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a b s t r a c t

As a generalization of the triple Imethod, differently implicational universal triple Imethod
of (1, 2, 2) type (universal triple I method for short) is investigated. First, the concepts of
residual operators and strongly residual operators are given, and then related conclusions
of residual pairs are provided. Second, the related universal triple I solutions (including
FMP-solutions, FMT-solutions and so on) are strictly defined by the infimum, where such
solutions are divided into two parts respectively corresponding to the minimum and
infimum. Then, we put emphasis on the FMP-solutions, in which the unified forms of
FMP-solutions w.r.t. strongly residual operators and a new idea for getting FMP-solutions
w.r.t. infimum are achieved. Third, as a result of analyzing the logic basis of a sort of
CRI (Compositional Rule of Inference) method, it is found that their CRI solutions can be
regarded as special cases of FMP-solutions. Lastly, the response functions of fuzzy systems
via universal triple I method are discussed, which demonstrates that the universal triple
I method can provide bigger choosing space and get better fuzzy controllers by contrast
with the triple I method and CRI method.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Nowadays fuzzy reasoning plays an important role in fuzzy control, fuzzy data mining and artificial intelligence (see
[1–4]). The basic problems of fuzzy reasoning are fuzzy modus ponens (FMP) and fuzzy modus tollens (FMT) as following:

FMP: for a given rule A→ B and input A∗, to compute B∗ (output), (1)

FMT: for a given rule A→ B and input B∗, to compute A∗ (output), (2)
where A, A∗ ∈ F(X) (the set of all fuzzy subsets on X) and B, B∗ ∈ F(Y ) (the set of all fuzzy subsets on Y ). To solve the FMP
problem Zadeh put forward the famous CRI (Compositional Rule of Inference) method expressed as follows

B∗(y) = sup
x∈X
{A∗(x) ∧ R(A(x), B(y))}, y ∈ Y (3)

where R is an implication operator (defined as a mapping [0, 1]2 → [0, 1]); see [5–8]. R(a, b) can also be written as a→ b.
Later, Wang pointed out that there were some disadvantages in the CRI method in [9], and proposed the triple I method
whose solution B∗(y)was the minimum fuzzy set making

(A(x)→ B(y))→ (A∗(x)→ B∗(y)) (4)
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take its maximum. It is proved that the triple I method has many advantages embodied as its logic basis, reversibility, and
the property of pointwise optimization (see [9,10]).
A whole fuzzy system is composed of a rule base, fuzzier, method of fuzzy reasoning (e.g. the triple I method) and

defuzzier (see [11]). The rule base is usually given in advance. Some key capabilities (such as universal approximation,
stability and practicability) can be effectively analyzed only if the last three parts in a fuzzy system are considered at the
same time.
Currently, the fuzzy systems taking singleton fuzzier, centroid defuzzier and the triple I method or CRI method for fuzzy

reasoning (respectively called the triple I systems or CRI systems in the sequel) [12,13], have been investigated by Li and
Tang in [10,14–16]. It is found that, from the point of view of fuzzy systems, the effect of the triple I method is imperfect,
which is embodied as inferior response ability and practicability of the triple I systems. However the CRI method has better
capabilities than the triple I method and is basically acceptable (see Section 2.2 for the capabilities of triple I system and CRI
system).
Although the triple Imethod hasmany acknowledged advantagesmentioned above, it is imperfect from the point of view

of fuzzy systems, which will hold back its broad application to a large extent. Moreover, the triple I method was proposed
as the improvement on the CRI method, however it is inferior to the CRI method in this case (see [10,14–16]) leading to that
the meaning of improvement is weakened to a certain extent. It is such shortcomings of the triple I method that make us
take a strong interest in further investigation on it with high necessity.
Then a natural problem arise: How can we improve the triple I method? It should begin at its characteristic that three

implication operators must be consistent in formula (4), which may be the root of existent hidden troubles. And Li pointed
out in [10] the fact that the CRI method is a special case of the triple I method only if three implication operators in (4) are
different. In detail, the CRI method (expressed as formula (3)) can be regarded as the triple I method where the second and
third operators take the Mamdani operator RM . Enlightened by it, we can let the latter two operators be same and the first
one unlimited, that is, generalize (4) to:

(A(x)→1 B(y))→2(A∗(x)→2 B∗(y)). (5)

The triple I method derived from (5) is called differently implicational universal triple I method of (1, 2, 2) type (universal
triple I method for short) here. It is shown that the universal triple I method has better capabilities by our analysis (see
Section 2.3 and the latter part), and we will focus on the universal triple I method in the present paper.
The rest of this paper is organized as follows. In Section 2, the state-of-the-art and analysis related to universal triple

I method are introduced. In Section 3, a new definition of residual operator is provided, and based on it related results of
residual pairs are proved. In Section 4, the FMP-solutions are strictly defined, and then correlative outcomes are achieved
from three kinds of solutions, in which the unified forms of solutions w.r.t. a kind of operators and a new solving idea for
part solutions are presented. In Section 5, the logic basis of a generalized CRI method is studied, and it is found that it is a
special case of the universal triple I method. In Section 6, the response functions of fuzzy systems via the universal triple I
method are analyzed; the significance of universal triple Imethod is further discussed. In Sections 7 and 8, the related results
of FMT-universal triple I method, α-universal triple I method are respectively given. Section 9 is the conclusion.

