK

′ → ZK is a weak equivalence for all Cbrant Z .

In particular, it does not matter, up to Quillen equivalence, what model of the sim-
plicial circle one takes in forming the symmetric spectra of [13].

10. Comparison of spectra and symmetric spectra

In this section, C will be a left proper cellular symmetric monoidal model category,
K will be a coCbrant object of C, and D will be a left proper cellular C-model category.
Then we have two diFerent stabilizations of D, namely the stable model structures on
SpN(D; K) and Sp�(D; K), where SpN(D; K) is the category of T -spectra SpN(D; T )
when T is the functor TX = X ⊗ K . The object of this section is to compare them.
The quick summary of our result is that SpN(D; K) and Sp�(D; K) are related by a
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chain of Quillen equivalences whenever the cyclic permutation self-map of K ⊗K ⊗K
is homotopic to the identity. The precise statement requires a few more hypotheses;
see the statements of Theorems 10.1 and 10.3.
This is not the ideal theorem; one might hope for a direct Quillen equivalence

rather than a zigzag of Quillen equivalences, and one might hope for weaker hy-
potheses, or even no hypotheses. However, some hypotheses are necessary, as pointed
out to the author by JeF Smith. Indeed, the category HoSp�(C; K) is symmetric
monoidal, and therefore HoSp�(C; K)(F0S; F0S), the set of self-maps of the unit object
of HoSp�(C; K), is a commutative monoid. If we have a chain of Quillen equiva-
lences between the stable model structures on SpN(C; K) and Sp�(C; K) that preserves
the functors F0, then HoSpN(C; K)(F0S; F0S) would also have to be a commutative
monoid. With suDciently many hypotheses on C and K , for example if C is the cate-
gory of simplicial sets and K is a Cnite simplicial set, we have seen in Section 4 that
this mapping set is the colimit colimHoC(K⊗n; K⊗n). There are certainly examples
where this monoid is not commutative; for example K could be the mod p Moore
space, and then homology calculations show this colimit is not commutative. In fact,
this monoid will be commutative if and only if the cyclic permutation map of K⊗K⊗K
becomes the identity in HoC after tensoring with suDciently many copies of K . Hence
we need some hypothesis on the cyclic permutation map.
The central idea of this section is that commuting stabilization functors must be

equivalent, an idea suggested to the author by Mike Hopkins in a diFerent context.
The following theorem is a consequence of this idea. To make sense of it, recall that
there are two diFerent ways to tensor with K on SpN(D; K); the functor X �→ X P⊗K
that is a Quillen equivalence but does not involve the twist map, and the functor
X �→ X ⊗ K that may not be a Quillen equivalence but does involve the twist map.

Theorem 10.1. Suppose C is a left proper cellular symmetric monoidal model category;
and that the domains of the generating co5brations of C can be taken to be co5brant.
Suppose D is a left proper cellular C-model category such that the functor X �→ X⊗K
is a Quillen equivalence of the stable model structure on SpN(D; K). Then there
is a C-model category E together with C-Quillen equivalences Sp�(D; K) → E ←
SpN(D; K); where Sp�(D; K) and SpN(D; K) are given the stable model structures.
Furthermore; we have a natural isomorphism [HoSp�(D; K)](F0A; F0B) ∼=
[HoSpN(D; K)](F0A; F0B) for A; B ∈ D.

Proof. We take E = SpN(Sp�(D; K); K) with its stable model structure. This makes
sense since Sp�(D; K) is a C-model category, by the comments following Theorem
8.11. By Theorem 5.1, F0 :Sp�(D; K) → E is a C-Quillen equivalence. On the other
hand, since SpN(D; K) is a C-model category by Theorem 6.3, we can also consider
E′=Sp�(SpN(D; K); K) with its stable model structure. The action of K on SpN(D; K)
is then X �→ X⊗K , as pointed out in Remark 6.4. By hypothesis, this functor is already
a Quillen equivalence, so Theorem 9.1 implies that F0 :SpN(D; K)→ E′ is a C-Quillen
equivalence.



