

Available online at www.sciencedirect.com

LINEAR ALGEBRA AND ITS APPLICATIONS

Linear Algebra and its Applications 430 (2009) 1-6

www.elsevier.com/locate/laa

Generators of matrix algebras in dimension 2 and 3

Helmer Aslaksen ^{a,*}, Arne B. Sletsjøe ^b

^a Department of Mathematics, National University of Singapore, Singapore 117543, Singapore
 ^b Department of Mathematics, University of Oslo, P.O. Box 1053, Blindern, 0316 Oslo, Norway

Received 14 June 1995; accepted 8 May 2006 Available online 8 October 2008 Submitted by T.J. Laffey

Abstract

Let *K* be an algebraically closed field of characteristic zero and consider a set of 2×2 or 3×3 matrices. Using a theorem of Shemesh, we give conditions for when the matrices in the set generate the full matrix algebra.

© 2008 Published by Elsevier Inc.

Keywords: Generator; Matrix; Algebra

1. Introduction

Let *K* be an algebraically closed field of characteristic zero, and let $M_n = M_n(K)$ be the algebra of $n \times n$ matrices over *K*. Given a set $S = \{A_1, \ldots, A_p\}$ of $n \times n$ matrices, we would like to have conditions for when the A_i generate the algebra M_n . In other words, determine whether every matrix in M_n can be written in the form $P(A_1, \ldots, A_p)$, where *P* is a noncommutative polynomial. (We identify scalars with scalar matrices so the constant polynomials give the scalar matrices.) The case n = 1 is of course trivial, and when p = 1, the single matrix A_1 generates a commutative subalgebra. We therefore assume that $n, p \ge 2$. This question has been studied by many authors, see for example the extensive bibliography in [2]. We will give some results in the case of n = 2 or 3. We would like to thank the referees and the editor for making nontrivial improvements to the paper.

0024-3795/\$ - see front matter 0 2008 Published by Elsevier Inc. doi:10.1016/j.laa.2006.05.022

^{*} Corresponding author.

E-mail addresses: aslaksen@math.nus.sg (H. Aslaksen), arnebs@math.uio.no (A.B. Sletsjøe). *URLs:* http://www.math.nus.edu.sg/aslaksen/ (H. Aslaksen), http://www.math.uio.no/arnebs/ (A.B. Sletsjøe).

2. General observations

Let \mathscr{A} be the algebra generated by S. If we could show that the dimension of \mathscr{A} as a vector space is n^2 , it would follow that $\mathscr{A} = M_n$. This can sometimes be done when we know a linear spanning set $\mathscr{B} = \{B_1, \ldots, B_q\}$ of \mathscr{A} . Let M be the $n^2 \times q$ matrix obtained by writing the matrices in \mathscr{B} as column vectors. We would like to show that rank $M = n^2$. Since M is an $n^2 \times n^2$ matrix and rank $M = \text{rank} (MM^*)$, it suffices to show that $\det(MM^*) \neq 0$. Unfortunately, the size of \mathscr{B} may be big [4]. In this paper we will combine this method with results of Shemesh and Spencer and Rivlin to get some simple results for n = 2 or 3.

The starting point is the following well-known consequence of Burnside's Theorem.

Lemma 1. Let $\{A_1, \ldots, A_p\}$ be a set of matrices in M_n where n = 2 or 3. The A_i 's generate M_n if and only if they do not have a common eigenvector or a common left-eigenvector.

We can therefore use the following theorem due to Shemesh [5].

Theorem 2. Two $n \times n$ matrices, A and B, have a common eigenvector if and only if

$$\sum_{k,l=1}^{n-1} [A^k, B^l]^* [A^k, B^l]$$

is singular.

