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Abstract

The section condition in double field theory has been shown to imply that a physical point should be
one-to-one identified with a gauge orbit in the doubled coordinate space. Here we show the converse is also
true, and continue to explore the idea of spacetime being doubled yet gauged. Introducing an appropriate
gauge connection, we construct a string action, with an arbitrary generalized metric, which is completely
covariant with respect to the coordinate gauge symmetry, generalized diffeomorphisms, world-sheet diffeo-
morphisms, world-sheet Weyl symmetry and O(D,D) T-duality. A topological term previously proposed
in the literature naturally arises and a self-duality condition follows from the equations of motion. Further,
the action may couple to a T-dual background where the Riemannian metric becomes everywhere singular.
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1. Introduction

In order to realize O(D,D) T-duality as a manifest symmetry [1–8], Double Field Theory
(DFT) [9–14] doubles the spacetime dimension, from D to D + D, with doubled coordinates,
xA = (ỹμ, yν), of which the first and the last correspond to the ‘winding’ and the ‘ordinary’
coordinates respectively. However, DFT is not truly doubled since all the fields – including any
local symmetry parameters – are subject to the section condition: the O(D,D) invariant d’Alem-
bertian operator must be trivial, acting on arbitrary fields,

∂A∂AΦ(x) = 0, (1.1)

as well as their products, or equivalently

∂AΦ1(x)∂AΦ2(x) = 0. (1.2)

While the section condition might appear somewhat odd or even invidious from the conventional
Riemannian point of view, it is readily satisfied when all the fields are, up to O(D,D) rotations,
independent of the dual winding coordinates, i.e. ∂

∂ỹμ
≡ 0. This kind of explicit ‘section-fixing’

reduces DFT to generalized geometry [15–24] where the spacetime is not enlarged and the duality
is less manifest.

Much progress has been made in recent years based on the notion of doubled spacetime
subject to the section condition [25–59], including the state of the art reviews [52,54] and the
construction of N = 2 D = 10 maximally supersymmetric double field theory [46] as the uni-
fication of type IIA and IIB supergravities.2 Analogous parallel developments on U-duality are
also available [60–73] 3 which may all be incorporated into the grand scheme of E11 [74–77].

The (D + D)-dimensional doubled spacetime is far from being an ordinary Riemannian man-
ifold, since it postulates the existence of a globally well-defined O(D,D) invariant constant
metric,

JAB =
(

0 1
1 0

)
, (1.3)

which serves to raise and lower the doubled spacetime indices.4 Further, the diffeomorphism
symmetry is generated not by the ordinary Lie derivative but by a generalized one,

L̂V TA1···An := V B∂BTA1···An + ω∂BV BTA1···An

+
n∑

i=1

(∂Ai
VB − ∂BVAi

)TA1···Ai−1
B

Ai+1···An, (1.4)

where ω is the weight of the DFT-tensor, TA1···An(x), and V A(x) is an infinitesimal diffeomor-
phism parameter, as a DFT vector field which must also obey the section condition,

∂A∂AV B(x) = 0, ∂AV B(x)∂AΦ(x) = 0. (1.5)

The generalized Lie derivative of the O(D,D) metric vanishes for consistency,

2 Cf. http://strings2013.sogang.ac.kr//main/?skin=video_GS_2.htm.
3 Cf. http://strings2013.sogang.ac.kr//main/?skin=video_27_5.htm.
4 For example, ∂A =J−1AB∂B as done in (1.1) and (1.2).

http://strings2013.sogang.ac.kr//main/?skin=video_GS_2.htm
http://strings2013.sogang.ac.kr//main/?skin=video_27_5.htm
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L̂VJAB = 0. (1.6)

As pointed out in [51], the section condition implies that the coordinates in doubled spacetime
do not represent the physical points in an injective manner. Rather, a physical point should be
one-to-one identified with a ‘gauge orbit’ in the coordinate space, i.e. an equivalence relation
holds for the doubled coordinates:

xA ∼ xA + φ∂Aϕ, (1.7)

where φ and ϕ are two arbitrary functions in DFT. While we review the explicit realization of
this equivalence below, cf. (2.3), it implies that spacetime is doubled yet gauged. The diffeomor-
phism symmetry then means an invariance under arbitrary reparametrizations of the gauge orbits.
Henceforth, we call the equivalence relation on coordinates (1.7), ‘coordinate gauge symmetry’
so that the quotient/equivalence classes form a space diffeomorphic to the section. It follows that
a similar equivalence relation holds for the infinitesimal diffeomorphism parameters,

V A ∼ V A + φ∂Aϕ, (1.8)

and consequently there is more than one finite tensorial diffeomorphic transformation rule, while
the simplest choice seems to be the one found in [44] which we shall recall in (3.1). In fact, it was
the coordinate gauge symmetry that played a crucial role to resolve a puzzle left in [44] where
the simple tensorial diffeomorphic transformation rule found therein did not coincide with the
exponentiation of the generalized Lie derivative (1.4). Nevertheless, they are equivalent up to the
coordinate gauge symmetry [51].

It is the purpose of this work to further explore the geometric significance of the coordinate
gauge symmetry (1.7), in particular by considering a string which propagates in a doubled yet
gauged spacetime. Compared to preceding works on sigma models in doubled space [1–3,7,8,37,
45], the novelties of the action to be constructed in this paper, (4.2), are as follows. (i) As in DFT,
a priori no isometry nor torus structures are assumed. For an arbitrary given background, our
action is fully covariant under world-sheet diffeomorphism, world-sheet Weyl symmetry, target
spacetime generalized diffeomorphisms, O(D,D) T-duality and the coordinate gauge symme-
try. (ii) The full spacetime dimensions are doubled, yet they are gauged. (iii) The self-duality
relation follows from the equations of motion of the auxiliary gauge fields, without breaking
any symmetry. (iv) The action may also describe a string which propagates in a novel class of
non-Riemannian geometries.