116 M. Hovey / Journal of Pure and Applied Algebra 165 (2001) 63–127

We claim that E is isomorphic to E′ as a model category. This is the precise sense in
which our two stabilization functors commute with each other, and obviously will com-
plete the proof. An object of E is a set {Ym;n} of objects of D, where m; n ≥ 0, together
with certain maps. There is an action of �n on Ym;n, and there are �n-equivariant maps
Ym;n ⊗ K >→Ym+1; n and Ym;n ⊗ K 6→Ym;n+1. In addition, the composite Ym;n ⊗ K⊗p →
Ym;n+p is �n×�p-equivariant, and there is a compatibility between > and 6, expressed
in the commutativity of the following diagram:

Ym;n ⊗ K ⊗ K
1⊗T−−−−−→Ym;n ⊗ K ⊗ K

6⊗1−−−−−→ Ym;n+1 ⊗ K

>⊗1

�

� >

Ym+1; n ⊗ K Ym+1; n ⊗ K −−−−−→
6

Ym+1; n+1:

An object of the category E′ is a set {Y ′
m;n} of objects of D for m; n ≥ 0 together with

certain maps. In this case, we have an action of �m on Y ′
m;n and �m-equivariant maps

6′ :Y ′
m;n⊗K → Y ′

m+1; n and >
′ :Y ′

m;n⊗K → Y ′
m;n+1. The composite Y

′
m;n⊗K⊗p → Y ′

m+p;n

is �m×�p-equivariant, and there is a similar compatibility relationship between 6′ and
>′. There is therefore an isomorphism of categories from E to E′ that takes Y to Y ′,
where Y ′

m;n = Yn;m, 6
′ = >, and >′ = 6.

There is a projective model structure on both E and E′, where a map f is a weak
equivalence (or Cbration) if and only if fm;n is a weak equivalence (or Cbration) in
D for all m; n. The isomorphism between E and E′ obviously preserves this projective
model structure. The stable model structure on both E and E′ is the BousCeld local-
ization of the projective model structure with respect to the maps Fm;n+1(QC ⊗ K)→
Fm;nQC and Fm+1; n(QC ⊗ K) → Fm;nQC, where Fm;n is left adjoint to the evaluation
functor Evm;n, and C runs through the domains and codomains of the generating coC-
brations of D. The isomorphism between E and E′ preserves this set of maps, so must
preserve the entire stable model structure.
The composites

D
F0→Sp�(D; K) F0→E

and

D
F0→SpN(D; K) F0→E′ ∼= E

are both naturally isomorphic to F0;0, since both are left adjoint to Ev0;0. Therefore,
we have natural isomorphisms

[HoSp�(D; K)](F0A; F0B)∼= [HoE](F0;0A; F0;0B)
∼= [HoE′](F0;0A; F0;0B)
∼= [HoSpN(D; K)](F0A; F0B)

which complete the proof.
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In particular, we have calculated [HoSpN(D; K)](F0A; F0B) in Corollary 4.13; when
both the hypotheses of that corollary and the hypotheses of Theorem 10.1 hold, we
get the expected result

[HoSp�(D; K)](F0A; F0B) = colimHoD(A⊗ K⊗n; B⊗ K⊗n)

for coCbrant A and B.
Theorem 10.1 indicates that we should try to prove that (−) ⊗ K is a Quillen

