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Abstract

Let K be an algebraically closed field of characteristic zero and consider a set of 2 × 2 or 3 × 3 matrices.
Using a theorem of Shemesh, we give conditions for when the matrices in the set generate the full matrix
algebra.
© 2008 Published by Elsevier Inc.

Keywords: Generator; Matrix; Algebra

1. Introduction

Let K be an algebraically closed field of characteristic zero, and let Mn = Mn(K) be the
algebra of n × n matrices over K . Given a set S = {A1, . . . , Ap} of n × n matrices, we would
like to have conditions for when the Ai generate the algebra Mn. In other words, determine whether
every matrix in Mn can be written in the form P(A1, . . . , Ap), where P is a noncommutative
polynomial. (We identify scalars with scalar matrices so the constant polynomials give the scalar
matrices.) The case n = 1 is of course trivial, and when p = 1, the single matrix A1 generates
a commutative subalgebra. We therefore assume that n, p � 2. This question has been studied
by many authors, see for example the extensive bibliography in [2]. We will give some results in
the case of n = 2 or 3. We would like to thank the referees and the editor for making nontrivial
improvements to the paper.
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2. General observations

LetA be the algebra generated by S. If we could show that the dimension ofA as a vector space
is n2, it would follow thatA = Mn. This can sometimes be done when we know a linear spanning
set B = {B1, . . . , Bq} of A. Let M be the n2 × q matrix obtained by writing the matrices in B
as column vectors. We would like to show that rank M = n2. Since M is an n2 × n2 matrix and
rank M = rank (MM∗), it suffices to show that det(MM∗) /= 0. Unfortunately, the size ofBmay
be big [4]. In this paper we will combine this method with results of Shemesh and Spencer and
Rivlin to get some simple results for n = 2 or 3.

The starting point is the following well-known consequence of Burnside’s Theorem.

Lemma 1. Let {A1, . . . , Ap} be a set of matrices in Mn where n = 2 or 3. The Ai’s generate Mn

if and only if they do not have a common eigenvector or a common left-eigenvector.

We can therefore use the following theorem due to Shemesh [5].

Theorem 2. Two n × n matrices, A and B, have a common eigenvector if and only if

n−1∑
k,l=1

[Ak, Bl]∗[Ak, Bl]

is singular.

Adding scalar matrices to the Ai’s does not change the subalgebra they generate, so we some-
times assume that our matrices lie in sln = {M ∈ Mn|tr M = 0}. We also sometimes identify
matrices in Mn with vectors in Kn2

, and if N1, . . . , Nn2 ∈ Mn, then det(N1, . . . , Nn2) denotes
the determinant of the n2 × n2 matrix whose j th column is Nj , written as (Nj1, . . . , Njn)

t , where
Njk is the kth row of Nj for k = 1, 2, . . . , n. We write the scalar matrix aI as a. When we say
that a set of matrices generate Mn, we are talking about Mn as an algebra, while when we say that
a set of matrices form a basis of Mn, we are talking about Mn as a vector space.

3. The 2 × 2 case

The following theorem is well-known, but we include a proof since it illustrated a technique
we will use in the 3 × 3 case. Notice that the proof gives us an explicit basis for M2.

Theorem 3. Let A, B ∈ M2. A and B generate M2 if and only if [A, B] is invertible.

Proof. A direct computation shows that

det(I, A, B, AB) = −det(I, A, B, BA) = det[A, B].
Hence

det(I, A, B, [A, B]) = 2det[A, B]. (1)

But if I, A, B, [A, B] are linearly independent, then the dimension of A as a vector space is 4,
so A and B generate M2. �
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We call [M, N, P ] = [M, [N, P ]] a double commutator. The characteristic polynomial of A

can be written as

x2 − xtr A + ((tr A)2 − tr A2)/2.

It follows that the discriminant of the characteristic polynomial of A can be written as

disc(A) = 2tr A2 − (tr A)2.