The rest of the paper is organized as follows.

• In Section 2, we prove that the coordinate gauge symmetry (1.7) implies the section con-
dition, both (1.1) and (1.2). Hence, with the result of [51], they are in fact equivalent. This
motivates us to propose to take the ‘coordinate gauge symmetry’ as the geometrical first
principle for the doubled spacetime formalism.

• In Section 3, we explicitly introduce a gauge connection for the coordinate gauge symmetry
and define gauged differential one-forms for the doubled coordinates, DxM = dxM − AM .
We demonstrate their covariant properties under generalized diffeomorphisms and the coor-
dinate gauge symmetry.

• In Section 4, in terms of the gauged differential one-forms, we construct an action for a
string in the doubled yet gauged spacetime, which is completely covariant with respect to the
coordinate gauge symmetry, generalized diffeomorphisms, O(D,D) T-duality, world-sheet
diffeomorphisms and world-sheet Weyl symmetry.
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• In Section 5, we discuss reductions to undoubled formalisms. We point out that there are
generically two classes of reductions depending on the generalized metric. For the non-
degenerate case, the generalized metric can as usual be parametrized by a Riemannian metric
and a Kalb–Ramond B-field. The reduction then naturally recovers the doubled sigma model
proposed in [8] including a ‘topological term’ [5] and a ‘self-duality’ relation [2,3]. On the
other hand, the degenerate case deals with a background where the Riemannian metric, if
interpreted in that way, is everywhere singular. As an example, we obtain such a singular
background by T-dualizing a fundamental string geometry [78].

• We conclude with a summary and comments in Section 6.
• Appendices A and B contain a brief review of covariant derivatives in DFT and some useful

formulae.

While the idea of spacetime being gauged might sound strange at first, since the spacetime
coordinates are dynamic fields on world-sheet, the coordinate gauge symmetry will be realized
as just one of the gauge symmetries of the constructed action along with others.

2. Doubled yet gauged spacetime

Coordinate gauge symmetry means an equivalence relation on the coordinates of the doubled
spacetime which is generated by a derivative-index-valued shift [51],

xA ∼ xA + φ∂Aϕ, (2.1)

where φ and ϕ are two arbitrary functions in DFT. The coordinate gauge symmetry is additive,
being Abelian in nature,

xA ∼ xA + φ∂Aϕ, xA ∼ xA + φ′∂Aϕ′ �⇒ xA ∼ xA + φ∂Aϕ + φ′∂Aϕ′. (2.2)

All the functions of DFT, i.e. field variables, local symmetry parameters (including φ and ϕ in
(2.1)) and their arbitrary derivative-descendants, are then by definition required to be invariant
under the derivative-index-valued shift,

∂A1∂A2 · · ·∂AnΦ(x + �) = ∂A1∂A2 · · ·∂AnΦ(x), �A = φ∂Aϕ, (2.3)

where n = 0,1,2, . . . .
For a generic (local) shift of the coordinates, with an arbitrary real parameter, s ∈ R,

xA −→ xA + s�A(x), (2.4)

a standard power expansion reads

TA1···Am(x + s�) = TA1···Am(x) +
∞∑
l=1

sl

l! �B1�B2 · · ·�Bl ∂B1∂B2 · · · ∂Bl
TA1···Am(x). (2.5)

From the consideration of e.g. putting TA1···Am = ∂A1 · · · ∂AmΦ1 and �A = kB1 · · ·kBn∂B1 · · ·
∂Bn∂

AΦ2 with an arbitrary constant vector, kB , it follows immediately that the coordinate gauge
symmetry (2.1) implies the section condition which is quadratic in functions (1.2),(

∂A1∂A2 · · · ∂Am∂CΦ1
)
(∂B1∂B2 · · ·∂Bn∂CΦ2) = 0, m,n � 0. (2.6)

Further, as we show shortly, a particular case of this result (Φ1 = Φ2 and m = n = 1) leads to
the other section condition, or the linear “weak” constraint (1.1). Hence, the coordinate gauge
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symmetry (2.1) implies the section condition, both (1.1) and (1.2). Since the converse is also true
from (2.3) and (2.5) [51], we conclude the following:

The coordinate gauge symmetry (2.1) is equivalent to the section condition, both (1.1) and (1.2),
xA ∼ xA + φ∂Aϕ ⇐⇒ ∂A∂AΦ(x) = 0 and ∂AΦ1(x)∂AΦ2(x) = 0,

and serves as a geometric first principle for the doubled spacetime formalism.

Theorem. If ∂A∂BΦ∂A∂CΦ = 0 then ∂A∂AΦ = 0.

Proof. The given assumption implies the nilpotent property of a (D + D) × (D + D) square
matrix,

MA
B = ∂A∂BΦ, M2 = 0. (2.7)

Hence, with an arbitrary real parameter, s ∈R, we have

det(1 + sM) = etr ln(1+sM) = es tr M, (2.8)

or

det
(
δA

B + s∂A∂BΦ
) = es∂A∂AΦ = 1 +

∞∑
n=1

sn

n!
(
∂A∂AΦ

)n
. (2.9)

Since the determinant is a finite polynomial in the variable, s, while the exponential has an
a priori infinite power series expansion, it is clear that each higher order term of the latter must
vanish, or

∂A∂AΦ = 0. (2.10)

In particular, the determinant is one, being s-independent. This completes our proof. �
Comments.
(i) An alternative proof may be established by considering the ‘Jordan normal form’ of the

square matrix, M . The nilpotent property of the matrix implies that all the diagonal elements of
its Jordan normal form are zero, and hence the matrix is traceless (2.10).