equivalence of SpN(D; K). The only way the author can see to do this is by comparing
(−) ⊗ K to (−) P⊗K , which we know is a Quillen equivalence. The basic idea is to
compare X ⊗ K ⊗ K to X P⊗K P⊗K . Both of these spectra have the same spaces, and
their structure maps diFer precisely by the cyclic permutation self-map of K ⊗K ⊗K .
So if we knew that this map were the identity, they would be the same spectrum. The
hope is then that, if we knew that the cyclic permutation map were only homotopic
to the identity, these two spectra would still be equivalent in HoSpN(D; K). One can,
in fact, construct a map of spectra X P⊗K P⊗K → R′(X ⊗ K ⊗ K), where R′ is a level
Cbrant replacement functor and X is coCbrant, by inductively modifying the identity
map. Unfortunately, the author does not know how to do this modiCcation in a natural
way, so is unable to prove that the derived functors L(X ⊗ K ⊗ K) and L(X P⊗K P⊗K)
are equivalent using this method.
Instead, we will follow a suggestion of Dan Dugger. We will construct a new functor

F on coCbrant objects X of SpN(D; K) and natural level equivalences FX → X P⊗K P⊗K
and FX → X ⊗ K ⊗ K . It will follow immediately that L(X P⊗K P⊗K) is naturally
equivalent to L(X ⊗ K ⊗ K), and therefore that X �→ X ⊗ K is a Quillen equivalence
on SpN(D; K). Unfortunately, to construct F , we will need to make some unpleasant
assumptions that ought to be unnecessary.

De�nition 10.2. Given a symmetric monoidal model category C whose unit S is coC-
brant, a unit interval in C is a cylinder object I for S such that there exists a map
HI : I⊗ I → I satisfying HI ◦(1⊗ i0)=HI ◦(i0⊗1)= i0A and HI ◦(1⊗ i1) is the identity.
Here i0; i1 : S → I and A : I → S are the structure maps of I . Given a coCbrant object
K of C, we say that K is symmetric if there is a unit interval I and a homotopy

H :K ⊗ K ⊗ K ⊗ I → K ⊗ K ⊗ K
from the cyclic permutation to the identity.

Note that [0; 1] is a unit interval in the usual model structure on compactly generated
topological spaces, and 1[1] is a unit interval in the category of simplicial sets. Indeed,
the required map H1 :1[1]×1[1] takes both of the nondegenerate 2-simplices 011×001
and 001 × 011 to 001. Similarly, the standard unit interval chain complex of abelian
groups is a unit interval in the projective model structure on chain complexes. Also,
any symmetric monoidal left Quillen functor preserves unit intervals. It follows, for
example, that the unstable A1-model category of Morel-Voevodksy has a unit interval.
Our goal, then, is to prove the following theorem.
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Theorem 10.3. Let C be a symmetric monoidal model category with co5brant unit S;
and let D be a left proper cellular C-model category. Suppose that K is a co5brant
object of C; and that either K is itself symmetric or the domains of the generating
co5brations of D are co5brant and K is weakly equivalent to a symmetric object of
C. Then the functor X �→ X ⊗ K is a Quillen equivalence of SpN(D; K).

This theorem is not the best one ought to be able to do. For example, by considering
the analogous functors with more than three tensor factors of K , it should be possible
to show that the same theorem holds if there is a left homotopy between some even
permutation of K⊗n and the identity. Also, it seems clear that one should only need
the cyclic permutation, or more generally some even permutation, to be equal to the
identity in HoC. That is, we should not need a speciCc left homotopy between an
even permutation and the identity. But the author does not know how to remove this
hypothesis.
In any case, we have the following corollary.

Corollary 10.4. Let C be a left proper cellular symmetric monoidal model category
whose unit S is co5brant; and whose generating co5brations can be taken to have
co5brant domains. Let D be a left proper C-model category. Suppose K is a co5brant
object of C; and either that K is itself symmetric, or else that the domains of the
generating co5brations of D are co5brant and K is weakly equivalent to a symmetric
object of C. Then there is a C-model category E and C-Quillen equivalences

Sp�(D; K)→ E← SpN(D; K):

We will prove Theorem 10.3 in a series of lemmas.