Lemma 4. Let A, B, C ∈ M2 and suppose that no two of them generate M2. Then A, B, C

generate M2 if and only if the double commutator [A, B, C] = [A, [B, C]] is invertible.

Proof. A direct computation shows that

det(I, A, B, C)2 = −det[A, [B, C]] − disc(A)det[B, C]. (2)

But if I, A, B, C are linearly independent, then A, B and C generate M2. �

Notice that the above proof gives us an explicit basis for M2. We can now give a complete
solution for the case n = 2.

Theorem 5. The matrices A1, . . . , Ap ∈ M2 generate M2 if and only if at least one of the com-
mutators [Ai, Aj ] or double commutators [Ai, Aj , Ak] = [Ai, [Aj , Ak]] is invertible.

Proof. If p > 4, the matrices are linearly dependent, so we can assume that p � 4. Suppose
that A1, A2, A3, A4 generate M2, but that no proper subset of them generates M2. Then the four
matrices are linearly independent, and we can write the identity I as a linear combination of
them. If the coefficient of A4 in this expression is nonzero, then A1, A2, A3, I span and therefore
generate M2, so A1, A2, A3 generate M2. Thus, if A1, . . . , Ap generate M2, we can always find
a subset of three of these matrices that generate M2. The result now follows from Theorem 3 and
Lemma 4. �

4. Two 3 × 3 matrices

In the case of two 3 × 3 matrices, we have the following well-known theorem.

Theorem 6. Let A, B ∈ M3. If [A, B] is invertible, then A and B generate M3.

For M ∈ M3, we define H(M) to be the linear term in the characteristic polynomial of M .
Hence

H(M) = ((tr M)2 − tr M2)/2,

which is equal to the sum of the three principal minors of degree two of M . Notice that H(M) is
invariant under conjugation, and that if [A, B] is singular, then [A, B] is nilpotent if and only if
H([A, B]) = 0.

The following theorem shows that if [A, B] is invertible and H([A, B]) /= 0, then we can give
an explicit basis for M3.

Theorem 7. Let A, B ∈ M3. Then
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det(I, A, A2, B, B2, AB, BA, [A, [A, B]], [B, [B, A]]) = 9 det[A, B]H([A, B]), (3)

so if det[A, B] /= 0 and H([A, B]) /= 0, then

{I, A, A2, B, B2, AB, BA, [A, [A, B]], [B, [B, A]]}
form a basis for M3.

The proof of (3) is by direct computation. Notice that this can be thought of as a generalization
of (1) and (2).

We can also use Shemesh’s Theorem to characterize pairs of generators for M3.

Theorem 8. The two 3 × 3 matrices A and B generate M3 if and only if both

2∑
k,l=1

[Ak, Bl]∗[Ak, Bl] and
2∑

k,l=1

[Ak, Bl][Ak, Bl]∗

are invertible.

5. Three or more 3 × 3 matrices

We start with the following theorem due to Laffey [1].

Theorem 9. Let S be a set of generators for M3. If S has more than four elements, then M3
can be generated by a proper subset of S.

It is therefore sufficient to consider the cases p = 3 or 4. Following the approach outlined
earlier, we start by finding a linear spanning set. Using the polarized Cayley–Hamilton Theorem,
Spencer and Rivlin [6,7] deduced the following theorem.

Theorem 10. Let A, B, C ∈ M3. Define

S(A)={A, A2}
T (A, B)={AB, A2B, AB2, A2B2, A2BA, A2B2A}

S(A1, A2)=T (A1, A2) ∪ T (A2, A1)

T (A, B, C)={ABC, A2BC, BA2C, BCA2, A2B2C, CA2B2, ABCA2}
S(A1, A2, A3)=

⋃
σ∈S3

T (Aσ (1), Aσ (2), Aσ (3)).

1. The subalgebra generated by A and B is spanned by

I ∪ S(A) ∪ S(B) ∪ S(A, B).

