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Abstract

Nanoparticles are extensively studied for drug delivery and are proving to be effective in drug delivery and the diagnostic field. Drug
delivery to lungs has its advantages over other routes of administration. Inhalable powders consisting of nanoparticles are gaining much
interest in respiratory research and clinical therapy. Particle engineering technique is a key factor to develop inhalable formulations that can
successfully deliver drug with improved therapeutic effect and enhanced targeting. Inhalable nanoparticles in the solid-state dry powders for
targeted pulmonary delivery offer unique advantages and are an exciting new area of research. Nasal delivery of inhalable nanoparticulate
powders is gaining research attention recently, particularly in vaccine applications, systemic drug delivery in the treatment of pain, and non-
invasive brain targeting. Fundamental aspects and recent advancements along with future prospects of inhalable powders consisting of
nanoparticles in the solid-state for respiratory delivery are presented.

From the Clinical Editor: The advance in nanotechnology has enabled the design of new drug delivery systems through inhalation, which
has many advantages over traditional delivery systems. This comprehensive review describes and discusses the current status, drug design
and modification for targeted delivery and challenges of the use of nanoparticles in the respiratory tract.
© 2015 Elsevier Inc. All rights reserved.
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Systemic delivery of drugs through inhalation (oral and nasal) is
an attractive alternative for oral or parenteral drug delivery. Drug
delivery to lungs through inhalation has advantages such as high
bioavailability,1 rapid onset of action2 due to its large surface area for
absorption,2,3 self-administration,4 improved patient compliance,1

non-invasive nature,2 limited drug degradation, and high solute
permeability.2 Pulmonary route has been used for local delivery of
drugs like antibiotic, protein, peptide, chemotherapeutics,
interferon,3 antitrypsin,3 protease inhibitors,3 deoxyribonucleases,3

vaccines and many more. An important consideration in pulmonary
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delivery is aerosolization of the drug. Delivery of drug to the lungs
has to go through physical obstruction and physiological obstruction
which includes the multiple bifurcation of respiratory tract and the
innate immunological response. However, inhalation is not new,
inhaled fumigation was known in the first century and antiseptic
aerosol therapy was popular in mid-20th century.5 Particles deposit
in the respiratory track by virtue of their size, shape and surface
properties.1 There are three main mechanisms by which particles
deposit in respiratory tract: impaction, sedimentation and/or
diffusion.6 Particles deposit in the mid and deep lung regions
when the aerodynamic particle size is ≤5 μm,1,6,7 which is where
nanoparticles have a niche in advanced pulmonary drug delivery.
Nanoparticles can be used for targeted delivery,8 sustained delivery
and deep lung delivery of drugs and therapeutics. A recent term,
“nanoperiodic property”, has been introduced by Kannan et al,
which relates nanoparticle behavior to its in vivo behavior.9 Particle
size, shape, surface chemistry, flexibility/rigidity, architecture and
elemental composition have been identified as “critical nanoscale
wders for respiratory delivery. Nanomedicine: NBM 2015;11:1189-1199,
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design parameters (CNDP)” which can be used to control and
engineer particles to optimize pharmacokinetics, pharmacodynamics
and site-specific disease targeting.6 Nanotechnology is currently
revolutionizing drug delivery especially in inhalation drug delivery.
This review discusses the use of nanoparticles as dry powders for
respiratory delivery of drugs.
Inhalable powders for lung delivery

Particle deposition in the lung depends predominantly on its
properties including particle size,10,11 size distribution,10,11

particle morphology,10 surface morphology,10 hygroscopicity,11

electrical charge11 and density.11 Other factors include the
diseased state and breathing pattern.11 The geometric diameter of
a particle is less influential than aerodynamic diameter. Hence,
the United States Pharmacopeia (USP) Chapter b601N12 defines
mass median aerodynamic diameter (MMAD). MMAD means
that 50% of particles in the aerodynamic size distribution, based
on mass, lie above and below that diameter.5 Larger particles
deposit in the airway due to inertial impaction and sedimentation
while smaller particles deposit by diffusion13-16,14,17

Ciliated columnar epithelium in the upper airway secretesmucus
which is a thick gel layer. The primary function of themucosal layer
is to protect the lungs by trapping and removing foreign particles by
the mucociliary escalator which causes trapped particles to be
coughed up out of the lungs. Particles reaching the deep lung
alveolar region may be susceptible to clearance by alveolar
macrophages by phagocytosis depending on the surface chemistry
of the particles.9 To evade mucociliary trapping and clearance, the
inhaled particle should either be of small size to be inhaled past the
upper lung region or have the appropriate surface chemistry to avoid
adhesion to the mucosal layer and/or mucopentration. Use of
hydrophilic and neutrally charged polymers helps in escaping
mucus adhesion. Lung phagocytosis can be significant for particles
of geometric diameter (dg) 1 μm ≤ dg ≥ 2 μm, dependent on the
surface chemistry of the particles, and decreases for particles smaller
and larger.18 Dense surface charge and low molecular weight
PEGylated nanoparticles can penetrate the mucus.19