2. State-of-the-art and related analysis

2.1. Triple I method

Since the triple I method was proposed, it has attracted rapidly growing interests. Wang et al. systemically investigated
it and the α-triple I method (derived from (A(x) → B(y)) → (A∗(x) → B∗(y)) ≥ α), together with their corresponding
theories of sustaining degrees and reversibility (see [9,17,18]).Wang and Pei et al. constructed regular implication operators
from left-continuous t-norms, and then gave the unified forms of triple I method (see [19–21]). Following Song et al.
discussed similar forms, i.e. (A(x) → B(y)) → (A∗(x) → B∗(y)) ≤ α, (A∗(x) → B∗(y)) → (A(x) → B(y)) ≥ α and
(A∗(x)→ B∗(y))→ (A(x)→ B(y)) ≤ α, they respectively established the restriction theory of triple I method, the reverse
triple I method and the restriction theory of reverse triple I method (see [22–24]), which were also paid attention by Wang
and Li in [25,26].

2.2. Capabilities of triple I system

Currently, the triple I systems and CRI systems have been investigated by Li and Tang. Li discussed the response ability of
the triple I systems constructed by 51 implication operators, and found that only 2 systems can be used in such 51 systems
(see [14]). However in the CRI systems constructed by 23 implication operators there are 12 usable systems in such 23
CRI systems (see [15]). Therefore there are very few usable triple I systems, demonstrating that the triple I method has
inferior results. Later, Li contrasted the triple I systems and CRI systems, and found the triple I systems are basically not as
good as the latter in general (see [10]). In [16], we achieved the fact that 2 systems are practicable in 11 triple I systems
while 4 systems are usable in 11 CRI systems constructed by the same 11 implication operators. So, from the point of view
of fuzzy systems, the effect of the triple I method is inferior, while the CRI method has better capabilities and is basically
acceptable.
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To analyze the reasons to bring out such shortcomings of the triple Imethodwe find that there are twomain reasons. First,
the key reason is the triple I method itself. Second, chosen fuzzier and defuzzier are inappropriate, but in fact such fuzzier
and defuzzier are familiar with wide application background while the CRI systems have acceptable effect. Therefore the
fact that the capabilities of triple I systems are inferior, is mainly derived from the triple I method itself.

2.3. Universal triple I method

The universal triple I method is obviously a generalization of the triple I method, which holds many characteristics of
the triple I method (such as solving process and solutions’ forms in the sequel) and has contact with the CRI method. So the
research of the universal triple Imethodwill help to not only avoid shortcomings of the triple Imethod, but also comprehend
the essence of the triple I method and CRI method, which is vital to the fundamental theory of fuzzy reasoning, and fuzzy
controllers’ study and so on. Ref. [10] does not definitely propose formula (5) and the universal triple I method, and has
no further study. To the knowledge of the authors, there is no finding other literature to study universal triple I method.
Consequently, we will investigate the universal triple I method.

3. Preliminaries

Recall that R(a, b) is also written as a → b, so→i and Ri can be regarded as the same one for convenience (i = 1, 2).
Currently there aremany literatures investigating the theme of residual pairs (see e.g. [27–29]), inwhichWang and Pei study
the residual pair from left-continuous t-norms for the triple I method. Nowwe shall propose a newmethod for constructing
the residual pair.

Definition 3.1. An implication operator R is called a residual operator if the following three conditions are satisfied:
(C1) R(a, b) is nondecreasing w.r.t. b (a, b ∈ [0, 1]).
(C2) R(a, b) is right-continuous w.r.t. b (a ∈ [0, 1], b ∈ [0, 1)).
(C3) {y ∈ [0, 1] | a→ y = 1} 6= ∅ (a ∈ [0, 1]).
Especially, if R also satisfies
(C4) a ≤ b iff R(a, b) = 1 (a, b ∈ [0, 1], iff denotes ‘‘if and only if’’),
then R is said to be a strongly residual operator.

In the present paper, 16 familiar implication operators are mainly considered. They are Lukasiewicz operator RL,
Gödel operator RG, Goguen operator RGo, Gaines–Rescher operator RGR, R0 operator, Zadeh operator RZ , Yager operator RY ,
Reichenbach operator RR, Dubois–Prade operator RDP , Larsen operator RLa, Kleene–Dienes operator RKD, Mamdani operator
RM , revised Reichenbach operator R13 (see [30]), R14 (see [15]), R15 and R16 (see [14]) as follows.

RL(a, b) =
{
1, a ≤ b
a′ + b, a > b, RG(a, b) =

{
1, a ≤ b
b, a > b,

RGo(a, b) =
{
1, a = 0
(b/a) ∧ 1, a 6= 0, RGR(a, b) =

{
1, a ≤ b
0, a > b,

R0(a, b) =
{
1, a ≤ b
a′ ∨ b, a > b, RZ (a, b) = a′ ∨ (a ∧ b),

RY (a, b) = ba (RY (0, 0) = 1), RR(a, b) = a′ + a× b,

RDP(a, b) =
{
1, a′ ∧ b 6= 0
a′ ∨ b, a′ ∧ b = 0 =

{b, a = 1
a′, b = 0
1, else,

RLa(a, b) = a× b,

RKD(a, b) = a′ ∨ b, RM(a, b) = a ∧ b,

R13(a, b) =
{
1, a ≤ b
a′ + ab, a > b, R14(a, b) =

{
0, b = 0
a, b > 0,

R15(a, b) =
{
1, a ≤ b
a′/b′, a > b, R16(a, b) =

{
1, a ≤ b
a′, a > b

where x′ denotes 1− x, a, b ∈ [0, 1], ∨ = max and ∧ = min.

Definition 3.2. Let→ and⊗ be two [0, 1]2 → [0, 1]mappings, (→,⊗) is said to be a residual pair or,→ and⊗ are residual
to each other, if

a⊗ b ≤ c iff b ≤ a→ c, a, b, c ∈ [0, 1].

