Generators of matrix algebras in dimension 2 and 3

Helmer Aslaksen ${ }^{\text {a,* }}$, Arne B. Sletsjøe ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics, National University of Singapore, Singapore 117543, Singapore
${ }^{\text {b }}$ Department of Mathematics, University of Oslo, P.O. Box 1053, Blindern, 0316 Oslo, Norway

Received 14 June 1995; accepted 8 May 2006
Available online 8 October 2008
Submitted by T.J. Laffey

Abstract

Let K be an algebraically closed field of characteristic zero and consider a set of 2×2 or 3×3 matrices. Using a theorem of Shemesh, we give conditions for when the matrices in the set generate the full matrix algebra.

© 2008 Published by Elsevier Inc.

Keywords: Generator; Matrix; Algebra

1. Introduction

Let K be an algebraically closed field of characteristic zero, and let $M_{n}=M_{n}(K)$ be the algebra of $n \times n$ matrices over K. Given a set $S=\left\{A_{1}, \ldots, A_{p}\right\}$ of $n \times n$ matrices, we would like to have conditions for when the A_{i} generate the algebra M_{n}. In other words, determine whether every matrix in M_{n} can be written in the form $P\left(A_{1}, \ldots, A_{p}\right)$, where P is a noncommutative polynomial. (We identify scalars with scalar matrices so the constant polynomials give the scalar matrices.) The case $n=1$ is of course trivial, and when $p=1$, the single matrix A_{1} generates a commutative subalgebra. We therefore assume that $n, p \geqslant 2$. This question has been studied by many authors, see for example the extensive bibliography in [2]. We will give some results in the case of $n=2$ or 3 . We would like to thank the referees and the editor for making nontrivial improvements to the paper.

[^0]
2. General observations

Let \mathscr{A} be the algebra generated by S. If we could show that the dimension of \mathscr{A} as a vector space is n^{2}, it would follow that $\mathscr{A}=M_{n}$. This can sometimes be done when we know a linear spanning set $\mathscr{B}=\left\{B_{1}, \ldots, B_{q}\right\}$ of \mathscr{A}. Let M be the $n^{2} \times q$ matrix obtained by writing the matrices in \mathscr{B} as column vectors. We would like to show that rank $M=n^{2}$. Since M is an $n^{2} \times n^{2}$ matrix and $\operatorname{rank} M=\operatorname{rank}\left(M M^{*}\right)$, it suffices to show that $\operatorname{det}\left(M M^{*}\right) \neq 0$. Unfortunately, the size of \mathscr{B} may be big [4]. In this paper we will combine this method with results of Shemesh and Spencer and Rivlin to get some simple results for $n=2$ or 3 .

The starting point is the following well-known consequence of Burnside's Theorem.

Lemma 1. Let $\left\{A_{1}, \ldots, A_{p}\right\}$ be a set of matrices in M_{n} where $n=2$ or 3 . The A_{i} 's generate M_{n} if and only if they do not have a common eigenvector or a common left-eigenvector.

We can therefore use the following theorem due to Shemesh [5].

Theorem 2. Two $n \times n$ matrices, A and B, have a common eigenvector if and only if

$$
\sum_{k, l=1}^{n-1}\left[A^{k}, B^{l}\right]^{*}\left[A^{k}, B^{l}\right]
$$

is singular.
Adding scalar matrices to the A_{i} 's does not change the subalgebra they generate, so we sometimes assume that our matrices lie in $\mathfrak{s l n}=\left\{M \in M_{n} \mid \operatorname{tr} M=0\right\}$. We also sometimes identify matrices in M_{n} with vectors in $K^{n^{2}}$, and if $N_{1}, \ldots, N_{n^{2}} \in M_{n}$, then $\operatorname{det}\left(N_{1}, \ldots, N_{n^{2}}\right)$ denotes the determinant of the $n^{2} \times n^{2}$ matrix whose j th column is N_{j}, written as $\left(N_{j 1}, \ldots, N_{j n}\right)^{t}$, where $N_{j k}$ is the k th row of N_{j} for $k=1,2, \ldots, n$. We write the scalar matrix $a I$ as a. When we say that a set of matrices generate M_{n}, we are talking about M_{n} as an algebra, while when we say that a set of matrices form a basis of M_{n}, we are talking about M_{n} as a vector space.