Infected airways have compromised mucociliary clearance
and are vulnerable to bacterial biofilm formation, which is highly
resistant to antibiotics and requires additional dose through
conventional routes of administration. Inhalation of antibiotic for
pulmonary infection has been proven clinically to be more
effective than other routes of administration. Nanoparticles in the
size range of 200 nm are effective in mucus penetration.20

Creating nanoparticles to exhibit biphasic release profile will
give high initial burst followed by sustained release of antibiotic
to maintain sufficient drug concentration to inhibit biofilm
growth.20 Additionally PEGylated liposomal formulations have
proved to be effective in mucus penetration and escaping
pulmonary and immune clearance.21
Nasal delivery of nanoparticles

Nasal route is a choice for vaccine delivery due to ease of
delivery through nose, high vascularity in nose, large surface
area for absorption and low enzymatic degradation.22 Inhalable
powder formulations for nasal delivery enhance systemic
bioavailability and are superior to liquid formulations. Advan-
tages of dry powders also include increased chemical stability,
no requirement for preservatives, and feasibility of administering
relatively large amounts of drug.23 Improved nasal delivery of
vaccines through nanoparticles may be effective at promoting
improved uptake of particles by the nasal-associated lymphoid
tissue (NALT) system.24 Nanoparticles larger than 20 nm will
cross mucosal membranes through the transmucosal route using
endocytosis, carrier-mediated or receptor-mediated transport
processes.24 There is no significant difference in immune
response between nano and microparticles.25

Mucoadhesion is key to nasal delivery of drugs. Chen et al
formulated liposomes of bovine serum albumin coated with
polymer to increase bioavailability and mucoadhesion.26 The
liposomes were made of soy phosphatidylcholine (SPC) and
phospholipid dimyristoyl phosphatidylglycerol (DMPG) coated
with alginate, chitosan or trimethyl chitosan (TMC). Polymer
coating resulted in increased size of liposome. However,
mucoadhesion property of chitosan and TMC particles increased
compared to alginate coated and uncoated particles.26 Dehghan
et al formulated a polymeric nanosphere nasal vaccine for
influenza which enters the body through the inhalation route.27

In the study, they prepared dry nanoparticle powders of influenza
vaccines with two other immunoadjuvants using chitosan as the
carrier. The formulation demonstrated that the vaccine structure
and characteristics of chitosan did not change after the
formulation. The particles had a size of 581.1 ± 32.6 nm with
mucoadhesive properties of chitosan that makes it suitable for
nasal delivery of vaccine.27 Dry powder chitosan nanospheres
may be an appropriate delivery system for nasal immunization of
influenza, due to the nano size range, the ability for chitosan to
adhere to mucosal membranes, and suitable release profile.27

Another study on nasal vaccine delivery was conducted byWang
et alwhere they formulated anthrax vaccine for dry powder nasal
delivery.28 Vaccination at the site of entry can be more effective
than the systemic route, simply because the pathogens can be
encountered and neutralized at entry before it gets into the
systemic circulation.28 The nasal route is preferred for its
mucous layer, hence nasal products should be mucoadhesive.
Inhalable nasal powders are gaining popularity as new vaccine
delivery by virtue of their stability compared to liquid
formulations that require refrigeration or preservatives.27,28 A
report by Wang et al investigated a nasal formulation composed
of recombinant protective antigen, compound 48/80 mast cell
activator as a mucosal adjuvant, and trehalose.28 The particle
size was ~25 μm and the vaccine maintained its structural
integrity throughout processing.28 In vivo study of the
formulation, in rabbits showed the vaccines competence to
neutralize anthrax lethal toxin.28 They also found that the dry
powder vaccine was effective even after 2.5 years of storage at
room temperature which will alleviate the cold chain shipping
problem for vaccine.28 An in-situ gel forming dry powder
formulation was developed by Velasquez et al using norovirus
like particles with mucoadhesive polymer GelSite®.22 In vivo
study of the formulation showed that the vaccine induced higher
antigen response than liquid preparation.22
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Drypowder inhalers andnanoparticulate powders for inhalation