Lemma 3.1. (i) Let (→1,⊗) and (→2,⊗) be residual pairs, then→1 =→2; (ii) let (→,⊗1) and (→,⊗2) be residual pairs,
then⊗1 = ⊗2.
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Proof. (i) Note that, if one can prove that x ≤ a iff x ≤ b, then a = b. Since (→1,⊗) and (→2,⊗) are residual pairs, we
have z ≤ a→1 b iff a ⊗ z ≤ b iff z ≤ a→2 b (a, b, z ∈ [0, 1]), and then a→1 b = a→2 b (i.e.→1 = →2) holds. (ii) It is
similar to get the conclusion. �

Theorem 3.1. Let→: [0, 1]2 → [0, 1] be a residual operator, and define⊗→ : [0, 1]2 → [0, 1] as follows

a⊗→ b = ∧{y ∈ [0, 1] | b ≤ a→ y}, a, b ∈ [0, 1] (6)

then (→,⊗→) is a residual pair, and

a→ b = ∨{y ∈ [0, 1] | a⊗→ y ≤ b}. (7)

Proof. (i) Let Γ = {y ∈ [0, 1] | b ≤ a→ y} and d = ∧Γ = a⊗→ b. If b ≤ a→ c (a, b, c ∈ [0, 1]), then c ∈ Γ and hence
a⊗→ b ≤ c (noting that a⊗→ b = ∧Γ ).
Conversely, we shall prove that d = a⊗→ b ≤ c implies b ≤ a → c (a, b, c ∈ [0, 1]). Since→ satisfies (C3) (i.e.

{y ∈ [0, 1] | a → y = 1} 6= ∅), it follows that there exists y ∈ [0, 1] such that a → y = 1 for any a ∈ [0, 1], and then
{y ∈ [0, 1] | b ≤ a→ y} 6= ∅. We have two cases to be considered: d < c or d = c.
(a) Suppose d < c , it follows from the definition of infimum that there exists y0 ∈ Γ such that y0 < d + ε < c for any

ε ∈ (0, c − d). This means b ≤ a→ y0 ≤ a→ c (noting that→ satisfies (C1)).
(b) Suppose d = c , we show c ∈ Γ and then b ≤ a→ c . Indeed, if c 6∈ Γ , then, inΓ , there exist c0 > c1 > · · · > cn > · · ·

such that limi→∞ ci = c and ci > c , so c is the right limit of {ci}. Notice that→ satisfies (C2) and b ≤ a→ ci (i = 0, 1, . . .),
by taking limit at both sides we achieve b ≤ limi→∞(a→ ci) = a→ c (i.e. c ∈ Γ ), which is a contradiction.
Summarizing the above, we have a⊗→ b ≤ c iff b ≤ a→ c , i.e., (→,⊗→) is a residual pair.
(ii) Since (→,⊗→) is a residual pair, we get a⊗→ y ≤ b iff y ≤ a → b. Consequently, ∨{y ∈ [0, 1] | a⊗→ y ≤ b} =

∨{y ∈ [0, 1] | y ≤ a→ b} = a→ b. �

Proposition 3.1. (i) RG, RL, R0, RGo, RGR, RKD, RR, RY , R13, R15, R16 satisfy (C1), (C2) and (C3), so they are residual operators;
RG, RL, R0, RGo, RGR, R13, R15, R16 also satisfy (C4), and hence they are strongly residual operators.

(ii) RZ , RM , RLa satisfy (C1), (C2)but do not satisfy (C3).
(iii) RDP satisfies (C1), (C3) and does not satisfy (C2). R14 satisfies (C1) and does not satisfy (C2) and (C3). But RDP , R14 both are

right-continuous w.r.t. second component on (0, 1).
(iv) RG, RL, R0, RGo, RGR, RDP , RKD, RR, RY , R13, R15, R16 satisfy
(C5) a→ 1 = 1 (a ∈ [0, 1]);

and RM , RLa, R14 satisfy

(C6) a→ 1 = a and a→ 0 = 0 (a ∈ [0, 1]).

Proof. (i) For implication operators listed above we only prove the case of R0 as an example, the remainders can be proved
similarly. We use x instead of b to analysis. If 0 ≤ x < a, then R0(a, x) = (1 − a) ∨ x < 1; if a ≤ x ≤ 1, then R0(a, x) = 1.
These imply that R0 obviously satisfies (C1) and (C4). If x = a, then limx→a+ R0(a, x) = 1 = R0(a, a), i.e., R0(a, x) is right-
continuous w.r.t. x for the case of x = a. And R0(a, x) is evidently right-continuous on [0, a) ∪ (a, 1). Thus R0 satisfies (C2).
Since R0(a, 1) = 1, we achieve {y ∈ [0, 1] | a→ y = 1} 6= ∅, and hence (C3) holds for R0.
(ii) We only prove the case of RZ as an example. If a ≤ 1/2, then RZ (a, x) = a′. If a > 1/2, we have three cases to be

considered: (a) If x < a′, then RZ (a, x) = a′. (b) If a′ ≤ x ≤ a, then RZ (a, x) = x (noting that a′ ≤ RZ (a, x) ≤ a). (c) If x > a,
then RZ (a, x) = a. Thus, RZ satisfies (C1). It is evident that RZ satisfies (C2). For 0 < a < 1, RZ (a, x) = a′∨(a∧x) ≤ a′∨a < 1,
i.e. {x ∈ [0, 1] | a→ x = 1} = ∅, so RZ does not satisfy (C3).
(iii) We only prove the case of RDP as an example. It is similar to prove that RDP satisfies (C1), (C3). We shall show that

RDP does not satisfy (C2). If a = 1, then RDP(1, x) = x. If a = 0, then RDP(0, x) ≡ 1. If 0 < a < 1, it is evident that
RDP(a, x) is right-continuous w.r.t. x on (0, 1). But limx→0+ RDP(a, x) = 1 6= RDP(a, 0) = a′, it follows that RDP(a, x) is not
right-continuous w.r.t. x for the case of x = 0. As a result, RDP(a, x) does not satisfy (C2). Inspecting the above proof, we can
readily obtain that RDP is right-continuous w.r.t. second component on (0, 1).
(iv) It is easy to prove it. �

Lemma 3.2. Let A, B ⊂ [0, 1], then ∧(A ∪ B) = (∧A) ∧ (∧B).