3. The 2×2 case

The following theorem is well-known, but we include a proof since it illustrated a technique we will use in the 3×3 case. Notice that the proof gives us an explicit basis for M_{2}.

Theorem 3. Let $A, B \in M_{2} . A$ and B generate M_{2} if and only if $[A, B]$ is invertible.
Proof. A direct computation shows that

$$
\operatorname{det}(I, A, B, A B)=-\operatorname{det}(I, A, B, B A)=\operatorname{det}[A, B] .
$$

Hence

$$
\begin{equation*}
\operatorname{det}(I, A, B,[A, B])=2 \operatorname{det}[A, B] . \tag{1}
\end{equation*}
$$

But if $I, A, B,[A, B]$ are linearly independent, then the dimension of \mathscr{A} as a vector space is 4, so A and B generate M_{2}.

We call $[M, N, P]=[M,[N, P]]$ a double commutator. The characteristic polynomial of A can be written as

$$
x^{2}-x \operatorname{tr} A+\left((\operatorname{tr} A)^{2}-\operatorname{tr} A^{2}\right) / 2
$$

It follows that the discriminant of the characteristic polynomial of A can be written as

$$
\operatorname{disc}(A)=2 \operatorname{tr} A^{2}-(\operatorname{tr} A)^{2}
$$

Lemma 4. Let $A, B, C \in M_{2}$ and suppose that no two of them generate M_{2}. Then A, B, C generate M_{2} if and only if the double commutator $[A, B, C]=[A,[B, C]]$ is invertible.

Proof. A direct computation shows that

$$
\begin{equation*}
\operatorname{det}(I, A, B, C)^{2}=-\operatorname{det}[A,[B, C]]-\operatorname{disc}(A) \operatorname{det}[B, C] . \tag{2}
\end{equation*}
$$

But if I, A, B, C are linearly independent, then A, B and C generate M_{2}.
Notice that the above proof gives us an explicit basis for M_{2}. We can now give a complete solution for the case $n=2$.

Theorem 5. The matrices $A_{1}, \ldots, A_{p} \in M_{2}$ generate M_{2} if and only if at least one of the commutators $\left[A_{i}, A_{j}\right]$ or double commutators $\left[A_{i}, A_{j}, A_{k}\right]=\left[A_{i},\left[A_{j}, A_{k}\right]\right]$ is invertible.

Proof. If $p>4$, the matrices are linearly dependent, so we can assume that $p \leqslant 4$. Suppose that $A_{1}, A_{2}, A_{3}, A_{4}$ generate M_{2}, but that no proper subset of them generates M_{2}. Then the four matrices are linearly independent, and we can write the identity I as a linear combination of them. If the coefficient of A_{4} in this expression is nonzero, then A_{1}, A_{2}, A_{3}, I span and therefore generate M_{2}, so A_{1}, A_{2}, A_{3} generate M_{2}. Thus, if A_{1}, \ldots, A_{p} generate M_{2}, we can always find a subset of three of these matrices that generate M_{2}. The result now follows from Theorem 3 and Lemma 4.

4. Two 3×3 matrices

In the case of two 3×3 matrices, we have the following well-known theorem.

Theorem 6. Let $A, B \in M_{3}$. If $[A, B]$ is invertible, then A and B generate M_{3}.
For $M \in M_{3}$, we define $H(M)$ to be the linear term in the characteristic polynomial of M. Hence

$$
H(M)=\left((\operatorname{tr} M)^{2}-\operatorname{tr} M^{2}\right) / 2
$$

which is equal to the sum of the three principal minors of degree two of M. Notice that $H(M)$ is invariant under conjugation, and that if $[A, B]$ is singular, then $[A, B]$ is nilpotent if and only if $H([A, B])=0$.

The following theorem shows that if $[A, B]$ is invertible and $H([A, B]) \neq 0$, then we can give an explicit basis for M_{3}.

Theorem 7. Let $A, B \in M_{3}$. Then

$$
\begin{equation*}
\operatorname{det}\left(I, A, A^{2}, B, B^{2}, A B, B A,[A,[A, B]],[B,[B, A]]\right)=9 \operatorname{det}[A, B] H([A, B]), \tag{3}
\end{equation*}
$$

so if $\operatorname{det}[A, B] \neq 0$ and $H([A, B]) \neq 0$, then

$$
\left\{I, A, A^{2}, B, B^{2}, A B, B A,[A,[A, B]],[B,[B, A]]\right\}
$$

form a basis for M_{3}.
The proof of (3) is by direct computation. Notice that this can be thought of as a generalization of (1) and (2).