The overall anatomy and physiology of the pulmonary system
are complicated and the dynamic pulmonary clearancemechanisms
present challenges for drug delivery through this route. Despite
these potential challenges, there are four clinically successful
pulmonary inhalation pharmaceutical dosage forms based on
device classes; namely, nebulizers (nebs), pressurizedmetered dose
inhalers (pMDIs), dry powder inhalers (DPIs), and soft-mist
inhalers (SMIs). Nebulizers produce liquid aerosols by an external
power supply and do not contain any propellant unlike pMDIs.
Nebulizers require an external power source and owing to its size is
restricted to clinical settings29 and in-house use for niche patient
populations (i.e. young children and the elderly), while pMDI
offers portability and patient convenience. However, propellant
effects on the environment, solubility and compatibility challenges
of drug with propellant29 and physicohemical stability challenges
are common. DPIs can contain respirable powdered drug or
respirable powdered drug blended with a non-respirable carrier.
There are many unique advantages of DPIs.30-33 Powdered drug
offers an advantage especially for delivery of poorly water-soluble
drug, and protein and peptide drugs which cannot withstand the
shear generated during inhalation.34 However, the choice of
non-respirable carrier is critical for DPI formulation. Lactose is the
carrier of choice owing to its historical precedence, large supply,
and FDA approval for DPI use. However, patient lactose
intolerance, patient lactose allergies, and reducing sugar chemical
property leading to chemical degradation issues by the Maillard
reaction with certain pulmonary drugs are limitations of the lactose
carrier. Hence, other non-respirable carriers have been studied
(some of which are approved outside the United States) including
non-reducing sugars (e.g. mannitol35 and trehalose), glucose,
sodium chloride, erythritol, sorbitol, raffinose, xylitol, dextrose,
maltitol and maltose as potential carriers that can be used for DPI.36

Afrezza®, which is inhalable recombinant insulin contains Techno-
sphere® particles formed with excipient carrier fumaryl diketopi-
perazine (FDKP) powder which self assembles through hydrogen
bonding in mildly acidic environment to form microspheres.

DPIs offer many advantages including encapsulating ability,21

long term stability,21 no hand-lung inhalation coordination,34,37 no
liquid propellant,37 modified pharmacokinetics,38 an extended
release profile,38 improved tolerability,38 reduced toxicity,38 easy
to use,39 and noninvasiveness.39 Based on the mechanisms of
particle dispersion and aerosolization, the DPI devices are further
categorized as passive or active devices. A passive DPI device
depends on the patient's inspiratory flow to supply the energy
required for powder dispersion. Variation in patient's inspiratory
flow can vary the quantity of drug delivered which might lead to
overdosing or underdosing. In contrast, an active DPI device does
not depend on a patient's inspiratory flow. TheDPI device that was
used in Exubera® was the first active device used in an
FDA-approved pharmaceutical inhalation product. However, the
product didn't last long in the market due to other reasons.
Depending on the drug dispensing method DPI devices are
classified into three types namely unit dose, multidose (i.e. powder
reservoir), andmulti-unit doseDPI devices. A unit doseDPI device
requires the patient to insert an inhalation grade capsule (i.e. gelatin
or hydroxypropylmethylcellulose) containing the preweighed drug
powder prior to each actuation. Upon actuation, the capsule breaks
apart or is pin-holed by the device and releases the powder for
aerosolization. Multi dose reservoir device contains a powder bed
of drug or drug/lactosemonohydrate blendwhich is sampled by the
device metering system with each actuation by patient. A
multi-unit dose DPI device is pre-loaded with multiple unit dose
prefilled capsules containing powder.

DPI is a rapidly growing sector of the pulmonary inhalation
pharmaceutical market which is evident by the increasing
number of successful products in the market. Recent FDA
approval of Afrezza®, the inhaled insulin will invite more
research and growth into inhalation therapy.40 DPIs can have
two potential problems concerning relatively low fine particle
fraction (FPF) and emitted dose (ED) which can be attributed to
insufficient particle dispersion by the patient or DPI device,
aerosol dispersion inefficiency, or the powder formulation itself.
FPF is the fraction of inhaled particles that are smaller than a
certain aerodynamic diameter, and ED is the proportion of initial
dose that is delivered out of the device, as described in USP
Chapter b601N.12 The emerging technologies in overcoming
these problems will be discussed in detail in this article.

The improved formulations have made it possible to deliver
small (micro/nano size) particles to the lungs, yet due to low
inertia these particles can be exhaled from lung and fail to deposit
in the lungs. Hence, to enable better delivery they are usually
formulated with a large non-respirable carrier which adds bulk to
the powder and helps in efficient metering of the dose. On
actuation, the drug particles along with the carrier gets dispersed
into patients mouth but only the respirable drug particles will
reach the respiratory tract. The large non-respirable carrier
particle separates from the drug particle by shear or mechanical
forces and it gets deposited on the oropharynx and is swallowed
in to the gastrointestinal (GI) tract. The separation of these
particles depends on the interparticular forces.

The interparticulate interfacial interactions that impact DPI
aerosol dispersion are van der Waals forces, electrostatic forces,
and capillary forces.41 These forces are important for aerosoliza-
tion of powder from the device during delivery and separation of
drug from the carrier particles. Inter particular forces vary with
materials used and the way it is processed.41 Interparticulate forces
can be altered by the particle size, particle size distribution, surface
morphology (i.e. surface roughness), particle shape, elastic/plastic
deformity, drug/carrier ratio and drug/fine ratio.9,41 Xu et al
reviewed particle interactions in dry powder inhaler in detail, the
article is recommended for further reading.41

The differences between microparticles and nanoparticles
extend beyond just the size. Nanoparticles can have higher drug
loading capacity,5 use less polymers,5 can better cross
permeability barriers,5 increased cellular uptake,38 longer lung
retention38 and in airway nanoparticles have better chances of
mucus penetration. Nanoparticles in general have larger surface
area to volume ratios. This improves dissolution properties
wherein decreased particle size increases solubility and intracel-
lular drug delivery potential.37 Owing to smaller size, nanopar-
ticles present more molecules on the surface of the particle thus
increasing the total mass that may transfer to the surrounding
medium.37 This property can be used to achieve increased drug
concentration and bioavailability. Studies have demonstrated



Table 1
Examples of drugs made into nanoformulations as dry powder inhalers (DPIs).