Proof. If A or B is empty, then it is easy to get the conclusion (noting that ∧∅ = 1). Suppose A, B are nonempty. By the fact
that A ⊂ A ∪ B and B ⊂ A ∪ B, it follows that ∧A ≥ ∧(A ∪ B) and ∧B ≥ ∧(A ∪ B). Thus (∧A) ∧ (∧B) ≥ ∧(A ∪ B).
Further, we shall show ∧(A ∪ B) ≥ (∧A) ∧ (∧B). Notice that, if one can prove that x ≤ b if x ≤ a, then a ≤ b. If

x ≤ (∧A) ∧ (∧B), then x ≤ ∧A and x ≤ ∧B, i.e., x ≤ x1 and x ≤ x2 for ∀x1 ∈ A,∀x2 ∈ B. Thus, x ≤ x3 for ∀x3 ∈ A ∪ B and
then x ≤ ∧(A ∪ B). These imply ∧(A ∪ B) ≥ (∧A) ∧ (∧B).
Summarizing the above, we achieve ∧(A ∪ B) = (∧A) ∧ (∧B). �
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Proposition 3.2. The operations corresponding to RG, RGo, RGR, RL, RKD, R0, RY , RR, R13, R15, R16 in residual pairs are as follows,
respectively.

a⊗G b = a ∧ b, a⊗Go b = a× b, a⊗GR b =
{
a, b > 0
0, b = 0,

a⊗L b =
{
a+ b− 1, a+ b > 1
0, a+ b ≤ 1, a⊗KD b =

{
b, a+ b > 1
0, a+ b ≤ 1,

a⊗0 b =
{
a ∧ b, a+ b > 1
0, a+ b ≤ 1, a⊗Y b =

{
a√b, a > 0
0, a = 0,

a⊗R b =
{
(a+ b− 1)/a, a > 0
0, a = 0,

a⊗13 b =
{
[(a+ b− 1)/a] ∧ a, a+ b > 1
0, a+ b ≤ 1, a⊗15 b =

{
(a+ b− 1)/b, a+ b > 1
0, a+ b ≤ 1,

a⊗16 b =
{
a, a+ b > 1
0, a+ b ≤ 1.

Proof. It follows from Proposition 3.1 that such 11 implication operators are residual operators. We only prove R13 as an
example. By (6) and Lemma 3.2, we achieve

a⊗13 b = ∧{y ∈ [0, 1] | b ≤ R13(a, y)}
= ∧({y ∈ [0, 1], a ≤ y | b ≤ R13(a, y)} ∪ {y ∈ [0, 1], a > y | b ≤ R13(a, y)})
= [∧{y ∈ [0, 1], a ≤ y | b ≤ 1}] ∧ [∧{y ∈ [0, 1], a > y | b ≤ 1− a+ ay}]
= a ∧ [∧{y ∈ [0, 1] | a+ b− 1 ≤ ay, y < a}]. (8)

If a + b > 1, then a > 0 and we have two cases to be considered: (a) Suppose (a + b − 1)/a < a, then it
follows from (8) that a⊗13 b = a ∧ [(a + b − 1)/a]. (b) Suppose (a + b − 1)/a ≥ a, then it follows from (8) that
a⊗13 b = a ∧ [∧∅] = a ∧ 1 = a = a ∧ [(a + b − 1)/a]. (Notice that it is in poset ([0, 1],≤) and ≤ is less or equal
relation, thus ∧∅ = 1.)
If a + b ≤ 1, then a⊗13 b = a ∧ [∧∅] = a ∧ 1 = a = 0 for a = 0, or a + b − 1 ≤ 0 ≤ ay holds and hence

a⊗13 b = a ∧ 0 = 0 for a > 0 by virtue of formula (8).
Thus, it follows that a⊗13 b =

{
[(a+ b− 1)/a] ∧ a, a+ b > 1
0, a+ b ≤ 1 . �

Proposition 3.3. If → satisfies
(C7) ∧{a→ xi | i ∈ I} = a→ ∧{xi | i ∈ I} (a, xi ∈ [0, 1]; I 6= ∅),
then→ satisfies (C1) and (C2).

Proof. Let x1, x2 ∈ [0, 1] and x1 ≤ x2. Since→ satisfies (C7), we have a→ x1 = a→ (x1 ∧ x2) = (a→ x1) ∧ (a→ x2) ≤
a→ x2. Thus→ satisfies (C1).
Further, we shall show that→ satisfies (C2). On the one hand, since→ satisfies (C7), it follows that∧{a→ x | x > b} =

a→ ∧{x | x > b} = a→ b for b ∈ [0, 1), x ∈ [0, 1] (Noting that {x | x > b} 6= ∅.). Thus a→ x ≥ ∧{a→ x | x > b} holds
for ∀x > b, which implies limx→b+(a→ x) ≥ ∧{a→ x | x > b} = a→ b. On the other hand, it follows from the definition
of infimum that for ∀ε > 0, there exists x0 > b such that a → x0 < ∧{a → x | x > b} + ε. Considering that→ satisfies
(C1), we obtain

lim
x→b+

(a→ x) = lim
x→b
x0>x>b

(a→ x) < ∧{a→ x | x > b} + ε,

and hence limx→b+(a → x) ≤ ∧{a → x | x > b} = a → b. Together we achieve limx→b+(a → x) = a → b (b ∈ [0, 1),
x ∈ [0, 1]), i.e.→ satisfies (C2). �

Lemma 3.3. → satisfies (C3), iff → satisfies
(C8) {y ∈ [0, 1] | b ≤ a→ y} 6= ∅, a, b ∈ [0, 1].