(ii) With the relation,

0 =
ˆ

RD+D

∂A∂BΦ∂A∂BΦ =
ˆ

RD+D

∂A

(
∂BΦ∂A∂BΦ − ∂AΦ∂B∂BΦ

) + (
∂A∂AΦ

)2
, (2.11)

if we assume “sufficiently fast fall off behavior at infinity” in order to ignore the total derivative
or the surface integral, with the positive definite property of (∂A∂AΦ)2 we might argue for (2.10).
However, this assumption appears too strong to be realized in double field theory where explicitly
the fields do not depend on the dual winding coordinates. Thus, it is desirable to establish a direct
proof, as presented above, which holds irrespective of the boundary conditions.

(iii) It is worthwhile to note that, unlike ∂A∂BΦ∂A∂CΦ = 0, an alternative condition,
∂AΦ∂AΦ = 0, does not necessarily imply the weak constraint, ∂A∂AΦ = 0, except in dimen-
sion D = 1, since a counterexample exists for D � 2,

Φ ′(x1, . . . , xD, x̃1, . . . , x̃D

) = exp

[
2
√

x1x̃1 +
D∑ xμ − x̃μ√

D − 1

]
, (2.12)
μ=2
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which satisfies

∂AΦ ′∂AΦ ′ = 0, ∂A∂AΦ ′ = 1

2
√

x1x̃1

Φ ′ = 0. (2.13)

3. Gauge connection for the coordinate gauge symmetry

We recall two finite local symmetries of double field theory.

• Generalized diffeomorphism, xM → x′ M , in the ‘passive’ form [44,51],

TA1A2···An(x) −→ T ′
A1A2···An

(
x′) = (detL)−ωF̄A1

B1 F̄A2
B2 · · · F̄An

BnTB1B2···Bn(x),

(3.1)

where

LA
B = ∂Ax′B, L̄ = JLtJ −1,

F = 1

2

(
LL̄−1 + L̄−1L

)
, F̄ = JF tJ −1 = 1

2

(
L−1L̄ + L̄L−1). (3.2)

In particular, F can be shown to be an O(D,D) element,

FF̄ = 1, F ∈ O(D,D), (3.3)

which agrees with (1.6). It should be also noted that it is not the transformed coordinates,
x′ M , but the difference, x′ M − xM , that satisfies the section condition, (1.1), (1.2),5 such
that, e.g.

∂AΦ(L − 1)A
B = 0. (3.4)

• Coordinate gauge symmetry (2.1) [51],

xA ∼ xM
s = esV ·∂xM = xM + sVM(x), TA1A2···An(x) = TA1A2···An(xs), (3.5)

which is generated by a derivative-index-valued vector, VA,

VM = φ∂Mϕ, (3.6)

satisfying the section condition (1.2),

VM∂MΦ = 0. (3.7)

The main difference of the above two local symmetries is formally whether the spacetime indices
of the tensors are supposed to be rotated or not.6

We now introduce a gauge connection,7 AM , and define gauged differential one-forms for the
doubled coordinates,

5 For example, ∂AxM∂AΦ = ∂MΦ = 0.
6 Of course, the transformation, xM → xM

s = xM + sVM(x), can be taken as a sort of generalized diffeomorphism
which can be then shown to reduce to the B-field gauge symmetry only, without involving any Riemannian diffeomor-
phism [51].

7 A closely related earlier work is [4] where ‘gauging’ chiral currents on a world-sheet was discussed, see also [5,8].
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DxM := dxM −AM. (3.8)

We require the connection to be a derivative-index-valued one-form, satisfying

AM∂MΦ = 0, AM(L − 1)M
N = 0. (3.9)

Under the finite generalized diffeomorphism (3.1), the gauge connection must transform as

AM −→ A′ M =ANFN
M + dxN(L − F)N

M, (3.10)

such that the gauged differential one-forms are covariant,

DxM −→ D′x′ M = DxNFN
M. (3.11)

Furthermore, thanks to the following identities which derive from the section condition [51] (see
also [44]),(

1 − L̄−1)L = 1 − L̄−1,

L − F = 1

2
(L + 1)

(
1 − L̄−1)L = 1

2
(L + 1)

(
1 − L̄−1),

F L̄ − 1 = 1

2
(L − 1)(1 + L̄),

∂AΦ = LA
B∂ ′

BΦ = FA
B∂ ′

BΦ,

(1 − L̄)A
B∂BΦ = (

1 − L̄−1)
A

B∂BΦ = 0, (3.12)

the gauge connection remains still derivative-index-valued after the transformation (3.10). In
other words, the derivative-index-valuedness of the connection is preserved under generalized
diffeomorphisms,

A′ M∂ ′
MΦ =AM∂MΦ = 0. (3.13)

With the (passive) tensorial transformation rule (3.1),

HMN −→ H′
MN = F̄M

KF̄N
LHKL, (3.14)

we can now ensure the invariance of the generalized metric under generalized diffeomorphisms,

HMNDxM ⊗ DxN =H′
MND′x′ M ⊗ D′x′N. (3.15)

On the other hand, under the coordinate gauge symmetry (3.5), the gauge connection transforms
precisely the same way as the one-form, dxM ,

dxM −→ dxM
s = dxM + sd

(
φ∂Mϕ

)
,

AM −→ AM
s =AM + sd

(
φ∂Mϕ

)
, (3.16)

such that it preserves the derivative-index-valuedness. The gauged differential one-forms are then
simply invariant,

DxM = Dsx
M
s . (3.17)
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4. Completely covariant string action

We pull back the gauged differential one-forms (3.8) to a string world-sheet with coordinates,
σ i , i = 0,1, and promote the doubled target spacetime coordinates and the gauge connection to
the world-sheet fields, XM(σ) and AM

i (σ ). That is, σ i denotes a coordinate on the world-sheet,
Σ , and XM are the components of X : Σ → RD+D so that

DXM = dσ iDiX
M = dσ i

(
∂iX

M −AM
i

)
. (4.1)

The string action we construct in this work is then

S = 1

4πα′

ˆ

Σ

d2σ L,

L = −1

2

√−hhijDiX
MDjX

NHMN(X) − εijDiX
MAjM. (4.2)