Drug/agent Class Condition Route of
administration

Vancomycin Antibiotic Infection DPI67

Clarithromycin Antibiotic Infection DPI67

Salmon calcitonin Hormone Hypocalcemia DPI85

Tacrolimus and
cyclosporine A

Immunosuppressant Allograft rejection
prevention in
lung transplantation

DPI7,10

Budesonide Glucocorticoid Asthma and COPD DPI74⁎

Tranilast Antiallergic agent Bronchial asthma DPI73

Diatrizoic acid Radio contrast agent Imaging of airway DPI86⁎

Ciprofloxacin Antibiotic Cystic fibrosis DPI62

Cyclosporine A Immunosuppressant Lung transplant
rejection prevention

DPI7,87⁎

Paclitaxel Microtubule inhibitor Lung cancer DPI68

Tobramycin Antibiotic Infection DPI66

Azithromycin Antibiotic Infection DPI66

Rifampicin Antibiotic Tuberculosis DPI88

Ofloxacin Antimicrobial Infection DPI89

Moxifloxacin Antibacterial Infection DPI89

Doxorubicin Anticancer agent Lung cancer DPI90

Influenza virus Antigen Influenza Nasal27

Anthrax rPA Antigen Anthrax Nasal28#

Fluticasone
propionate/
albuterol
sulfate

Anti-inflammatory/
β2-agonist

Asthma and
COPD

DPI91

Salbutamol sulfate β2-agonist Asthma DPI92

Abbreviation: COPD– chronic obstructive pulmonary disease; rPA– recombinant
protective antigen.
⁎ In vivo study conducted in a rat model
# In vivo study conducted in a rabbit model
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that particles with decreased size are better internalized by
cells.37 Nanoparticles can act as drug carriers by dissolving,
entrapping, encapsulating, adsorbing, or attaching to the drug.2

Nanoparticles are used in both dry powder inhaler and nasal
delivery of therapeutics. Table 1 lists some of the drugs which
have been successfully made into inhalable nano powders for
targeted respiratory delivery. However, further details on their
successful use in rodents or human stands to be explored. In
particular, nanoparticles can be effective as cancer treatment due
to their selective ability to accumulate inside tumors through the
enhanced permeability and retention (EPR) effect.38,42 Another
important advantage for using nanoparticles in DPIs is that it is a
viable option to deliver macromolecules like protein, peptide,
insulin.42 Some nanocarriers that have been explored as potential
drug delivery system include but are not limited to liposomes,39,43

solid lipid nanoparticles,43 lipid or polymeric micelles,39 poly-
meric nanoparticles39,43 and dendrimers.39 Commonly used
polymers as nanocarriers are gelatin, chitosan, alginate and
synthetic polymers like poloxamer, poly(lactic-co-glycolic) acid
(PLGA) and poly(ethylene glycol) (PEG).39
Modification of inhalable nanoparticles

The most common challenges in using nanoparticles for DPI
delivery are i) maintaining the particle in dry state until delivery, ii)
to prevent aggregation of the particles in the inhaler, iii) efficient
redispersion of drug in the lung fluid, iii) preservation of the
particle and the biological activity of the drug throughout
processing stages. Particle engineering is a convenient tool to
achieve particles of desired characteristics with lesser expense.44

Various techniques can be adopted to make particles with narrow
size distribution,44 improved dispersibility,44 sustained release44

with inhalable properties. Some popular particle engineering
techniques are i) surface modification to improve nanoparticle
characteristics as a delivery vehicle and to protect it from
deterioration, ii) making large hollow particle for deep lung
deposition, iii) encapsulating nanoparticles within microparticles
to prevent particle aggregates, iv) making effervescent particles to
improve dispersion. Table 2 lists some techniques that can be used
to fabricate particles for inhalation.
Surface modification

Surface coating of nanoparticles with neutrally charged
molecules such as poly (ethylene glycol) (PEG) has demonstrat-
ed many advantages which includes improved transport of
particles across mucus layer.4 This would enhance the chances of
the particle survival that could reach deep lung sites. It is also
showed by several studies that PEGylation of nanoparticles
evades phagocytosis by alveolar macrophage and improved
bioavailability of the drug.45-50 The steric hindrance and the
negative zeta potential created by PEG molecule help it escape
from blood protein.46