Proof. If→ satisfies (C8), then, by taking b = 1, we get {y ∈ [0, 1] | a → y = 1} 6= ∅ for ∀a ∈ [0, 1], i.e.→ satisfies
(C3). On the other hand, if→ satisfies (C3), then there exists y ∈ [0, 1] such that a→ y = 1 for ∀a, b ∈ [0, 1], and hence
{y ∈ [0, 1] | b ≤ a→ y} 6= ∅, i.e.→ satisfies (C8). �

By Proposition 3.3, Lemma 3.3, we can get Lemma 3.4.

Lemma 3.4. If → satisfies (C7) and (C8), then→ is a residual operator.
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In [31], Liu also gave a definition of residual pair (see Definition 2.5 in [31]). In order to differentiate, such a kind of
residual pair is defined as symmetrical residual pair, that is:

Definition 3.3. Let→ and⊗ be two [0, 1]2 → [0, 1]mappings, (→,⊗) is said to be a symmetrical residual pair if a⊗b ≤ c
iff a ≤ b→ c , a, b, c ∈ [0, 1].

Liu pointed out in Theorem 2.1 of [31] that if→ satisfies (C7) and (C8) then⊗ can be achieved by a⊗ b = ∧{y ∈ [0, 1] |
a ≤ b→ y} such that (→,⊗) is a symmetrical residual pair. It is not difficult to get Proposition 3.4.

Proposition 3.4. If → satisfies (C7) and (C8), ⊗→ is generated by → according to (6), ⊗ is generated by → from
Theorem 2.1 in [31], then (→,⊗→) is a residual pair, and (→,⊗) a symmetrical residual pair while a⊗ b = b⊗→ a holds.

4. FMP-universal triple I method and its solutions

4.1. FMP-universal triple I method

Definition 4.1. Let Z be any nonempty set and F(Z) the set of all fuzzy subsets on Z , define partial order relation≤F on F(Z)
(according to pointwise order) as: A(z)≤F B(z) iff A(z0) ≤ B(z0) for ∀z0 ∈ Z , where A(z), B(z) ∈ F(Z).

Lemma 4.1 (Wang [32]). 〈F(Z),≤F 〉 is a complete lattice.

Definition 4.2. Suppose that, A, A∗ ∈ F(X), B ∈ F(Y ), nonempty set E is the set of B∗(y)which makes (5) get its maximum
for any x ∈ X, y ∈ Y in 〈F(Y ),≤F 〉, and D∗(y) is the infimum of E. If D∗(y) is the minimum of E, then D∗(y) is called a
MinP-solution. If D∗(y) is not the minimum of E, then D∗(y) is called an InfP-quasi-solution; in E, we pick out a fuzzy set
D∗∗(y) as small as possible, and call D∗∗(y) an InfP-solution.
Let FMP-universal triple I solution (FMP-solution for short) be a general designation of MinP-solution and InfP-solution.

Remark 4.1. The strict definition of FMP-solution is given by the infimum in Definition 4.2. FMP-solutions are divided into
two parts respectively corresponding to the minimum and infimum, i.e. the MinP-solutions and InfP-solutions. It is similar
to the triple I method that A, A∗, B should be unchangeable and B∗ changeable in Definition 4.2. When there is not the
minimum in E, its infimum D∗(y) commonly exists (see Theorem 4.1 in what follows) and D∗(y) is not a strict universal
triple I solution (since it cannot make (5) get its maximum). Obviously, D∗∗(y) is not unique but D∗(y) is. Specially, as a
special case of universal triple I solution, the triple I solution has the similar case.

Theorem 4.1. There exists a unique fuzzy set D∗(y) such that

(i) D∗(y)≤F D(y) for ∀D(y) ∈ E, and
(ii) there is C(y) ∈ E satisfying C(y0) < D∗(y0)+ ε for ∀y0 ∈ Y and ∀ε > 0;

then D∗(y) is the infimum of E. Specially, if D∗(y) ∈ E also holds, then D∗(y) is a MinP-solution.

Proof. It follows from Lemma 4.1 that 〈F(Y ),≤F 〉 is a complete lattice. Thus D∗(y) = infE uniquely exists since nonempty
set E ⊂ F(Y ).
We shall construct the fuzzy set D∗(y) that we need. Notice that 〈[0, 1],≤〉 is a complete lattice, and {D(y0) | D ∈ E} ⊂

[0, 1] holds for any constant y0 ∈ Y , hence inf{D(y0) | D ∈ E} , D∗(y0) uniquely exists. By the definition of infimum,
we have D∗(y0) ≤ D(y0) for ∀D ∈ E and that there exists C ∈ E such that C(y0) < D∗(y0) + ε for any ε > 0. Let y0
respectively takes every element in Y , and then we obtain D∗(y0) for any y0 ∈ Y , thus there is a fuzzy set D∗(y) such that
D∗(y)|y=y0 = D

∗(y0). D∗(y) obviously satisfies (i).
Further, we shall show that there exists C∗(y) ∈ E such that C∗(y0) < D∗(y0)+ ε for any ε > 0 and y0 ∈ Y . Notice that

we already know that there is C ∈ E satisfying C(y0) < D∗(y0) + ε for any constant y0 ∈ Y and ε > 0. Let y0 respectively
takes every element in Y , and then there is a fuzzy set C∗(y) such that C∗(y)|y=y0 = C(y0), which is evidently what we need.
Thus, D∗(y) satisfies (ii).
Since partial order relation is according to pointwise order, it is easy to get D∗(y) = infE. Specially, if D∗(y) ∈ E, then

D∗(y) is the minimum of E, thus it follows from Definition 4.2 that D∗(y) is a MinP-solution. �

Proposition 4.1. If →2 satisfies (C1) and (C2), then the FMP-solution B∗(y) is the MinP-solution, and the maximum of (5) is
M(x, y) = (A(x)→1 B(y))→2(A∗(x)→2 1).