Here hij corresponds to the usual auxiliary world-sheet metric which can raise or lower the
world-sheet coordinate indices, i, j . The action describes a string propagating in a doubled yet
gauged spacetime with an arbitrarily given generalized metric, HAB(X). Apart from the section
condition, the generalized metric only needs to satisfy the two defining properties,

HAB =HBA, HA
BHB

C = δA
C. (4.3)

Otherwise it is quite arbitrary. The string tension in the doubled spacetime is halved, i.e. (4πα′)−1

instead of (2πα′)−1 as stressed in [8]. It may recover the standard value, (2πα′)−1, after reduc-
tion to an undoubled formalism, cf. (5.6). In fact, as we see in the next section, cf. (5.8), at least
for “non-degenerate” cases of the generalized metric, the above doubled string action precisely
reduces to the standard undoubled string action with the right number of degrees of freedom.
While we reserve Section 5 for the exposition of the reductions to undoubled formalisms, in the
remaining of the current section we focus on the covariant properties of the doubled action.

The Lagrangian is manifestly symmetric with respect to the O(D,D) T-duality and the world-
sheet diffeomorphisms. Furthermore, from (3.9), (3.12) and (3.17), up to total derivatives it is
invariant under the coordinate gauge symmetry as

εijDsiX
M
s AsjM = εijDiX

M
[
AjM + s∂jX

N∂N(φ∂Mϕ)
]

= εijDiX
MAjM + sεij ∂iX

M∂jX
N∂N(φ∂Mϕ)

= εijDiX
MAjM + ∂j

[
sεij ∂iX

M(φ∂Mϕ)
]

= εijDiX
MAjM − ∂i

(
sεij φ∂jϕ

)
, (4.4)

and also invariant under the generalized diffeomorphisms as

εijD′
iX

′ MA′
jM = εijDiX

LFL
M

[
F̄M

NAjN + (L̄ − F̄ )M
N∂jXN

]
= εijDiX

MAjM + εijDiX
M(F L̄ − 1)M

N∂jXN

= εijDiX
MAjM + 1

2
εij ∂iX

M
[
(L − 1)(1 + L̄)

]
M

N∂jXN

= εijDiX
MAjM + 1

2
εij ∂iX

M∂jX
N

(
LJ −JLt + LJLt −J

)
[MN]

= εijDiX
MAjM + 1

εij ∂iX
M∂jX

N
(
LJ −JLt

)

2 [MN]
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= εijDiX
MAjM + εij ∂iX

MLM
N∂jXN

= εijDiX
MAjM + εij ∂iX

′N∂jXN

= εijDiX
MAjM + ∂i

(
εijX′N∂jXN

)
. (4.5)

Generically, under arbitrary variations of all the fields, the Lagrangian transforms as

δL = −1

2

√−hδhij

(
DiX

MDjX
N − 1

2
hijDkX

MDkXN

)
HMN

+ δXL

[
∂i

(√−hDiXMHML − εijDjXL

) − 1

2

√−hDiX
MDiXN∂LHMN

]
+ δAiL

[√−hHL
MDiXM + εij ∂jX

L
]

− ∂i

[
δXL

(√−hDiXMHLM + εijAjL

)]
, (4.6)

where the second line can be rewritten in an alternative manner,

δXL

[
∂i

(√−hDiXMHML − εijDjXL

) − 1

2

√−hDiX
MDiXN∂LHMN

]

= δXL

[
HLM∂i

(√−hDiXM
) + √−hDiX

MDiXN

×
(

∂(MHN)L − 1

2
∂LHMN

)
+ εij ∂iAjL

]
. (4.7)

Every line in (4.6) then corresponds to the equation of motion for each field as follows.

• For the world-sheet metric, hij , we have the Virasoro constraints,(
DiX

MDjX
N − 1

2
hijDkX

MDkXN

)
HMN = 0. (4.8)

• For the gauge connection, AiM , since it is not arbitrary but derivative-index-valued, from

AM
i δAjM = 0, δAM

i ∂MΦ = 0, (4.9)

the equation of motion amounts to

δAiM

(
HM

NDiXN + 1√−h
εijDjX

M

)
= 0. (4.10)

That is to say, the quantity inside the bracket should be derivative-index-valued too.
• For the dynamical field, XL, from (B.1),

1√−h
∂i

(√−hDiXMHML

) − 2ΓLMN(PDiX)M
(
P̄DiX

)N

+ 1√−h
εij ∂iAjL = 0, (4.11)

or equivalently from (4.7), (B.3),

1√−h
∂i

(√−hDiXN
) + 2ΓKLM

[
(PDiX)KP̄ LN + (P̄DiX)KP LN

]
DiXM

+ 1√ εij ∂iAjMHMN = 0. (4.12)
−h
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Here, with a pair of projectors,

PAB = 1

2
(J +H)AB, P̄AB = 1

2
(J −H)AB, (4.13)

we set

(PDiX)M = P M
NDiX

N, (P̄DiX)M = P̄ M
NDiX

N, (4.14)

and ΓLMN is the DFT analogy of the Christoffel connection [28],8

ΓCAB = 2(P ∂CP P̄ )[AB] + 2
(
P̄[ADP̄B]E − P[ADPB]E

)
∂DPEC

− 4

D − 1

(
P̄C[AP̄B]D + PC[APB]D

)(
∂Dd + (

P∂EP P̄
)
[ED]

)
. (4.15)

5. Reductions to undoubled formalisms

In this section, we consider reductions of the doubled formalism to undoubled formalisms
by solving the section condition (1.1), (1.2) explicitly: we require all the target spacetime fields,
including the generalized metric, to be independent of the dual coordinates,

∂Φ(ỹ, y)

∂ỹμ

= 0. (5.1)

As a consequence, the latter half of the components of the derivative-index-valued gauge con-
nection is trivial,9

AM = Aλ∂
Myλ = (Aμ, 0), (5.2)

and the gauged differential one-forms are explicitly (cf. [5,8]),

DiX
M = (

∂i Ỹμ − Aiμ, ∂iY
ν
)
. (5.3)

Now we turn to the parametrization of the generalized metric which must satisfy the defining
properties (4.3),

HAB =
(

Uμν Nμ
λ

(Nt )ρ
ν Sρλ

)
, HAB =HBA, HA

BHB
C = δA

C. (5.4)

With the fixing of the section by (5.1), (5.2) and (5.3), depending on whether the upper left
D × D block, i.e. Uμν , is degenerate or not, there are two classes of parametrizations. Each of
them requires separate analysis.