Adding scalar matrices to the A_i 's does not change the subalgebra they generate, so we sometimes assume that our matrices lie in $\mathfrak{sl}_n = \{M \in M_n | \text{tr } M = 0\}$. We also sometimes identify matrices in M_n with vectors in K^{n^2} , and if $N_1, \ldots, N_{n^2} \in M_n$, then $\det(N_1, \ldots, N_{n^2})$ denotes the determinant of the $n^2 \times n^2$ matrix whose *j*th column is N_j , written as $(N_{j1}, \ldots, N_{jn})^t$, where N_{jk} is the *k*th row of N_j for $k = 1, 2, \ldots, n$. We write the scalar matrix *aI* as *a*. When we say that a set of matrices generate M_n , we are talking about M_n as an algebra, while when we say that a set of matrices form a basis of M_n , we are talking about M_n as a vector space.

3. The 2×2 case

The following theorem is well-known, but we include a proof since it illustrated a technique we will use in the 3×3 case. Notice that the proof gives us an explicit basis for M_2 .

Theorem 3. Let $A, B \in M_2$. A and B generate M_2 if and only if [A, B] is invertible.

Proof. A direct computation shows that

$$det(I, A, B, AB) = -det(I, A, B, BA) = det[A, B]$$

Hence

$$\det(I, A, B, [A, B]) = 2\det[A, B].$$

But if *I*, *A*, *B*, [*A*, *B*] are linearly independent, then the dimension of \mathscr{A} as a vector space is 4, so *A* and *B* generate M_2 . \Box

(1)

We call [M, N, P] = [M, [N, P]] a double commutator. The characteristic polynomial of A can be written as

 $x^{2} - x \operatorname{tr} A + ((\operatorname{tr} A)^{2} - \operatorname{tr} A^{2})/2.$

It follows that the discriminant of the characteristic polynomial of A can be written as

 $\operatorname{disc}(A) = 2\operatorname{tr} A^2 - (\operatorname{tr} A)^2.$

Lemma 4. Let $A, B, C \in M_2$ and suppose that no two of them generate M_2 . Then A, B, C generate M_2 if and only if the double commutator [A, B, C] = [A, [B, C]] is invertible.

Proof. A direct computation shows that

 $\det(I, A, B, C)^{2} = -\det[A, [B, C]] - \operatorname{disc}(A)\det[B, C].$ (2)

But if I, A, B, C are linearly independent, then A, B and C generate M_2 . \Box

Notice that the above proof gives us an explicit basis for M_2 . We can now give a complete solution for the case n = 2.

Theorem 5. The matrices $A_1, \ldots, A_p \in M_2$ generate M_2 if and only if at least one of the commutators $[A_i, A_j]$ or double commutators $[A_i, A_j, A_k] = [A_i, [A_j, A_k]]$ is invertible.

Proof. If p > 4, the matrices are linearly dependent, so we can assume that $p \le 4$. Suppose that A_1, A_2, A_3, A_4 generate M_2 , but that no proper subset of them generates M_2 . Then the four matrices are linearly independent, and we can write the identity I as a linear combination of them. If the coefficient of A_4 in this expression is nonzero, then A_1, A_2, A_3, I span and therefore generate M_2 , so A_1, A_2, A_3 generate M_2 . Thus, if A_1, \ldots, A_p generate M_2 , we can always find a subset of three of these matrices that generate M_2 . The result now follows from Theorem 3 and Lemma 4. \Box

4. Two 3 × 3 matrices

In the case of two 3×3 matrices, we have the following well-known theorem.

Theorem 6. Let $A, B \in M_3$. If [A, B] is invertible, then A and B generate M_3 .

For $M \in M_3$, we define H(M) to be the linear term in the characteristic polynomial of M. Hence

 $H(M) = ((\operatorname{tr} M)^2 - \operatorname{tr} M^2)/2,$

which is equal to the sum of the three principal minors of degree two of M. Notice that H(M) is invariant under conjugation, and that if [A, B] is singular, then [A, B] is nilpotent if and only if H([A, B]) = 0.

The following theorem shows that if [A, B] is invertible and $H([A, B]) \neq 0$, then we can give an explicit basis for M_3 .