We can also use Shemesh's Theorem to characterize pairs of generators for M_{3}.

Theorem 8. The two 3×3 matrices A and B generate M_{3} if and only if both

$$
\sum_{k, l=1}^{2}\left[A^{k}, B^{l}\right]^{*}\left[A^{k}, B^{l}\right] \quad \text { and } \quad \sum_{k, l=1}^{2}\left[A^{k}, B^{l}\right]\left[A^{k}, B^{l}\right]^{*}
$$

are invertible.

5. Three or more 3×3 matrices

We start with the following theorem due to Laffey [1].

Theorem 9. Let \mathscr{S} be a set of generators for M_{3}. If \mathscr{S} has more than four elements, then M_{3} can be generated by a proper subset of \mathscr{S}.

It is therefore sufficient to consider the cases $p=3$ or 4 . Following the approach outlined earlier, we start by finding a linear spanning set. Using the polarized Cayley-Hamilton Theorem, Spencer and Rivlin $[6,7]$ deduced the following theorem.

Theorem 10. Let $A, B, C \in M_{3}$. Define

$$
\begin{aligned}
S(A) & =\left\{A, A^{2}\right\} \\
T(A, B) & =\left\{A B, A^{2} B, A B^{2}, A^{2} B^{2}, A^{2} B A, A^{2} B^{2} A\right\} \\
S\left(A_{1}, A_{2}\right) & =T\left(A_{1}, A_{2}\right) \cup T\left(A_{2}, A_{1}\right) \\
T(A, B, C) & =\left\{A B C, A^{2} B C, B A^{2} C, B C A^{2}, A^{2} B^{2} C, C A^{2} B^{2}, A B C A^{2}\right\} \\
S\left(A_{1}, A_{2}, A_{3}\right) & =\bigcup_{\sigma \in S_{3}} T\left(A_{\sigma}(1), A_{\sigma}(2), A_{\sigma}(3)\right) .
\end{aligned}
$$

1. The subalgebra generated by A and B is spanned by $I \cup S(A) \cup S(B) \cup S(A, B)$.
2. The subalgebra generated by A, B and C is spanned by
$I \cup S(A) \cup S(B) \cup S(A, B) \cup S(A, B, C)$.

These spanning sets are not optimal. They include words of length 5. Paz [3] has proved that M_{n} can be generated by words of length $\left\lceil\left(n^{2}+2\right) / 3\right\rceil$. For M_{3} this gives words of length 4 . The general bound has been improved by Pappacena [4].

We next give a version of Shemesh's Theorem for three 3×3 matrices.

Theorem 11. The matrices $A, B, C \in M_{3}$ have a common eigenvector if and only the matrix

$$
\begin{aligned}
M(A, B, C)= & \sum_{\substack{M \in S(A), N \in S(B)}}[M, N]^{*}[M, N]+\sum_{\substack{M \in S(A), N \in S(C)}}[M, N]^{*}[M, N] \\
& +\sum_{\substack{M \in S(B), N \in S(C)}}[M, N]^{*}[M, N]+\sum_{\substack{M \in S(A, B), N \in S(C)}}[M, N]^{*}[M, N]
\end{aligned}
$$

is singular.
Proof. Let \mathscr{A} be the algebra generated by A, B, C. Set

$$
V=\bigcap_{\substack{M \in S(A), N \in S(B)}} \operatorname{ker}[M, N] \bigcap_{\substack{M \in S(A), N \in S(C)}} \operatorname{ker}[M, N] \bigcap_{\substack{M \in S \in(B), N \in S(C)}} \operatorname{ker}[M, N] \bigcap_{\substack{M \in S(A, B), N \in S(C)}} \operatorname{ker}[M, N] .
$$