Once the particles are modified to reach the lung, translocation
across air-blood barrier is the next obstacle.1 Smaller molecules
that make it to the lungs are cleared quickly while larger particles
like protein are degraded by protease enzymes. Hence, it is
necessary to encapsulate the drug molecule into nanoparticle to
avoid pulmonary clearance or degradation and ensure sustained
release.1 Most popular encapsulation is done in polymer or
liposome. Interestingly, surface modification also has an effect in
translocation of nanoparticles. Neutral and negatively charged
particles were more rapidly translocated than cationic particles.1,4
Hollow nanoparticles and nanoaggregates

Formulating nanoparticles into large hollow or porous
particles increases the geometric diameter and decreases
aerodynamic diameter of particles, thereby making the particle
more suitable to deposit in the lung.18 Geometric diameter of a
particle contributes less to particle deposition while aerodynamic
diameter determines the deep lung deposition of nanoparticles.
Large particles can be improved to behave like small particles. A
study conducted by Edward et al demonstrated that porous
particles with drug have a higher aerosolization efficiency,
sustained release and increased bioavailability.51

Nanoparticle aggregates are drug containing nanoparticles
accumulated together, which may dissociate into individual
nanoparticle and release the drug in the lungs or respiratory tract.

Large hollow nanoparticulate aggregates which possess
geometric diameter ~10 μm exhibit a small aerodynamic



Table 2
Particle engineering to achieve inhalable particles with desired properties.

Particle property Achieved by

Increased aerodynamic diameter i) Decreasing the volume-equivalent particle diameter (dV)44

ii) Reducing the particle density by making hollow particles44,51

iii) Increasing the particle dynamic shape factor44

Decreased aggregate strength i) Making porous or hollow particles44

ii) Loose and weak aggregates (low powder bulk density)44

iii) Irregular particles (reduced contact reduces force)44

Improved particle dispersion Decrease particle surface energy44

Making nano in micro particles2

Making effervescent particles
Evade phagocytic clearance Increased particle size44

Add long polymer chain on surface4

Make liposome18

Longer half-life Particle coating with polymers or lipids44

Mucus penetrating Particle coating with polymers or lipids4,44
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diameter (1-5 μm) due to low particle density.18 The larger
particles reduce the tendency for the particles to aggregate in the
inhaler device which will ensure proper delivery of the powder
while the smaller particle will avoid deposition elsewhere in the
respiratory tract but the lungs.
Liposomal nanoparticles

Nanoparticles with phospholipids on the surface escape
opsonin attack, which is responsible for phagocytosis and it also
significantly improves the fine particle fraction.18 In addition,
liposomal nanoparticles can be produced in different size ranges
that can be used for targeted drug delivery, these particles can
efficiently encapsulate variety of drugs. Additionally liposomal
surface can be modified with polymer to improve its circulating
properties and by using lipids indigenous to lung liposomal
nanoparticles will be well tolerated.52 Hadinoto et al prepared a
phospholipid nanoparticle aggregate made of polyacrylate and
silica nanoparticles.18 They found that the degree of hollowness
of the nanoparticles varies according to the phospholipid
concentration. It also depends on the chemical nature and size
of the nanoparticles. However, phospholipid does not affect the
morphology or physical state of the particles.18 A DPI
formulation of dapsone encapsulated in nano-liposomes offers
promise for the treatment of Pneumocystis carnii pneumonia
(PCP) by avoiding systemic side effects and achieving higher
drug concentrations at the site of infection.53
Nano-in-micro and polymeric nanoparticles

To improve dispersion and deep lung deposition of nanopar-
ticle, modified micro particle carriers are used. This formulation
reduces particle–particle interaction in addition to improved
handling and delivery of nanoparticles.2 Figures 1 and 2 illustrates
the dispersion mechanisms of inhalable nanoparticles as inhaled
dry powders with and without large non-respirable carrier particles
(i.e. “carrier-free”). A study demonstrated the potential for
pulmonary DPI delivery of human IgG utilizing a simultaneously
manufactured nano-in-micro (SIMANIM) particle.54 This one-
step spray drying process allowed for deep lung penetration and
approximately 35 days of release of IgG. The results of this study
could have a wide range of implications in the utilization of
antibodies to treat respiratory pathogens.

As discussed earlier in surface modification, addition of some
polymers to the surface of nanoparticles to make it hydrophilic can
render it mucopenetrating or capable of escaping opsonin attack.
Materials used for the purpose include poly(ethylene glycol)
(PEG), methoxy poly(ethylene glycol) (MPEG), 1,2-dilauroyl-sn-
glycero-3-phosphocholine (DLPC) and vitamin E d-a-succinated
polyethylene glycol 1000 (vitamin E TPGS).55 Nanoparticles can
be encapsulated in polymer based carriers, loaded on the surface of
the polymer or dispersed in polymeric matrix.18 Polyelectrolyte
complexes use oppositely charged polymers to entrap drugs into a
polymeric matrix nanoparticle, which then releases the drug either
through polymer degradation or drug diffusion.37 Thematrix of the
carrier particle can consist of only nanoparticles or additional inert
pharmaceutical excipients, such as amino acids, sugars or
phospholipids. Upon deposition in the lungs and exposure to the
humid environment and the lung lining fluid, the polymer matrix
dissolves and readily releases the nanoparticles.2 Nanocomposites
(Figure 3) are made by binding the nanoparticles aggregates with
an excipient, mostly polymer. Poly(DL-lactide-co-glycolide acid)
(PLGA) is an FDA approved, most popular, polymer used for
nanoparticle delivery due to its safety profile, controlled release
properties and improved colloidal stability.56 Yang et al
successfully formulated a salmon calcitonin adsorbed polymeric
PLGA nanosphere which was coated onto a lactose carrier to form
nanocomposite.57 The nanocomposite particles had efficient lung
deposition and rapid release of salmon calcitonin occurred.57