Lemma 10.5. Let C be a symmetric monoidal model category whose unit S is co5-
brant. Suppose we have the (not necessarily commutative) square below

A
f−−−−−→ X

r

�

� s

B −−−−−→
g

Y

in a C-model category D; where A and B are co5brant. Let H :A⊗ I → Y be a left
homotopy from gr to sf ; for some unit interval I . Then there is an object B′ of D;
a weak equivalence B′

q→ B; a commutative square

A
f−−−−−→ X

r′

�

� s

B′ −−−−−→
g′

Y
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such that qr′=r; and a left homotopy H ′ :B′⊗I → Y between gq and g′. Furthermore;
this construction is natural in an appropriate sense.

Naturality means that, if we have a map of such homotopy commutative squares
that preserves the homotopies, then we get a map of the resulting commutative squares
that preserves the maps q and H ′. The precise statement is complicated, and we leave
it to the reader.

Proof. We let B′ be the mapping cylinder of r. That is, we take B′ to be the pushout
in the diagram below:

A
i0−−−−−→ A⊗ I

r

�

� h

B
j−−−−−→ B′:

The map r′ is then the composite hi1, and the map g′ is the map that is g on B and
H on A⊗ I . It follows that g′r′=Hi1 = sf, as required. The map q :B′ → B is deCned
to be the identity on B and the composite A⊗ I A→ A r→ B on A⊗ I . Since j is a trivial
coCbration (as a pushout of i0), it follows that q is a weak equivalence, and it is clear
that qr′ = r. We must now construct the homotopy H ′. First note that B′ is coCbrant,
since B is so and j is a trivial coCbration, and so B′ ⊗ I is a cylinder object for B′.
In fact, B′ ⊗ I is the pushout of A⊗ I ⊗ I and B⊗ I over A⊗ I . DeCne H ′ to be the
constant homotopy B⊗ I A→ B

g→ Y on B⊗ I and the homotopy
A⊗ I ⊗ I 1⊗HI→ A⊗ I H→ Y

on A⊗ I ⊗ I . The fact that HI ◦ (i0 ⊗ 1) = i0A guarantees that H ′ is well deCned, and
the other conditions on HI guarantee that H ′ is a left homotopy from gq to g′. We
leave the naturality of this construction to the reader.

We also need the following lemma about the behavior of unit intervals.

Lemma 10.6. Suppose C is a symmetric monoidal model category whose unit S
is co5brant. Let I and I ′ be unit intervals with structure maps i0; i1 : S → I and
i′0; i

′
1 : S → I ′; and de5ne J by the pushout diagram below:

S
i′o−−−−−→ I ′

i1

�

� *

I
7−−−−−→ J:

Then J is a unit interval.

Proof. The reader is well advised to draw a picture in the topological or simplicial
case, from which the proof should be clear. We think of J as the interval whose left
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half is I and whose right half is I ′. The fact that J is a cylinder object for S, with
structure maps j0 = 7i0 and j1 = *i′1, is proved in [11, Lemma 7.3.11]. Because the
tensor product preserves pushouts, we can think of J ⊗ J as a square consisting of a
copy of I ⊗ I in the lower left, a copy of I ⊗ I ′ in the upper left, a copy of I ′ ⊗ I
is the lower right, and a copy of I ′ ⊗ I ′ in the upper right. We deCne the necessary
map G : J ⊗ J → J by deCning G on each subsquare. On the lower left, we use the
composite I ⊗ I H→ I 7→ J , where H is the homotopy making I into a unit interval.
Similarly, on the upper right square, we use the composite *H ′. On the upper left
square we use the constant homotopy 7(1⊗AI ′). On the lower right square we use the
composite

I ′ ⊗ I
AI′⊗1−−→ I

i1⊗1−−→ I ⊗ I H→ I 7→ J:

We leave it to the reader to check that this makes J into a unit interval.

The importance of these two lemmas for spectra is indicated in the following con-
sequence.