We claim that V is invariant under \mathscr{A}. Let $v \in V$ and consider $\mathscr{A} v$. We know from Theorem 10 that any element of \mathscr{A} is a linear combination of terms of the form

$$
p(A, B) C^{i} q(A, B) C^{j} r(A, B)
$$

with $p(A, B), q(A, B), r(A, B) \in I \cup S(A) \cup S(B) \cup S(A, B)$. Since

$$
v \in \operatorname{ker}[S(A, B), S(C)] \cap \operatorname{ker}[S(A), S(C)] \cap \operatorname{ker}[S(B), S(C)]
$$

we get

$$
\begin{aligned}
& p(A, B) C^{i} q(A, B) C^{j} r(A, B) v=p(A, B) C^{i} q(A, B) r(A, B) C^{j} v \\
& \quad=p(A, B) C^{i+j} q(A, B) r(A, B) v \\
& \quad=p(A, B) q(A, B) r(A, B) C^{i+j} v=C^{i+j} p(A, B) q(A, B) r(A, B) v .
\end{aligned}
$$

In the same way we use the fact that $v \in[S(A), S(B)]$ to sort the terms of the form $p(A, B) q(A, B) r(A, B) v$, so that we finally get

$$
\mathscr{A} v=\left\{\sum a_{i j k} C^{i} B^{j} A^{k} v \mid 0 \leqslant i, j, k \leqslant 2, a_{i j k} \in K\right\} .
$$

Using the above technique, it follows easily that $\mathscr{A} v \subset V$ and that V is \mathscr{A} invariant. Hence we can restrict \mathscr{A} to V, but since the elements of \mathscr{A} commute on V, they have a common eigenvector, and we can finish as in the proof of Theorem 2.

From this we deduce the following theorem.

Theorem 12. Let $A, B, C \in M_{3}$. Then A, B, C generate M_{3} if and only if both $M(A, B, C)$ and $M\left(A^{t}, B^{t}, C^{t}\right)$ are invertible.

For the case of four matrices, we can prove the following theorem.
Theorem 13. The matrices $A_{1}, A_{2}, A_{3}, A_{4} \in M_{3}$ have a common eigenvector if and only the matrix

$$
\begin{aligned}
M\left(A_{1}, A_{2}, A_{3}, A_{4}\right)= & \sum_{\substack{i, j=1, i<j}}^{4}\left(\sum_{\substack{M \in S\left(A_{i}\right), N \in S\left(A_{j}\right)}}[M, N]^{*}[M, N]\right) \\
& +\sum_{\substack{i, j=1, i<j}}^{3}\left(\sum_{\substack{M \in S\left(A_{i}, A_{j}\right), N \in S\left(A_{4}\right)}}[M, N]^{*}[M, N]\right)+\sum_{\substack{M \in S\left(A_{1}, A_{2}\right), N \in S\left(A_{3}\right)}}[M, N]^{*}[M, N] \\
& +\sum_{\substack{M \in S\left(A_{1}, A_{2}, A_{3}\right), N \in S\left(A_{4}\right)}}[M, N]^{*}[M, N] .
\end{aligned}
$$

is singular.
Proof. Similar to the proof of Theorem 11.
From this we deduce the following theorem.
Theorem 14. Let $A, B, C, D \in M_{3}$. Then A, B, C, D generate M_{3} if and only if both $M(A, B$, $C, D)$ and $M\left(A^{t}, B^{t}, C^{t}, D^{t}\right)$ are invertible.

References

[1] T.J. Laffey, Irredundant generating sets for matrix algebras, Linear Algebra Appl., 52 (1983) 457-478.
[2] T.J. Laffey, Simultaneous reduction of sets of matrices under similarity, Linear Algebra Appl. 84 (1986) 123-138.
[3] A. Paz, An application of the Cayley-Hamilton theorem to matrix polynomials in several variables, Linear and Multilinear Algebra 15 (1984) 161-170.
[4] C.J. Pappacena, An upper bound for the length of a finite-dimensional algebra, J. Algebra 197 (1997) 535-545.
[5] D. Shemesh, Common eigenvectors of two matrices, Linear Algebra Appl. 62 (1984) 11-18.
[6] A.J.M. Spencer, R.S. Rivlin, The theory of matrix polynomials and its application to the mechanics of isotropic continua, Arch. Rational Mech. Anal. 2 (1959) 309-336.
[7] A.J.M. Spencer, R.S. Rivlin, Further results in the theory of matrix polynomials, Arch. Rational Mech. Anal. 4 (1959) 214-230.

[^0]: * Corresponding author.

 E-mail addresses: aslaksen@ math.nus.sg (H. Aslaksen), arnebs@ math.uio.no (A.B. Sletsjøe). URLs: http://www.math.nus.edu.sg/aslaksen/ (H. Aslaksen), http://www.math.uio.no/arnebs/ (A.B. Sletsjøe).