5.1. Non-degenerate case: Reduction to standard form

As emphasized in [25] and also recently discussed in [57], when the upper left D×D block of
the generalized metric, Uμν , is non-degenerate, the remaining parts are completely determined
by the non-degenerate symmetric matrix and one free anti-symmetric matrix which we may
identify with the usual Riemannian metric and the Kalb–Ramond B-field respectively,

8 See Appendix A for a concise review of the covariant derivatives in DFT.
9 Note the ordering of the ordinary and the dual coordinates in our convention, xM = (ỹμ, yν), ∂M = JMN∂N =

(∂μ, ∂̃ν ).
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HAB =
(

G−1 −G−1B

BG−1 G − BG−1B

)
, Gμν = Gνμ,

det(Gμν) = 0, Bμν = −Bνμ. (5.5)

With this ‘standard’ parametrization of the generalized metric, the doubled yet gauged sigma
model (4.2) reduces to an expression which is multiplied by the ‘correct’ value of the string
tension,

1

4πα′L ≡ 1

2πα′L
′, (5.6)

L′ = −1

2

√−hhij ∂iY
μ∂jY

νGμν(Y ) + 1

2
εij ∂iY

μ∂jY
νBμν(Y ) + 1

2
εij ∂i Ỹμ∂jY

μ

− 1

4

√−hhij (Ciμ − Aiμ)(Cjν − Ajν)G
μν(Y ). (5.7)

Here Ciμ denotes the on-shell value of the connection,

Ciμ = ∂i Ỹμ + ∂iY
λBλμ + 1√−h

εi
j ∂jY

λGλμ. (5.8)

It is also useful to note

DiX
MDjX

NHMN = ∂iY
μ∂jY

νGμν

+ (
DiỸμ + ∂iY

λBλμ

)(
Dj Ỹν + ∂jY

ρBρν

)
Gμν. (5.9)

Integrating out the connection, we may ignore the second line in (5.7). The remaining first line
then consists of the standard undoubled string Lagrangian without the dual coordinate fields, Ỹμ,
and a total derivative involving the dual fields,

∂i

(
1

2
εij Ỹμ∂jY

μ

)
= ∂j

(
1

2
εij Yμ∂i Ỹμ

)
. (5.10)

In fact, this total derivative is precisely the topological term introduced in [5,8] for the quantum
equivalence of a doubled sigma model to the usual formalism for world-sheets of arbitrary genus.
Our covariant action naturally reproduces it from the first principle of the ‘coordinate gauge
symmetry’: The topological term shares the same geometric origin as the world-sheet pull-back
of the B-field.

Furthermore, with DiỸμ = ∂i Ỹμ − Aiμ (5.3), the on-shell value of the connection (5.8) reads

DiỸμ + ∂iY
λBλμ + 1√−h

εi
j ∂jY

λGλμ = 0. (5.11)

Since Gμν is non-degenerate, this relation implies

GμνDiỸν − (
G−1B

)μ
ν∂iY

ν + 1√−h
εi

j ∂jY
μ = 0, (5.12)

and hence in particular,

(
BG−1)

μ
νDiỸν − (

BG−1B
)
μν

∂iY
ν + 1√−h

εi
jBμν∂jY

ν = 0. (5.13)

In addition to this result, Eq. (5.11) also implies, after contraction with 1√ εk
i and using (B.6),
−h
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1√−h
εk

i
(
DiỸμ − Bμν∂iY

ν
) + Gμν∂kY

ν = 0. (5.14)

Finally, combining (5.13) and (5.14), we acquire

(
BG−1)

μ
νDiỸν + (

G − BG−1B
)
μν

∂iY
ν + 1√−h

εi
jDj Ỹμ = 0. (5.15)

In terms of the doubled coordinates and the generalized metric, the two equations, (5.11) and
(5.15), exactly amount to a self-duality relation in the doubled spacetime!, cf. (4.10),

HM
NDiX

N + 1√−h
εi

jDjX
M = 0. (5.16)

Thus, for the non-degenerate cases the full set of self-duality relations (5.16) follows from the
equation of motion (5.11) without being imposed by hand. On the other hand for degenerate
cases, as we see below and also expected from the generic expression (4.10), this is not true in
general: not all the components of the relation (5.16) are satisfied.

5.2. Degenerate case: Non-Riemannian geometry

We start with an exact solution of supergravity obtained in [78] which corresponds to a macro-
scopic fundamental string geometry with the SO(1,1) × SO(8) isometry. In string frame, the
background reads

ds2 = f −1(−dt2 + (
dx1)2) + (

dx2)2 + · · · + (
dx9)2

,

B = (
f −1 + c

)
dt ∧ dx1,

e−2φ = c′f, (5.17)

where f is a harmonic function,

f = 1 + Q

r6
, r2 =

9∑
a=2

(
xa

)2
, (5.18)

and c and c′ are arbitrary constants. In particular, the former corresponds to a ‘non-physical’
constant shift of the B-field which we introduce. The corresponding generalized metric is then