Lemma 10.7. Suppose C is a left proper cellular symmetric monoidal model category
with co5brant unit S; unit interval I; and co5brant object K . Let D be a left proper
cellular C-model category. Suppose A; B ∈ SpN(D; K); where A is co5brant; and we
have maps fn :An → Bn for all n and homotopies Hn :An⊗K⊗ I → Bn+1 from fn+1�A
to �B(fn ⊗ 1); where �(−) is the structure map of the spectrum (−). Then there is a
spectrum C; a level equivalence C h→A; and a map of spectra C

g→B such that gn is
homotopic to fnhn. Furthermore; this construction is natural in an appropriate sense.

Once again, the naturality involves the homotopies Hn as well as the maps fn. We
leave the precise statement to the reader.

Proof. We deCne Cn; hn; gn and a homotopy H ′
n :Cn ⊗ In → Bn from fnhn to gn,

where In is a unit interval, inductively on n, using Lemma 10.5. To get started, we
take C0 = A0; h0 to be the identity, g0 to be f0, and H ′

0 to be the constant homotopy
(with I0 = I). For the inductive step, we apply Lemma 10.5 to the diagram

Cn ⊗ K
gn⊗1−−−−−→ Bn ⊗ K

�A(hn⊗1)

�

� �B

An+1 −−−−−→
fn+1

Bn+1

and the homotopy obtained as follows. We have a homotopy

Cn ⊗ K ⊗ In
1⊗T−−→ Cn ⊗ In ⊗ K

H ′
n⊗1−−→ Bn ⊗ K �B→ Bn+1

from �B(fn⊗ 1)(hn⊗ 1) to �B(gn⊗ 1). On the other hand, we also have the homotopy
Hn(hn⊗1) from fn+1�A(hn⊗1) to �B(fn⊗1)(hn⊗1). We can amalgamate these to get
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a homotopy Gn :Cn⊗K ⊗ In+1 → Bn+1 from fn+1�A(hn⊗ 1) to �B(gn⊗ 1), and In+1 is
still a unit interval by Lemma 10.6. Hence Lemma 10.5 gives us an object Cn+1, a map
�C :Cn ⊗ K → Cn+1, and a map gn+1 :Cn+1 → Bn+1 such that gn+1�C = �B(gn ⊗ 1). It
also gives us a map hn+1 :Cn+1 → An+1 such that hn+1�C=�A(hn⊗1) and a homotopy
H ′
n+1 :Cn+1 ⊗ In+1 → Bn+1 from fn+1hn+1 to gn+1. This completes the induction step
and the proof (we leave naturality to the reader).

With this lemma in hand we can now give the proof of Theorem 10.3.

Proof of Theorem 10.3. We Crst reduce to the case where K is itself symmetric. So
suppose the generating coCbrations of D have coCbrant domains, and suppose K ′ is
symmetric and weakly equivalent to K ; this means there are weak equivalences K →
RK → RK ′ ← K ′, where R denotes a Cbrant replacement functor. This implies that the
total left derived functors X �→ X ⊗L K and X �→ X ⊗L K ′ are naturally isomorphic on
the homotopy category of any C-model category. In particular, it suDces to show that
X �→ X ⊗ K ′ is a Quillen equivalence on SpN(D; K). On the other hand, by Theorem
5.7, there are C-Quillen equivalences

SpN(D; K)→ SpN(D; RK)→ SpN(D; RK ′)← SpN(D; K ′):

It therefore suDces to show that X �→ X ⊗K ′ is a Quillen equivalence of SpN(D; K ′);
that is, we can assume that K itself is symmetric.
Let H denote the given homotopy from the cyclic permutation to the identity of