Another interesting aspect of polymeric nanoparticle was explored
byWang et alwho successfully studied various use of nanoparticles
to deliver hydrophilic and hydrophobic chemotherapeutics in the
same nanoparticles, they also succeeded in formulating multidrug
nanoparticle for co-delivery to treat cancer.58

Lipid–polymer nanoparticle is a hybrid delivery system,
where the polymer nanoparticle core is enveloped in a liposomal
layer. It possesses combined properties of polymer and
liposomal drug delivery. Yang et al attempted to utilize a new



Figure 1. Schematic of the dispersion mechanism for inhalable nanoparticles as aerosolized dry powders containing non-respirable carrier particles.

Figure 2. Schematic of the dispersion mechanism for inhalable nanoparticles as aerosolized dry powders as carrier-free respirable particles.
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approach of electrostatically-driven assembly of nanoparticles in
developing a dry powder formulation.59 In the study, cationic
and anionic poly (lactic-co-glycolic acid)/phosphatidylcholine
(PLGA/PC) lipid–polymer hybrid nanoparticles were adsorbed
on the surface of chitosan carrier particles. The cationic PLGA/
PC with stearylamine adsorbed on the surface of negatively
charged chitosan carrier particles by electrostatic interaction.
However, the formulation had a low loading capacity (18%). The
nanoparticle adsorption onto the carrier particle is dependent on
the individual charges of all components of carrier.59 This can be
exploited in the future to modify the carrier surface to
accommodate both cationic and anionic nanoparticle adsorption.
The formulation had poor desorption characteristics which may
lead to low dispersibility in the lung that can reduce the
therapeutic dose of the drug.59
Effervescent nanoparticles

Effervescent technology has been very popular with oral drug
delivery, the same technology is extended to DPI to improve
particle dispersion. Several studies have been conducted on the
potential use of effervescent technology in carrier particle for dry
powder inhaler.42,60-62 Some of those studies are discussed in
this paper. Effervescent technology can impart an active release
mechanism of drug from the formulation, thereby achieving a
faster action. In effervescent technology sodium carbonate and
citric acid are added to the formulation, which forms gas bubbles
when it comes in contact with water hence increasing the volume
during the phase transition from solid to gas.2 Effervescent
carrier formulation generally includes sodium bicarbonate,
ammonium hydroxide, and citric acid. Ammonia, ammonium

image of Figure�1
image of Figure�2


Figure 3. Illustration of nanoaggregates and nanocomposite particles.

Table 3
Particle preparation methods for inhalable nanoparticulate dry powders.

Methods of particle preparation

Milling
High-pressure homogenization
Advanced spray drying
Spray freeze drying
Supercritical fluid (antisolvent) extraction
Inverse phase nanoprecipitation
Particle replication in non-wetting template (PRINT)
Controlled aerosol growth
Thermal condensation aerosols
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salt or a suitable buffer is added to maintain pH that would
prevent the particles from effervescing during the processing of
the powders. In a study conducted by Roa et al inhalable
effervescent nanoparticles containing doxorubicin were com-
pared to non-effervescent nanoparticle, nanoparticle solution and
suspension injected intravenously.42 The group of animals
treated with effervescent nanoparticles was the only ones that
survived the cancer. The effervescent reaction of the carrier
particle prevented agglomeration of the nanoparticles and
improved their dispersion.42 In another study, Al-Hallak et al
observed the distribution of effervescent nanoparticles contain-
ing doxorubicin after pulmonary delivery.60 The nanoparticle
carried in effervescent microparticle achieved deep lung
deposition followed by release of doxorubicin. The nanoparticle
deposition was primarily found in the lung with little extra
pulmonary deposition, however, no drug was found in other
organs or tissues.60 The nanoparticles had long retention and
wide distribution in the lung, which can be ascribed to the release
of nanoparticle from the effervescent carrier.60 A comparative
study was conducted by Ely et al on drug release and dispersion of
ciprofloxacin nanoparticles between effervescent carrier and
lactose carrier.62 The effervescent carrier particles released almost
twice asmuch drug as conventional lactose particle.62 Effervescent
reaction generates force that helps nanoparticles to disperse and
avoid aggregation. Thus, effervescence technology has improved
release features compared to those that will only dissolve.62 A pilot
safety study was conducted by Azarmi et al on effervescent
nanoparticle delivery and showed no negative impact on treated
mice population.61 This is a good starting point for further safety
testing of effervescent particles for pulmonary delivery.61
Engineering of nanoparticulate powders for inhalation asDPIs