HMN =

⎛
⎜⎜⎜⎝

f ηαβ 0 −(1 + cf )Eα
δ 0

0 δab 0 0

(1 + cf )Eγ
β 0 −c(2 + cf )ηγ δ 0

0 0 0 δcd

⎞
⎟⎟⎟⎠ , (5.19)

and the DFT-dilaton is given by

e−2d = e−2φ√−g = c′. (5.20)

Here the Greek letters, α,β, γ, δ, . . . , denote the Minkowskian SO(1,1) vector indices subject
to the flat metric, ηαβ = diag(−+), and the roman letters, a, b, c, d, . . . , are for the Euclidean
SO(8) vector indices with the Kronecker-delta flat metric. As seen in (5.19), the generalized
metric then decomposes into sixteen blocks, (2 + 8 + 2 + 8) × (2 + 8 + 2 + 8). Further, with the
2 × 2 anti-symmetric Levi-Civita symbol, Eαβ = −Eβα , E01 = +1, we set
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Eα
β = ηαγ Eγβ = −Eβ

α = −Eβδη
δα, (5.21)

which satisfies

Eα
βEβ

γ = δα
γ . (5.22)

Now we perform an O(D,D) rotation exchanging (t, x1) and (t̃ , x̃1) planes,10

HAB −→ OA
COB

DHCD, OA
B =

⎛
⎜⎜⎜⎝

0 0 ημν 0

0 δa
b 0 0

ηλρ 0 0 0

0 0 0 δc
d

⎞
⎟⎟⎟⎠ , (5.23)

and obtain a T-dual background,

HMN =

⎛
⎜⎜⎜⎝

−c(2 + cf )ηαβ 0 (1 + cf )Eα
δ 0

0 δab 0 0

−(1 + cf )Eγ
β 0 f ηδγ 0

0 0 0 δcd

⎞
⎟⎟⎟⎠ , (5.24)

which corresponds to

ds2 = − 1

c(2 + cf )

(−dt2 + (
dx1)2) + (

dx2)2 + · · · + (
dx9)2

,

B = 1 + cf

c(2 + cf )
dt ∧ dx1,

e−2φ = c′c(2 + cf ). (5.25)

Clearly, as long as c = 0, the Riemannian metric is non-degenerate and well-defined. The corre-
sponding doubled yet gauged sigma model then can be readily read off from the results above,
(5.5), (5.7). On the other hand, when we take the limit, c → 0, the Riemannian metric becomes
everywhere singular.11 But, the corresponding generalized metric is perfectly smooth and re-
duces in the limit to

HMN =
⎛
⎜⎝

0 0 Eα
δ 0

0 δab 0 0
−Eγ

β 0 f ηδγ 0
0 0 0 δcd

⎞
⎟⎠ . (5.26)

A remarkable fact is then that, despite the “Riemannian” singularity, the doubled yet gauged
sigma model (4.2) can describe a string propagating in such a background well, explicitly through

1

4πα′L ≡ 1

2πα′L
′′, (5.27)

L′′ = −1

4

√−hhij ∂iY
α∂jY

βηαβf (Y ) − 1

2

√−hhij ∂i Ỹα∂jY
βEα

β

+ 1

2

√−hAiα

(
Eα

βhij ∂jY
β + 1√−h

εij ∂jY
α

)

10 For discussion on T-duality along the temporal direction, see e.g. [79].
11 Nevertheless we merely note that the combination, e−2φgμν , is finite. See also [68] for other examples of singular
metrics.
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− 1

2

√−hhij ∂iY
a∂jYa + 1

2
εij ∂i Ỹa∂jY

a

− 1

4

√−hhij

(
∂i Ỹa + 1√−h

εi
k∂kYa − Aia

)(
∂j Ỹ

a + 1√−h
εj

l∂lY
a − Aj

a

)

= −1

4

√−hhij ∂iY
α∂jY

βηαβf (Y ) − 1

2

√−hhij ∂iY
a∂jYa + 1

2
εij ∂i Ỹμ∂jY

μ

+ 1

2

√−h(Aiα − ∂i Ỹα)

(
Eα

βhij ∂jY
β + 1√−h

εij ∂jY
α

)

− 1

4

√−hhij

(
∂i Ỹa + 1√−h

εi
k∂kYa − Aia

)(
∂j Ỹ

a + 1√−h
εj

l∂lY
a − Aj

a

)
.

(5.28)

We note that, while the SO(8) sector of {Ya, Ỹa,Aia} agrees with the non-degenerate re-
sult (5.7) having the flat Euclidean metric, δab , and the vanishing B-field, the SO(1,1) sector of
{Yα, Ỹα,Aiα} takes a novel exotic form. In particular, the gauge field components are quadratic
for the non-degenerate SO(8) sector, whereas they are linear for the degenerate SO(1,1) sector.

Integrating out all the gauge fields, the doubled yet gauged sigma model reduces to

1

2πα′

[
−1

4

√−hhij ∂iY
α∂jY

βηαβf (Y ) − 1

2

√−hhij ∂iY
a∂jYa + 1

2
εij ∂i Ỹμ∂jY

μ

]
, (5.29)

where now the two of the ‘ordinary’ coordinate fields must satisfy a self-duality constraint,

∂iY
α + 1√−h

εi
jEα

β∂jY
β = 0. (5.30)

This is in contrast to the non-degenerate SO(8) sector of which the ordinary and the dual coor-
dinate fields are, like (5.11), related by a different type of a self-duality relation,

DiỸa + 1√−h
εi

j ∂jYa = 0 ⇐⇒ ∂iYa + 1√−h
εi

jDj Ỹa = 0. (5.31)

To summarize, even for the degenerate sector for which the Riemannian metric is ill-defined,
there exists a sigma model type Lagrangian description involving a self-duality constraint.