K⊗K⊗K . Let X be a coCbrant spectrum, let �̃ denote the structure map of X P⊗K P⊗K ,
and let � denote the structure map of X ⊗ K ⊗ K . These two structure maps diFer
by the cyclic permutation, and therefore we are in the situation of Lemma 10.7, with
A=X P⊗K P⊗K; B=X⊗K⊗K; fn equal to the identity map, and Hn=(�X⊗1⊗1)(1⊗H).
It follows that we get a functor F deCned on coCbrant objects of SpN(D; K) and natural
level equivalences FX h→ X P⊗K P⊗K and FX

g→X ⊗ K ⊗ K , where the latter map is a
level equivalence since gn is homotopic to hn. Thus the total left derived functors of
(−) P⊗K P⊗K and (−) ⊗ K ⊗ K are naturally isomorphic. Since we know already that
(−) P⊗K P⊗K is a Quillen equivalence, so is (−)⊗K ⊗K , and hence so is (−)⊗K .

Acknowledgements

The author would like to thank Dan Dugger, Phil Hirschhorn, Mike Hopkins, Dan
Kan, Stefan Schwede, Brooke Shipley, JeF Smith, Markus Spitzweck, and Vladimir
Voevodsky for helpful conversations about this paper. In particular, to the author’s
knowledge, it is JeF Smith’s vision that one should be able to stabilize an arbitrary
model category, a vision that could not be carried out without Phil Hirschhorn’s
devotion to getting the localization theory of model categories right. The idea of
using almost Cnitely generated model categories in Section 4 is due to Voevodsky,
and the idea of using bispectra to compare symmetric spectra with ordinary spectra



122 M. Hovey / Journal of Pure and Applied Algebra 165 (2001) 63–127

(see Section 10) is due to Hopkins. The author also thanks the referee for innumerable
detailed and helpful suggestions.

Appendix A. Cellular model categories

In this section we deCne cellular model categories and show that the projective
model structures on SpN(D; T ) and Sp�(D; K) are cellular when the model structure
on D is cellular. This is necessary to ensure that the BousCeld localizations used in the
paper do in fact exist. The deCnitions in this section are taken from [11]. Throughout
this section, then, T will be a left Quillen endofunctor of a model category D; when
we refer to Sp�(D; K), we will be thinking of D as a C-model category, where C is
some symmetric monoidal model category, and of K as a coCbrant object of C.
A cellular model category is a special kind of coCbrantly generated model category.

Three additional hypotheses are needed.

De�nition A.1. A model category E is cellular if there is a set of coCbrations I and a
set of trivial coCbrations J making E into a coCbrantly generated model category and
also satisfying the following conditions:

1. The domains and codomains of I are compact relative to I .
2. The domains of J are small relative to the coCbrations.
3. CoCbrations are eFective monomorphisms.

The Crst hypothesis above requires considerable explanation, which we will provide
below. We Crst point out that the second hypothesis will hold in the projective model
structure on SpN(D; T ) or Sp�(D; K) when it holds in D.

Lemma A.2. Suppose D is a co5brantly generated model category with generating
co5brations I and generating trivial co5brations J; and T is a left Quillen endofunctor
of D. Suppose the domains of J are small relative to the co5brations in D. Then the
domains of the generating trivial co5brations JT of the projective model structure on
SpN(D; T ) are small relative to the co5brations in SpN(D; T ). Similarly; if D is a
C-model category; K is a co5brant object of C; and T=(−)⊗K; then the domains of
the generating trivial co5brations JK of the projective model structure on Sp�(D; K)
are small relative to the co5brations in Sp�(D; K).

Proof. For SpN(D; T ), this follows immediately from the deCnition of JT , Propositions
1.9 and 1.11. The proof for Sp�(D; K) is similar.

We now discuss the third hypothesis.

De�nition A.3. Suppose E is a category. A map f :X → Y in E is an eCective
monomorphism if f is the equalizer of the two obvious maps Y � Y � X Y .
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Proposition A.4. Suppose D is a co5brantly generated model category and T is a
left Quillen endofunctor of D. Suppose that co5brations are eCective monomorphisms
in D. Then level co5brations; and in particular projective co5brations; are eCective
monomorphisms in SpN(D; T ). Similarly; when D is a C-model category and T =
(−)⊗K for some co5brant K ∈ C; level co5brations are eCective monomorphisms in
Sp�(D; K).