Proof. At first, we shall show that the maximum of (5) is M(x, y). Since →2 satisfies (C1), then for (5), we have:
(A(x)→1 B(y))→2(A∗(x)→2 B∗(y)) ≤ (A(x)→1 B(y))→2(A∗(x)→2 1) = M(x, y). This means that M(x, y) is the
maximum of (5) (noting that A, B, A∗ are unchangeable in (5) by Remark 4.1).
Further, to prove that FMP-solution B∗(y) is theMinP-solution, it is enough to prove that B∗(y) is theminimum of E. Note

that B∗(y) = infE and E = {D∗(y) ∈ F(Y ) | (A(x)→1 B(y))→2(A∗(x)→2 D∗(y)) = M(x, y), x ∈ X, y ∈ Y }. If B∗(y) 6∈ E,
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then there exist fuzzy sets B1, B2, . . . in E such that

lim
n→∞

Bn(y) = B∗(y), y ∈ Y . (9)

From the fact that B1, B2, . . . ∈ E, we get (n = 1, 2, . . . ; x ∈ X; y ∈ Y )

(A(x)→1 B(y))→2(A∗(x)→2 Bn(y)) = M(x, y).

Since B∗ = infE, we achieve Bn(y) ≥ B∗(y) (y ∈ Y ), and then it follows from (9) that B∗(y) is the right limit of
{Bn(y) | n = 1, 2, . . .} (y ∈ Y ), thus we have (noting that→2 satisfies (C1), (C2))

M(x, y) = lim
n→∞
{(A(x)→1 B(y))→2(A∗(x)→2 Bn(y))}

= (A(x)→1 B(y))→2(A∗(x)→2 B∗(y)), x ∈ X, y ∈ Y .

Thus B∗(y) ∈ E, a contradiction. Consequently, we obtain B∗(y) ∈ E, and hence B∗(y) is the minimum of E. �

Corollary 4.1. If →2 is a residual operator, then FMP-solution B∗(y) is the MinP-solution, and the maximum of (5) is M(x, y).
Especially, if →2 is also a strongly residual operator, then M(x, y) = 1.

Remark 4.2. The fact that→2 satisfies (C1) and (C2), is a sufficient condition to ensure that FMP-solution B∗(y) is the
MinP-solution, but is not a necessary condition. For example, take a→2 b = a(1 − b) (see [14]), then formula (5) is equal
to R1(A(x), B(y)) × [1 − (A∗(x) × (1 − B∗(y)))] and the FMP-solution is B∗(y) =

{
1, y ∈ E
0, y ∈ Y − Ewhere E = {y ∈ Y |

supx∈X {R1(A(x), B(y))× A∗(x)} > 0} (the solving process is similar to Proposition 4.4 in what follows). It is easy to find that
→2 does not satisfy (C1), but this FMP-solution is a MinP-solution.

4.2. MinP-solutions corresponding to strongly residual operators

Theorem 4.2. Let →2 be a strongly residual operator and ⊗ the residual operation w.r.t.→2, then the MinP-solution can be
expressed as follows:

B∗(y) = sup
x∈X
{A∗(x)⊗ R1(A(x), B(y))}, y ∈ Y . (10)

Proof. It follows fromCorollary 4.1 that FMP-solution B∗(y) is theMinP-solution, and themaximumof formula (5) is 1. First,
we shall prove:

(A(x)→1 B(y))→2(A∗(x)→2 B∗(y)) = 1, x ∈ X, y ∈ Y . (11)

Indeed, it follows from the expression of B∗(y) that A∗(x)⊗R1(A(x), B(y)) ≤ B∗(y), x ∈ X, y ∈ Y . Since (→2,⊗) is a residual
pair, we obtain: R1(A(x), B(y)) ≤ A∗(x)→2 B∗(y), x ∈ X, y ∈ Y . Thus formula (11) holds (noting that→2 satisfies (C4)).
Second, we shall show that B∗(y) is theminimum. Let D(y) ∈ E, then (A(x)→1 B(y))→2(A∗(x)→2 D(y)) = M(x, y) = 1

(x ∈ X, y ∈ Y ). This implies A(x)→1 B(y) ≤ A∗(x)→2 D(y), x ∈ X, y ∈ Y by virtue of the conditions that→2 satisfies. And,
considering (→2,⊗) is a residual pair, then A∗(x)⊗ R1(A(x), B(y)) ≤ D(y), x ∈ X, y ∈ Y . Thus D(y) is an upper bound of

{A∗(x)⊗ R1(A(x), B(y)) | x ∈ X}, y ∈ Y .

Hence it follows from (10) that B∗(y)≤F D(y). These imply that B∗(y) is the minimum of E, then B∗(y) = infE.
Thus we obtain that B∗(y) is the MinP-solution by Definition 4.2. �

From Proposition 3.2, Theorem 4.2 and Proposition 3.1, we can get Theorem 4.3.

Theorem 4.3. Suppose that R2 ∈ {RG, RL, R0, RGo, RGR, R13, R15, R16}, and ⊗ is the residual operation w.r.t. R2, then the MinP-
solution can be expressed as B∗(y) = supx∈X {A∗(x)⊗ R1(A(x), B(y))}, y ∈ Y . Specially:

(i) If R2 = RG, then the MinP-solution is: B∗(y) = supx∈X {A∗(x) ∧ R1(A(x), B(y))}, y ∈ Y . If R2 = RGo, then B∗(y) =
supx∈X {A∗(x)× R1(A(x), B(y))}, y ∈ Y .