Method of preparation of nanoparticle is vital for its
performance. There are several methods for the preparation of
pulmonary nanoparticles. Some common methods used in the
preparation of powders for inhalation will be discussed in this
paper as described in Table 3. Generally nanoparticles are
prepared by two ways namely: i) precipitation of nanoparticles
out of solution (bottom-up)37 ii) milling larger particles to reduce
size (top-down).37
Spray drying is the most commonly used high throughput
method to prepare dry powders for inhalation.10 In spray drying
the drug solution or suspension is introduced at high pressure
through the nozzle (atomizing) with spray-air into a heated
chamber where the solvent evaporates and the solid dries out
followed by separation of the particles using a cyclone
separator.44,63 The spray drying process has been successfully
used to make nanoparticles with smooth surface, narrow particle
size distribution,64 reduced residual water content,64 nano
liposomes, nano-hollow particles and nanocomposites.65 Spray
drying has been used to develop respirable tacrolimus dry
powders for targeted deep lung delivery by Wu et al.10 They
employed the process of organic solution advanced spray drying
in a closed mode. They successfully produced particles with
spherical shapes and smooth surfaces with decreased residual
water. Use of an organic solution in spray drying will assist in
achieving lower water content in the final product. Spray drying
can be used to engineer particles with respect to particle size,9

shape, density and moisture content.9 The types of particles and
particle properties produced after the spray drying process
depend upon a plethora of parameters including solvent used,10

solute concentration,10 inlet temperature,10 outlet temperature,10

atomizing pressure,10 feed properties,10 pump rate,10 gas type10

and gas flow rate.10 Studies have been conducted on the pump
rate of spray drying and its influence on particle
character.7,21,66,67 Meenach et al found that higher pump rates
of 30 mL/minute reduced the outlet temperature and resulted in
smooth and spherical phospholipid/lipopolymeric particles.21

image of Figure�3
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This was further confirmed by Li et al who studied character-
istics of two antibiotics (tobramycin and azithromycin) by spray
drying.66 They found that the physicochemical property of the
drug played a major role in the characteristics of the spray dried
particle. Tobramycin with enhanced hygroscopicity had higher
residual water content than azithromycin which had lower
residual water content.66 In another study, PEGylated phospho-
lipid formulation containing chemotherapeutic agent paclitaxel
was made using organic solution advanced spray drying in a
closed mode.68 This protocol produced micro/nano particles
with higher encapsulation efficiency (43-99%).68 Organic
solution advanced spray drying methods have been successfully
used by researchers to make nanoparticles of antibiotics and
other drugs with and without using phospholipids for pulmonary
delivery.67 Tomodo et al studied the effects of spray drying
temperature on particle property and found that PLGA
nanoparticles prepared with lactose had best FPF at 90 °C,
while those prepared with trehalose had best FPF at 80 °C.69

Hence, all the variables involved in spray drying process must be
carefully considered while designing the study.

Spray freeze drying is a modified spray drying pharmaceu-
tical processing method that can be used to make nanoparticles as
well as microparticles under certain conditions. In spray freeze
drying, the drug solution is atomized directly into a cryogenic
liquid such as liquid nitrogen and frozen into particles. The
frozen particles are further subjected to lyophilization to obtain
dry powder.37 Cheow et al prepared spray freeze dried poly
(caprolactone) (PCL) nanoparticles containing levofloxacin.70

They modified a Buchi B-290 spray dryer to freeze dry the
formulation, by replacing the drying chamber with a collecting
vessel containing liquid nitrogen (i.e. cryogenic liquid). They
atomized the liquid slurry through a 1.5 mm nozzle (two fluid
atomizer) at a feed rate of 0.24 L/h and atomizing air flow rate of
240 L/h while stirring the liquid nitrogen at 500 RPM. Liquid
nitrogen with sample was frozen for 16 hours followed by freeze
drying at −52 °C and 0.05 mbar vacuum. This method produced
inhalable particles with low density, smooth surface morphol-
ogy, and good aqueous re-dispersibility. The group also found
that poly (vinyl alcohol) and mannitol as suitable adjuvants that
can be processed with spray freeze dying.70 Spray freeze drying
is not as commonly used as spray drying due to complexity and
cost involved.44 For comparison between spray drying and spray
freeze drying pharmaceutical processing methods, the readers are
referred to a study conducted by Wang et al for preparation of
lipid–polymer hybrid nanoparticles71 and another study con-
ducted by Maa et al comparing the two methods for the
production of inhalable protein powders.72