Proof. This is immediate, since colimits and limits in SpN(D; T ) and Sp�(D; K) are
taken levelwise.

We must now deCne compactness. This will involve some preliminary deCnitions.
These deCnitions are based on the idea of CW-complexes, but are of necessity some-
what technical in the general case.

De�nition A.5. Suppose I is a set of maps in a cocomplete category E. A relative
I -cell complex is a map which can be written as the transCnite composition of pushouts
of coproducts of maps of I . That is, given a relative I -cell complex f, there is an
ordinal ) and a colimit-preserving functor X : )→ E and a collection {(T*; e*; h*)*¡)}
satisfying the following properties:

1. f is isomorphic to the transCnite composition of X .
2. Each T* is a set.
3. Each e* is a function e* :T* → I .
4. Given *¡) and i ∈ T*, if e*i :Ci → Di is the image of i under e*, then h

*
i is a

map h*i :Ci → X*.
5. Each X*+1 is the pushout in the diagram

�T* Ci
�e*i−−−−−→ �T* Di

�h*i

�

�
X* −−−−−→ X*+1:

The ordinal ) together with the colimit-preserving functor X and the collection
{(T*; e*; h*)*¡)} is called a presentation of f. The set �*T* is the set of cells of
f, and given a cell e, its presentation ordinal is the ordinal * such that e ∈ T*. The
presentation ordinal of f is ).

We also need to deCne subcomplexes of relative I -cell complexes.

De�nition A.6. Suppose E is a cocomplete category and I is a set of maps in E.
Given a presentation ); X : ) → C, and {(T*; e*; h*)*¡)} of a map f as a relative
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I -cell complex, a subcomplex of f (or really of the presentation of f), is a collection

{(T̃ *; ẽ*; h̃*)*¡)} such that the following properties hold:

1. Every T̃
*
is a subset of T*, and ẽ * is the restriction of e* to T̃

*
.

2. There is a colimit-preserving functor X̃ : ) → E such that X̃ 0 = X0 and a natural

transformation X̃ → X such that, for every *¡) and i ∈ T̃ *, the map h̃*i :Ci → X̃ *
is a factorization of h*i :Ci → X* through the map X̃ * → X*.

3. For all *¡); X̃*+1 is the pushout in the diagram

�T̃ * Ci
� ẽ *i−−−−−→ �T̃ * Di

� h̃*i

�

�
X̃ * −−−−−→ X̃ *+1:

Given a subcomplex of f, the size of that subcomplex is the cardinality of its
set of cells �*¡) T̃ *. Usually, I will be a set of coCbrations in a model category
where the coCbrations are (essential) monomorphisms. This condition guarantees that a

subcomplex of a presentation is uniquely determined by its collection of cells {T̃ *}*¡),
since ẽ * is always determined by e* and there is a unique choice for the factorization h̃

*

[11, Proposition 12:5:10]. Of course, not every set of cells gives rise to a subcomplex.
We can now deCne compactness.

De�nition A.7. Suppose E is a cocomplete category and I is a set of maps in E.

1. Given a cardinal C, an object X is C-compact relative to I if, for every relative
I -cell complex f :Y → Z and for every presentation of f, every map X → Z
factors through a subcomplex of that presentation with size at most C.

2. An object X is compact relative to I if X is C-compact relative to I for some
cardinal C.

The following proposition is adapted from an argument of Phil Hirschhorn’s.

Proposition A.8. Suppose D is a cellular model category with generating co5brations
I . Let A be a domain or codomain of I . If T is a left Quillen endofunctor of D; then
FnA is compact relative to IT in SpN(D; T ). Similarly; if D is a C-model category
and K is a co5brant object of C; then FnA is compact relative to IK in Sp�(D; K).