2. The subalgebra generated by A, B and C is spanned by

I ∪ S(A) ∪ S(B) ∪ S(A, B) ∪ S(A, B, C).
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These spanning sets are not optimal. They include words of length 5. Paz [3] has proved that
Mn can be generated by words of length �(n2 + 2)/3�. For M3 this gives words of length 4. The
general bound has been improved by Pappacena [4].

We next give a version of Shemesh’s Theorem for three 3 × 3 matrices.

Theorem 11. The matrices A, B, C ∈ M3 have a common eigenvector if and only the matrix

M(A, B, C)=
∑

M∈S(A),
N∈S(B)

[M, N ]∗[M, N ] +
∑

M∈S(A),
N∈S(C)

[M, N ]∗[M, N ]

+
∑

M∈S(B),
N∈S(C)

[M, N ]∗[M, N ] +
∑

M∈S(A,B),
N∈S(C)

[M, N ]∗[M, N ]

is singular.

Proof. Let A be the algebra generated by A, B, C. Set

V =
⋂

M∈S(A),
N∈S(B)

ker[M, N ]
⋂

M∈S(A),
N∈S(C)

ker[M, N ]
⋂

M∈S(B),
N∈S(C)

ker[M, N ]
⋂

M∈S(A,B),
N∈S(C)

ker[M, N ].

We claim that V is invariant under A. Let v ∈ V and consider Av. We know from Theorem 10
that any element of A is a linear combination of terms of the form

p(A,B)Ciq(A, B)Cj r(A, B)

with p(A, B), q(A, B), r(A, B) ∈ I ∪ S(A) ∪ S(B) ∪ S(A, B). Since

v ∈ ker[S(A, B), S(C)] ∩ ker[S(A), S(C)] ∩ ker[S(B), S(C)],
we get

p(A,B)Ciq(A, B)Cj r(A, B)v = p(A,B)Ciq(A, B)r(A, B)Cjv

= p(A,B)Ci+j q(A, B)r(A, B)v

= p(A, B)q(A, B)r(A, B)Ci+j v = Ci+jp(A, B)q(A, B)r(A, B)v.

In the same way we use the fact that v ∈ [S(A), S(B)] to sort the terms of the form
p(A, B)q(A, B)r(A, B)v, so that we finally get

Av =
{∑

aijkC
iBjAkv | 0 � i, j, k � 2, aijk ∈ K

}
.

Using the above technique, it follows easily that Av ⊂ V and that V is A invariant. Hence we
can restrictA to V , but since the elements ofA commute on V , they have a common eigenvector,
and we can finish as in the proof of Theorem 2. �

From this we deduce the following theorem.

Theorem 12. Let A, B, C ∈ M3. Then A, B, C generate M3 if and only if both M(A, B, C) and
M(At , Bt , Ct ) are invertible.
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For the case of four matrices, we can prove the following theorem.

Theorem 13. The matrices A1, A2, A3, A4 ∈ M3 have a common eigenvector if and only the
matrix

M(A1, A2, A3, A4)=
4∑

i,j=1,
i<j

⎛
⎜⎜⎝

∑
M∈S(Ai ),

N∈S(Aj )

[M, N ]∗[M, N ]

⎞
⎟⎟⎠

+
3∑

i,j=1,
i<j

⎛
⎜⎜⎝

∑
M∈S(Ai ,Aj ),

N∈S(A4)

[M, N ]∗[M, N ]

⎞
⎟⎟⎠ +

∑
M∈S(A1,A2),

N∈S(A3)

[M, N ]∗[M, N ]

+
∑

M∈S(A1,A2,A3),

N∈S(A4)

[M, N ]∗[M, N ].

is singular.

Proof. Similar to the proof of Theorem 11. �

From this we deduce the following theorem.

Theorem 14. Let A, B, C, D ∈ M3. Then A, B, C, D generate M3 if and only if both M(A, B,

C, D) and M(At , Bt , Ct , Dt ) are invertible.
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