(ii) If R2 = RGR, then B∗(y) = supx∈Ey{A
∗(x)} where Ey = {x ∈ X | R1(A(x), B(y)) > 0}.

(iii) If R2 ∈ {RL, R13, R15, R16, R0}, then Ey = {x ∈ X | (A∗(x))′ < R1(A(x), B(y))}, and for the case of R2 = RL, B∗(y) =
supx∈Ey{A

∗(x)+R1(A(x), B(y))−1}; for the case of R2 = R13, B∗(y) = supx∈Ey{[(A
∗(x)+R1(A(x), B(y))−1)/A∗(x)]∧A∗(x)};

for the case of R2 = R15, B∗(y) = supx∈Ey{[A
∗(x) + R1(A(x), B(y)) − 1]/R1(A(x), B(y))}; for the case of R2 = R16,

B∗(y) = supx∈Ey{A
∗(x)}; for the case of R2 = R0, B∗(y) = supx∈Ey{A

∗(x) ∧ R1(A(x), B(y))}.

From Lemma 3.4, Theorem 4.2, we can obtain Proposition 4.2.
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Proposition 4.2. If R2 satisfies (C4), (C7) and (C8), and⊗ is its residual mapping, then the MinP-solution can be expressed as
B∗(y) = supx∈X {A∗(x)⊗ R1(A(x), B(y))}, y ∈ Y .

If R1 = R2, then theMinP-solution degenerates into the triple I solution for the FMP problem, andwe have Corollaries 4.2
and 4.3.

Corollary 4.2. If R2 is a strongly residual operator, and⊗ its residual mapping, and take R1 = R2 , R, then the MinP-solution
(i.e. the triple I solution of FMP) can be expressed as follows:

B∗(y) = sup
x∈X
{A∗(x)⊗ R(A(x), B(y))}, y ∈ Y . (12)

Corollary 4.3. If R2 satisfies (C4), (C7) and (C8), and⊗ is its residual mapping, and take R1 = R2 , R, then the MinP-solution
(i.e. the triple Imethod of FMP) is the same as Corollary 4.2.

Remark 4.3. Wang gave the unified forms of triple I method derived from regular implication operators (see Theorem 1 of
Ref. [19]), where got regular implication operators (from left-continuous t-norms) and then obtained the same expression
as formula (12) in the present paper.

By Proposition 1 in [19], it is easy to obtain Lemma 4.2. And then we get Proposition 4.3 by Lemma 3.4.

Lemma 4.2. Regular implication operators satisfy (C4), (C7) and (C8).

Proposition 4.3. Regular implication operators are all strongly residual operators.

Remark 4.4. In Theorem 1 of Ref. [19], the triple I solution (that is (12)) is only suitable for regular implication operators.
Proposition 4.3 demonstrates that regular implication operators are strongly residual operators. These imply that Theorem
1 of Ref. [19] is a special case of Corollary 4.2 in the present paper. Moreover, strongly residual operators RGR, R13, R15, R16
are not regular implication operators, but they can be used to (12). In Corollary 3.1 in Ref. [31], Liu gave the fact that if
(R,⊗2) is a symmetrical residual pair and R satisfies (C4), (C7) and (C8), then the triple I method of FMP can be expressed as
B∗(y) = supx∈X {R(A(x), B(y))⊗2 A∗(x)}. By Proposition 3.4, we can achieve R(A(x), B(y))⊗2 A∗(x) = A∗(x)⊗ R(A(x), B(y)),
which means that Corollary 3.1 in [31] is the same as Corollary 4.3 in the present paper.

4.3. Other MinP-solutions

Proposition 4.4. If →2 ∈ {RY , RLa, RR, RKD}, then the MinP-solution B∗(y) =
{
1, y ∈ E
0, y ∈ Y − E where E = {y ∈ Y | supx∈X

{R1(A(x), B(y))× A∗(x)} > 0}.
Proof. It is obvious that→2 satisfies (C1) and (C2), then it follows from Proposition 4.1 that B∗(y) is the MinP-solution. We
only prove RY and RKD as examples, the remainders can be proved similarly.
First, take→2 = RY . Then formula (5) is equal to ((B∗(y))A

∗(x))R1(A(x),B(y)) = (B∗(y))R1(A(x),B(y))×A
∗(x) (y ∈ Y ). If y ∈ E, then

(5) takes the maximum 1 iff B∗(y) = 1. If y ∈ Y − E (i.e. R1(A(x), B(y))× A∗(x) ≡ 0, x ∈ X), then it is independent of B∗(y)
that (5) takes its maximum, thus we should take B∗(y) = 0. Together we get that the conclusion is correct by Definition 4.2.
Second, take→2 = RKD. Then (5) is equal to [R1(A(x), B(y))]′ ∨ (A∗(x))′ ∨ B∗(y) (y ∈ Y ). If y ∈ E, then (5) takes the

maximum 1 iff B∗(y) = 1. If y ∈ Y − E (i.e. R1(A(x), B(y)) × A∗(x) ≡ 0, x ∈ X), then [R1(A(x), B(y))]′ ∨ (A∗(x))′ ≡ 1
(x ∈ X), and it is independent of B∗(y) that (5) takes its maximum, thus we should take B∗(y) = 0. Together we get that the
conclusion is correct by Definition 4.2. �

Proposition 4.5. If →2 is RM , then the MinP-solution B∗(y) = supx∈X {A∗(x) ∧ R1(A(x), B(y))}.
Proof. Note that RM satisfies (C1) and (C2), then it follows from Proposition 4.1 that B∗(y) is MinP-solution. Formula (5) is
equal to R1(A(x), B(y))∧A∗(x)∧B∗(y), and it takes themaximum iff B∗(y) ≥ R1(A(x), B(y))∧A∗(x) (y ∈ Y ). By Definition 4.2,
we know that the conclusion is correct. �

Similar to the induction process of previous propositions in the present paper and Algorithm 4.4.3 (the triple I method
based on RZ ) in [17], we can prove Proposition 4.6.