Milling is a commonly used pharmaceutical processing
method for primary particle size reduction for generating
microparticles (e.g. gas jet milling) and nanoparticles (e.g.
nanojet milling). Two types of milling are dry and wet milling. In
a study conducted by Onoue et al tranilast, an anti-allergic agent,
was prepared into a nanocrystal solid dispersion.73 There is a
concern about this drug's systemic side effects, which makes
inhalation a good choice. Nanocrystal solid dispersion was
prepared by wet milling process and dried by freeze drying. The
resulting solid-state particles were micronized by gas-jet milling
to render them into the respirable size range and blended with
large non-respirable lactose monohydrate 50 μm carrier parti-
cles. These particles produced dry powder inhalation aerosols
with 97.9% emitted dose and 59.4% FPF values. The in vivo
characteristics showed a notable performance in anti-inflamma-
tory activity of the formulation.73 The authors suggested that
DPIs of nanocrystal solid dispersions of tranilast could be a
simple and safe way to administer the drug with local action and
reduced systemic toxicity.73

El-Gendy et al formulated budesonide NanoClusters by the
wet milling process, while studying the impact of process
parameters.74 Ten hours of milling budesonide reduced the
primary particle size from 3 μm to 200-300 nm and had a mean
aerodynamic diameter of 1.23 μm (at a concentration of 1.66%
w/w). Surface area of the NanoClusters was enhanced with
increasing milling time up to 6 hours. NanoClusters had a fine
particle fraction of 68-87% and emitted dose higher than 70% for
all milling times. Milling of budesonide didn't affect the physical
stability of the drug and it also increased the surface area. This
study suggests that wet milling is a suitable method to produce
powders for inhalation.74

Wang et al prepared polymeric nanoparticle containing
paclitaxel of size ~130 nm with 80% encapsulation efficiency
by inverse-phase nanoprecipitation method.55 In this method, an
aqueous phase is slowly added to an organic phase and the
nanoparticles are allowed to form.55

Condensation aerosol growth is another approach to make
inhalable aerosols. The particles prepared by this method can be
inhaled through mouth (i.e. oral inhalation) or nose (i.e. nasal
inhalation). There are two approaches to obtain respirable
particles where one method consists of the drug alone (enhanced
condensation growth) and the other method consists of the drug
with excipient (excipient enhanced growth).75 In enhanced
condensation growth (ECG), a submicron size particle aerosol is
inhaled with a saturated or supersaturated stream of air that is
above body temperature. The inhaled air is cooled in the
respiratory track that leads to condensation into the droplets,
growth, and enhanced lung deposition.75,76 On the other hand,
excipient enhanced growth (EEG) occurs on aerosol particles
that contain a hygroscopic excipient which then absorbs
humidity from the lungs leading to aerosol particle growth.75

There are two inhalers on the market based on thermal
condensation principles, the Staccato® system (Alexza pharma-
ceuticals) and Aria® system (Chrysalis technology), which use
thermal vaporization for aerosol generation.77 The effect of
temperature,77 initial film thickness78 and energy79 on the
condensation aerosol was previously studied. The method was
successfully used to make ibuprofen and indomethacin nano-
particles for inhalation.80,81

A recent development in nanoparticle fabrication is the top
down method of particle replication in non-wetting template
shortly called PRINT technology. This technology is used to
make monodisperse particles in the solid-state with greater size
and shape control.82 In this method, a master template is made
with silicon. Then a suitable polymer is poured into the template
and cured to make a mold containing nanocavities. Nanoparticles
from here are made by a lamination technique. Solution
containing the drug or protein is filled in the cavity which is
covered with another layer of empty mold. The two layers of
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molds with the drug solution are passed through a roller followed
by lyophilization to get solid particles.82 Studies were conducted
to use this technology in making respirable particles for dry
powder inhalation.83,84

Other methods used to produce inhalable powders are high-
pressure homogenization and supercritical fluid (SCF) technolo-
gies. High-pressure homogenization has been used to produce
solid-lipid nanoparticles where the drug is dissolved in lipid and
homogenized followed by solidification.44 Recent advancements
in supercritical fluid (SCF) extraction have attracted attention for
development of nanoparticulate formulations.44 There are several
variations to SCF technology but they all function using the
principle of precipitation of the drug when the solvent is extracted
with supercritical fluid CO2.

44
Future perspective

Inhalable nanoparticles in the solid-state as inhalable powders
for targeted pulmonary delivery offer unique advantages and are
a new area of research. However, there are limitations. Toxicity
of nanoparticles (i.e. nanotoxicity), polymers and other excip-
ients is critical for the development of safe inhalable dry powder
inhalation formulations. Nasal delivery of inhalable nanoparti-
culate powders is gaining research attention recently, particularly
in vaccine applications, systemic drug delivery in the treatment
of pain, and non-invasive brain targeting. Surface modification
and formulation optimization can improve nanoparticle stability,
dispersion, and deep lung deposition. Various pharmaceutical
processing methods can be employed including advanced spray
drying, spray freeze drying, milling, supercritical fluid extrac-
tion, condensation aerosol growth, thermal condensation and
PRINT technology.
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