Theorem 7. Let $A, B \in M_3$. Then

 $det(I, A, A^2, B, B^2, AB, BA, [A, [A, B]], [B, [B, A]]) = 9 det[A, B]H([A, B]),$ (3) so if det[A, B] $\neq 0$ and $H([A, B]) \neq 0$, then

$$\{I, A, A^2, B, B^2, AB, BA, [A, [A, B]], [B, [B, A]]\}$$

form a basis for M_3 .

The proof of (3) is by direct computation. Notice that this can be thought of as a generalization of (1) and (2).

We can also use Shemesh's Theorem to characterize pairs of generators for M_3 .

Theorem 8. The two 3×3 matrices A and B generate M_3 if and only if both

$$\sum_{k,l=1}^{2} [A^{k}, B^{l}]^{*} [A^{k}, B^{l}] \quad \text{and} \quad \sum_{k,l=1}^{2} [A^{k}, B^{l}] [A^{k}, B^{l}]^{*}$$

are invertible.

5. Three or more 3×3 matrices

We start with the following theorem due to Laffey [1].

Theorem 9. Let \mathscr{S} be a set of generators for M_3 . If \mathscr{S} has more than four elements, then M_3 can be generated by a proper subset of \mathscr{S} .

It is therefore sufficient to consider the cases p = 3 or 4. Following the approach outlined earlier, we start by finding a linear spanning set. Using the polarized Cayley–Hamilton Theorem, Spencer and Rivlin [6,7] deduced the following theorem.

Theorem 10. Let $A, B, C \in M_3$. Define

$$S(A) = \{A, A^2\}$$

$$T(A, B) = \{AB, A^2B, AB^2, A^2B^2, A^2BA, A^2B^2A\}$$

$$S(A_1, A_2) = T(A_1, A_2) \cup T(A_2, A_1)$$

$$T(A, B, C) = \{ABC, A^2BC, BA^2C, BCA^2, A^2B^2C, CA^2B^2, ABCA^2\}$$

$$S(A_1, A_2, A_3) = \bigcup_{\sigma \in S_3} T(A_{\sigma}(1), A_{\sigma}(2), A_{\sigma}(3)).$$

- 1. The subalgebra generated by A and B is spanned by $I \cup S(A) \cup S(B) \cup S(A, B).$
- 2. The subalgebra generated by A, B and C is spanned by $I \cup S(A) \cup S(B) \cup S(A, B) \cup S(A, B, C).$

These spanning sets are not optimal. They include words of length 5. Paz [3] has proved that M_n can be generated by words of length $\lceil (n^2 + 2)/3 \rceil$. For M_3 this gives words of length 4. The general bound has been improved by Pappacena [4].

We next give a version of Shemesh's Theorem for three 3×3 matrices.

Theorem 11. The matrices $A, B, C \in M_3$ have a common eigenvector if and only the matrix

$$M(A, B, C) = \sum_{\substack{M \in S(A), \\ N \in S(B)}} [M, N]^*[M, N] + \sum_{\substack{M \in S(A), \\ N \in S(C)}} [M, N]^*[M, N] + \sum_{\substack{M \in S(A, B), \\ N \in S(C)}} [M, N]^*[M, N] + \sum_{\substack{M \in S(A, B), \\ N \in S(C)}} [M, N]^*[M, N]$$

is singular.

Proof. Let \mathscr{A} be the algebra generated by A, B, C. Set

$$V = \bigcap_{\substack{M \in S(A), \\ N \in S(B)}} \ker[M, N] \bigcap_{\substack{M \in S(A), \\ N \in S(C)}} \ker[M, N] \bigcap_{\substack{M \in S(B), \\ N \in S(C)}} \ker[M, N] \bigcap_{\substack{M \in S(A, B), \\ N \in S(C)}} \ker[M, N].$$

We claim that V is invariant under \mathscr{A} . Let $v \in V$ and consider $\mathscr{A}v$. We know from Theorem 10 that any element of \mathscr{A} is a linear combination of terms of the form