Proof. We will prove the proposition only for SpN(D; T ), as the Sp�(D; K) case is
similar. Throughout this proof we will use Proposition A.4, which guarantees that
subcomplexes in SpN(D; T ) are determined by their cells. Choose an inCnite cardinal
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, such that the domains and codomains of I are all ,-compact relative to I . When
dealing with relative I -cell complexes, we can assume that we have a presentation
as a transCnite composition of pushouts of maps of I , rather than as a transCnite
composition of pushouts of coproducts of maps of I , using [12, Lemma 2:1:13] or
[11, Section 12:2]. A similar comment holds for relative IT -cell complexes. We will
proceed by transCnite induction on *, where the induction hypothesis is that for every
presented relative IT -cell complex f :X → Y whose presentation ordinal is ≤ *, and
for every map FnA

f→ Y where n is an integer and A is a domain or codomain of I; f
factors through a subcomplex with at most , IT -cells. Getting the induction started is
easy. For the induction step, suppose the induction hypothesis holds for all ordinals
7¡*, and suppose we have a presentation

X = X 0 → X 1 → · · · → X 7 → · · · → X * = Y

of f :X → Y as a transCnite composition of pushouts of maps of IT . Then the boundary
of each IT -cell of this presentation is represented by a map FmC → X 7, for some
7¡*, some m ≥ 0, and some domain C of a map of I . This map factors through a
subcomplex with at most , IT -cells, by induction. It follows that the IT -cell itself is
contained in a subcomplex of at most , IT -cells, since we can just attach the interior
of the IT -cell to the given subcomplex.
Now suppose we have an arbitrary map FnA→ Y , where A is a domain or codomain

of a map of I . Such a map is determined by a map A→ Yn in D. The map fn :Xn → Yn
is the transCnite composition of the coCbrations X 7n → X 7+1n . For each 7, there is an m
and a map h of I such that X 7n → X 7+1n is the pushout of Gmh, where we interpret Gmh
as the identity map if m is negative. The diDculty is that the coCbration X 7n → X 7+1n

may not itself be a relative I -cell complex, though it must be a retract of one by Hovey
[12, Proposition 2:1:18]. A stronger version of that proposition, [11, Lemma 12:4:21],
allows us to write the colimit-preserving functor * :D that takes 7 to X 7n as a retract
of a colimit-preserving functor

Xn = Z0 → Z1 → · · · → Z7 → · · ·Z* = Z;

where each map Z7 → Z7+1 is a relative I -cell complex. We denote the retraction by
r :Z → Yn, noting that the restriction of r to Z7 factors (uniquely) through X 7n . We
can think of the entire map Xn → Z as a relative I -cell complex, each cell e of which
appears in the relative I -cell complex Zt(e) → Zt(e)+1 for some unique ordinal t(e),
and so has associated to it the IG-cell c(e) of f used to form X t(e) → X t(e)+1. The
composite A → Yn → Z then factors through a subcomplex V with at most , I -cells.
The proof will be completed if we can Cnd a subcomplex W of Y with at most
, IT -cells such that the restriction of r to V factors through Wn.
Take W to be a subcomplex of Y containing the IT -cells c(e) as e runs through the

cells of V . Then Wn contains r(e) for every cell of V , so Wn contains rV , as required.
Furthermore, since each IT -cell c(e) lies in a subcomplex with no more that , IT -cells,
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and V has no more than , cells, there is a choice for W which has no more than ,2=,
cells. This completes the induction step and the proof.

Altogether then, we have the following theorem.

Theorem A.9. Suppose D is a left proper cellular model category; and T is a left
Quillen endofunctor on D. Then the category SpN(D; T ) of T -spectra; with the pro-
jective model structure; is a left proper cellular model category. Similarly; if D is
a left proper cellular C-model category; and K is a co5brant object of C; then the
category Sp�(D; K) of symmetric spectra; with the projective model structure; is a
left proper cellular model category.
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