In order to illustrate this feature in a more general setup, let us consider an extreme case of
the degeneracy where the upper left D × D block of a generalized metric vanishes itself,

HAB =
(

0 Nμ
λ

(Nt )ρ
ν Sρλ

)
, N2 = 1, S = St , SN = −(SN)t . (5.32)

In this background, the doubled yet gauged sigma model reduces to

1

4πα′L ≡ 1

2πα′

[
−1

4

√−hhij ∂iY
μ∂jY

νSμν(Y ) + 1

2
εij ∂i Ỹμ∂jY

μ

+ 1

2

√−h(Aiμ − ∂i Ỹμ)

(
Nμ

νh
ij ∂jY

ν + 1√−h
εij ∂jY

μ

)]
. (5.33)

Integrating out the gauge field which is linear in the Lagrangian, we end up with the first line
which consists of the topological term and a usual sigma model kinetic term for the ordinary
coordinate fields with the halved tension. In addition, the ordinary coordinate fields must satisfy
a self-dual relation,
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∂iY
μ + 1√−h

εi
jNμ

ν∂jY
ν = 0. (5.34)

These agree with the SO(1,1) sector of the above example, (5.29), (5.30).
Especially for the trivial case of Sρλ = 0, the resulting reduced Lagrangian is purely topolog-

ical,

1

4πα′L ≡ 1

4πα′ ε
ij ∂i Ỹμ∂jY

μ. (5.35)

6. Summary and comments

We summarize the main results with comments.

• The coordinate gauge symmetry (2.1) is equivalent to the section condition, both (1.1) and
(1.2).

• The coordinate gauge symmetry implies that spacetime is doubled yet gauged.
• Gauged differential one-forms for the doubled coordinates, DxM = dxM − AM (3.8) are

fully covariant under the generalized diffeomorphisms and the coordinate gauge symmetry.
In particular, the gauge connection, AM , is derivative-index-valued (3.9).

• The completely covariant Lagrangian description of a string propagating in the doubled yet
gauged spacetime is given by (4.2), i.e.

1

4πα′L = 1

4πα′

[
−1

2

√−hhijDiX
MDjX

NHMN(X) − εijDiX
MAjM

]
. (6.1)

• For non-degenerate cases, the covariant Lagrangian reduces to (5.7), i.e.

1

2πα′L
′ = 1

2πα′

[
−1

2

√−hhij ∂iY
μ∂jY

νGμν(Y )

+ 1

2
εij ∂iY

μ∂jY
νBμν(Y ) + 1

2
εij ∂i Ỹμ∂jY

μ

− 1

4

√−hhij (Ciμ − Aiμ)(Cjν − Ajν)G
μν(Y )

]
. (6.2)

In particular, a self-duality condition (5.16) relating the ordinary and the dual coordinate
fields follows from the equations of motion,

DiX
M + 1√−h

εi
jDjX

NHN
M = 0. (6.3)

• Even for degenerate cases where the Riemannian metric becomes everywhere singular, it
is still possible to have a Lagrangian description of a string propagating in such back-
grounds (5.28), (5.33). Again a self-duality condition is implied by the equation of motion.
However, unlike the non-degenerate cases, it is to be imposed only on the ordinary coordi-
nate fields, (5.30), (5.34).

• In both the non-degenerate and the degenerate cases, (5.10), (5.29), (5.33), there appears a
topological term bi-linear in ordinary and dual coordinates,

1
εij ∂i Ỹμ∂jY

μ, (6.4)

4πα′
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which was previously introduced by hand in [5,8]. In our formalism, this term naturally
arises and shares the same geometric origin, i.e. the second term in (6.1), as the world-sheet
pull-back of the B-field in (6.2).

• Especially for open string, the topological term leads to a world-sheet boundary integral,

− 1

4πα′

ffi

∂Σ

dσ i Ỹμ∂iY
μ, (6.5)

which resembles the conventional coupling of the string to a (Born–Infeld) gauge poten-
tial,

fl
dσ i Âμ∂iY

μ, and hints at an intriguing relation between the dual coordinate and the
(Born–Infeld) gauge potential,

Ỹμ|∂Σ ⇐⇒ −4πα′Âμ. (6.6)

In fact, for a derivative-index-valued vector, VM = φ∂Mϕ (3.6), which generates the coor-
dinate gauge symmetry, the generalized Lie derivative (1.4) of the generalized metric, HAB

(5.5), implies (see (2.9) of [51]),

δGμν = 0, δBμν = ∂μ(φ∂νϕ) − ∂ν(φ∂μϕ),

δỸμ = φ∂μϕ, δ(Bμν − 2∂[μỸν]) = 0, (6.7)

of which the last would be, assuming the identification (6.6), consistent with the gauge in-
variant combination of the B-field and the field strength, B + 4πα′F̂ .

• Our results are classical. Quantization remains as a future work, especially for the degenerate
non-Riemannian backgrounds.

• The beta-functional world-sheet derivation of the DFT equations of motion, one-loop [30,
37,80] and beyond for the higher order α′-corrections [55,57], may be now worth while to
revisit equipped with the full covariance.

• Thorough investigation of the degenerate geometry is desirable within the frameworks of
both the doubled yet gauged sigma model and the maximally supersymmetric double field
theory [46]. It seems natural to expect such a background to provide an alternative or en-
riched scheme for compactification.

• Understanding of the coordinate gauge symmetry from the Hamiltonian view point for a
constrained system deserves a separate study [81].

• Supersymmetrization as well as generalization to a generic p-brane are also of interest,
e.g. using the methods of [4,8,82].
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Appendix A. Covariant derivatives in DFT

Here we review the covariant derivatives in DFT.
With a pair of symmetric projectors,

PAB = PBA = 1

2
(J +H)AB, P̄AB = P̄BA = 1

2
(J −H)AB, (A.1)

satisfying

PA
BPB

C = PA
C, P̄A

BP̄B
C = P̄A

C, PA
BP̄B

C = 0, (A.2)

the DFT analogy of the Christoffel connection reads [28]

ΓCAB = 2(P ∂CP P̄ )[AB] + 2
(
P̄[ADP̄B]E − P[ADPB]E

)
∂DPEC

− 4

D − 1

(
P̄C[AP̄B]D + PC[APB]D

)(
∂Dd + (

P∂EP P̄
)
[ED]

)
, (A.3)

which defines the semi-covariant derivative [25,28],

∇CTA1A2···An := ∂CTωA1A2···An
− ωΓ B

BCTA1A2···An

+
n∑

i=1

ΓCAi

BTA1···Ai−1BAi+1···An. (A.4)

The connection is the unique solution to the following requirements.