 $p(A, B)C^{i}q(A, B)C^{j}r(A, B)$

with $p(A, B), q(A, B), r(A, B) \in I \cup S(A) \cup S(B) \cup S(A, B)$. Since

$$v \in \ker[S(A, B), S(C)] \cap \ker[S(A), S(C)] \cap \ker[S(B), S(C)],$$

we get

$$p(A, B)C^{i}q(A, B)C^{j}r(A, B)v = p(A, B)C^{i}q(A, B)r(A, B)C^{j}v$$

= $p(A, B)C^{i+j}q(A, B)r(A, B)v$
= $p(A, B)q(A, B)r(A, B)C^{i+j}v = C^{i+j}p(A, B)q(A, B)r(A, B)v$.

In the same way we use the fact that $v \in [S(A), S(B)]$ to sort the terms of the form p(A, B)q(A, B)r(A, B)v, so that we finally get

$$\mathscr{A}v = \left\{ \sum a_{ijk} C^i B^j A^k v \mid 0 \leq i, j, k \leq 2, a_{ijk} \in K \right\}.$$

Using the above technique, it follows easily that $\mathcal{A}v \subset V$ and that V is \mathcal{A} invariant. Hence we can restrict \mathcal{A} to V, but since the elements of \mathcal{A} commute on V, they have a common eigenvector, and we can finish as in the proof of Theorem 2. \Box

From this we deduce the following theorem.

Theorem 12. Let $A, B, C \in M_3$. Then A, B, C generate M_3 if and only if both M(A, B, C) and $M(A^t, B^t, C^t)$ are invertible.

For the case of four matrices, we can prove the following theorem.

Theorem 13. The matrices $A_1, A_2, A_3, A_4 \in M_3$ have a common eigenvector if and only the matrix

$$\begin{split} M(A_1, A_2, A_3, A_4) &= \sum_{\substack{i,j=1, \\ i < j}}^{4} \left(\sum_{\substack{M \in \mathcal{S}(A_i), \\ N \in \mathcal{S}(A_j)}} [M, N]^*[M, N] \right) \\ &+ \sum_{\substack{i,j=1, \\ i < j}}^{3} \left(\sum_{\substack{M \in \mathcal{S}(A_i, A_j), \\ N \in \mathcal{S}(A_4)}} [M, N]^*[M, N] \right) + \sum_{\substack{M \in \mathcal{S}(A_1, A_2), \\ N \in \mathcal{S}(A_3)}} [M, N]^*[M, N] \\ &+ \sum_{\substack{M \in \mathcal{S}(A_1, A_2, A_3), \\ N \in \mathcal{S}(A_4)}} [M, N]^*[M, N]. \end{split}$$

is singular.

Proof. Similar to the proof of Theorem 11. \Box

From this we deduce the following theorem.

Theorem 14. Let $A, B, C, D \in M_3$. Then A, B, C, D generate M_3 if and only if both M(A, B, C, D) and $M(A^t, B^t, C^t, D^t)$ are invertible.

References

- [1] T.J. Laffey, Irredundant generating sets for matrix algebras, Linear Algebra Appl., 52 (1983) 457-478.
- [2] T.J. Laffey, Simultaneous reduction of sets of matrices under similarity, Linear Algebra Appl. 84 (1986) 123-138.
- [3] A. Paz, An application of the Cayley–Hamilton theorem to matrix polynomials in several variables, Linear and Multilinear Algebra 15 (1984) 161–170.
- [4] C.J. Pappacena, An upper bound for the length of a finite-dimensional algebra, J. Algebra 197 (1997) 535–545.
- [5] D. Shemesh, Common eigenvectors of two matrices, Linear Algebra Appl. 62 (1984) 11-18.
- [6] A.J.M. Spencer, R.S. Rivlin, The theory of matrix polynomials and its application to the mechanics of isotropic continua, Arch. Rational Mech. Anal. 2 (1959) 309–336.
- [7] A.J.M. Spencer, R.S. Rivlin, Further results in the theory of matrix polynomials, Arch. Rational Mech. Anal. 4 (1959) 214–230.