• The semi-covariant derivative is compatible with the O(D,D) metric,

∇AJBC = 0 ⇐⇒ ΓCAB + ΓCBA = 0. (A.5)

• The semi-covariant derivative annihilates the whole NS-NS sector, i.e. the DFT-dilaton12 and
the pair of projectors (A.1),

∇Ad = 0, ∇APBC = 0, ∇AP̄BC = 0. (A.6)

• The cyclic sum of the connection vanishes,

ΓABC + ΓCAB + ΓBCA = 0. (A.7)

• Lastly, the connection belongs to the kernels of rank-six projectors,

PCAB
DEF ΓDEF = 0, P̄CAB

DEF ΓDEF = 0, (A.8)

where

PCAB
DEF = PC

DP[A[EPB]F ] + 2

D − 1
PC[APB][EP F ]D,

P̄CAB
DEF = P̄C

DP̄[A[EP̄B]F ] + 2

D − 1
P̄C[AP̄B][EP̄ F ]D. (A.9)

12 Since e−2d is a scalar density with weight one, ∇Ad = − 1 e2d∇Ae−2d = ∂Ad + 1 Γ B
BA .
2 2
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In particular, the two symmetric properties, (A.5) and (A.7), enable us to replace the ordinary
derivatives in the definition of the generalized Lie derivative (1.4) by the semi-covariant deriva-
tives (A.4),

L̂V TA1···An = V B∇BTA1···An + ω∇BV BTA1···An

+
n∑

i=1

(∇Ai
VB − ∇BVAi

)TA1···Ai−1
B

Ai+1···An. (A.10)

The rank-six projectors satisfy the projection property,

PCAB
DEFPDEF

GHI =PCAB
GHI , P̄CAB

DEF P̄DEF
GHI = P̄CAB

GHI . (A.11)

They are also symmetric and traceless,

PCABDEF =PDEFCAB =PC[AB]D[EF ], P̄CABDEF = P̄DEFCAB = P̄C[AB]D[EF ],
PA

ABDEF = 0, P ABPABCDEF = 0,

P̄A
ABDEF = 0, P̄ ABP̄ABCDEF = 0. (A.12)

Now, under the infinitesimal DFT-coordinate transformation set by the generalized Lie derivative,
the semi-covariant derivative transforms as

δ(∇CTA1···An) = L̂V (∇CTA1···An)

+
n∑

i=1

2(P+P̄)CAi

BDEF ∂D∂[EVF ]TA1···Ai−1BAi+1···An. (A.13)

The sum on the right hand side corresponds to a potentially anomalous part against the full covari-
ance. Hence, in general, the semi-covariant derivative is not necessarily covariant.13 However,
since the anomalous terms are projected by the rank-six projectors which satisfy the properties in
(A.12), it is in fact possible to eliminate them. Combined with the projectors, the semi-covariant
derivative – as the name indicates – can be converted into various fully covariant derivatives [28]:

PC
DP̄A1

B1 P̄A2
B2 · · · P̄An

Bn∇DTB1B2···Bn,

P̄C
DPA1

B1PA2
B2 · · ·PAn

Bn∇DTB1B2···Bn,

P ABP̄C1
D1 P̄C2

D2 · · · P̄Cn

Dn∇ATBD1D2···Dn,

P̄ ABPC1
D1PC2

D2 · · ·PCn

Dn∇ATBD1D2···Dn,

P ABP̄C1
D1 P̄C2

D2 · · · P̄Cn

Dn∇A∇BTD1D2···Dn,

P̄ ABPC1
D1PC2

D2 · · ·PCn

Dn∇A∇BTD1D2···Dn. (A.14)

Appendix B. Useful formulae

For the DFT generalized diffeomorphism connection (A.3), we have

13 However, (A.5) and (A.6) are exceptions as the anomalous terms vanish identically, thanks to (A.12).
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ΓLJKP J
MP̄ K

N = (P ∂LP P̄ )MN,

ΓLJKP̄ J
MP K

N = −(P̄ ∂LPP )MN,

∂LHMN = 4ΓLJKP J
(MP̄ K

N),

HL
K∂KHMN = 4

(
ΓIJKP I

LP J
(MP̄ K

N) + ΓIJKP̄ I
LP̄ J

(MP K
N)

)
, (B.1)

such that

HM
K∂NHKL +HN

K∂MHKL = −HLK∂NHK
M −HLK∂MHK

N

= 4
(
ΓMJKP J [NP̄ K

L] + ΓNJKP J [MP̄ K
L]

)
, (B.2)

and

HL
K∂KHMN +HM

K∂NHKL +HN
K∂MHKL

= −4
(
ΓJK(MP J

N)P̄
K

L + ΓJK(MP̄ J
N)P

K
L

)
. (B.3)

It is also worth while to note

(PU)M∇M(P̄V )N + (P̄U)M∇M(PV )N

= 1

2
UM

[
∂MV N + 2PM

KΓK
N

L(P̄V )L + 2P̄M
KΓK

N
L(PV )L

]
− 1

2
(HU)M∂M(HV )N . (B.4)

On the string world-sheet we have

εi
j εk

l = (−h)
(
δi

lδk
j − hikh

jl
)
, εij ε

kl = (−h)
(
δi

lδj
k − δi

kδj
l
)
. (B.5)

In particular,(
1√−h

εi
j

)(
1√−h

εj
k

)
= δi

k. (B.6)
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