Proposition 4.6. If →2 is RZ , then the MinP-solution B∗(y) = supx∈Ey{A
∗(x)∧R1(A(x), B(y))}where Ey = {x ∈ X | (A∗(x))′ <

R1(A(x), B(y))} ∩ {x ∈ X | R1(A(x), B(y)) > 1/2}.

Remark 4.5. By previous propositions, we can get triple I solutions where R1 = R2 ∈ {RY , RLa, RR, RKD, RM , RZ }. Hou and Li
et al. gave triple I solutions w.r.t. RLa, RR, RKD in [14], which were all B∗(y) = 1. Subsequently, in [33], Li pointed out that
the triple I solution w.r.t. RLa was B∗(y) =

{
1, y ∈ E
0, y ∈ Y − Ewhere E = {y ∈ Y | supx∈X {R(A(x), B(y)) × A

∗(x)} > 0} (let
R = R1 = R2), which was different from related conclusion in [14]. As for this problem, by Definition 4.2 and correlative
definitions and conclusions from other literatures, we find that the latter is correct. Further, it is found that there are similar
cases in triple I solutions w.r.t. RR, RKD, RY , thus triple I solutions from Proposition 4.4 revise the related conclusions in [14].
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4.4. InfP-solutions

Proposition 4.7. If →2 is RDP , then the InfP-quasi-solution is B∗(y) =
{
1, y ∈ E
0, y ∈ Y − E where E = {y ∈ Y | (∃x)(A

∗(x) ∧
R1(A(x), B(y)) = 1)}.

Proof. We shall prove that B∗(y) satisfies (i) and (ii) in Theorem 4.1.
(i) Suppose that C(y) is any fuzzy set in E and that y0 any element of Y . Then C(y0)makes formula (5), i.e.,

(A(x)→1 B(y0))→DP(A∗(x)→DP C(y0)) (13)

take the maximum for ∀x ∈ X . If y0 ∈ Y − E, then B∗(y0) = 0 ≤ C(y0). If y0 ∈ E, then there exists x0 ∈ X
such that A∗(x0) ∧ R1(A(x0), B(y0)) = 1 (i.e. A∗(x0) = R1(A(x0), B(y0)) = 1), which implies that (13) is equal to
1→DP(1→DP C(y0)) = C(y0), thus we should take C(y0) = 1 in order to make (5) get its maximum. Hence B∗(y0) ≤ C(y0)
holds for ∀y0 ∈ Y , and then we have B∗(y)≤F C(y) for ∀C(y) ∈ E, i.e. B∗(y) satisfies (i) in Theorem 4.1.
(ii) LetD(y) =

{
1, y ∈ E
ε/2, y ∈ Y − E for ∀y0 ∈ Y and ∀ε > 0, thusD(y0) < B

∗(y0)+ε. We shall show thatD(y0)makes formula
(5), i.e.,

(A(x)→1 B(y0))→DP(A∗(x)→DP D(y0)) (14)

take its maximum for ∀x ∈ X . If y0 ∈ E, then D(y0) ∈ E and (14) gets its maximum 1. If y0 ∈ Y − E, then D(y0) = ε/2 and
A∗(x0)∧ R1(A(x0), B(y0)) < 1 for ∀x0 ∈ X , and it is easy to validate that (14) gets its maximum 1. Together we get D(y) ∈ E,
thus B∗(y) satisfies (ii) in Theorem 4.1.
It follows from Theorem 4.1 that B∗(y) is the infimum of E. We show that B∗(y) is not the minimum, thus it is the InfP-

quasi-solution. Indeed, if there exists y0 such that R1(A(x), B(y0)) = 1 and 0 < A∗(x) < 1 (x ∈ X), then y0 ∈ Y − E, thus
B∗(y0) = 0 and formula (5) is equal to 1→DP(A∗(x)→DP 0) = (A∗(x))′ < 1. These imply that B∗(y) cannot ensure that it
makes (5) get its maximum 1 for ∀x ∈ X,∀y ∈ Y . Thus B∗(y) 6∈ E, and B∗(y) is not the minimum of E. �

Proposition 4.8. If →2 is RDP , then the InfP-solution is B∗(y) =
{
1, y ∈ E1
0, y ∈ E2
ε(y), else

where E1 = {y ∈ Y | (∃x)(A∗(x) ∧

R1(A(x), B(y)) = 1)}, E2 = {y ∈ Y | R1(A(x), B(y)) ∨ A∗(x) < 1, x ∈ X}, and ε(y) ∈ (0, 1) is a very small positive
number (y ∈ E).

Proof. If y ∈ E1, then B∗(y) = 1 and B∗(y) obviously makes (5), i.e.,

R1(A(x0), B(y))→DP(A∗(x0)→DP B∗(y)) (15)

take its maximum for ∀x0 ∈ X . If y ∈ E2, then B∗(y) = 0 and R1(A(x0), B(y)) ∨ A∗(x0) < 1 for ∀x0 ∈ X , hence
A∗(x0)→DP B∗(y) ≥ (A∗(x0))′ > 0 and (15) takes the maximum 1. If y ∈ Y − E1 − E2 (i.e., A∗(x) ∧ R1(A(x), B(y)) < 1
for ∀x ∈ X and there exists x ∈ X such that R1(A(x), B(y)) ∨ A∗(x) = 1), then it is easy to validate that (15) takes the
maximum 1. Thus we have B∗(y) ∈ E.
Further, we show that it cannot take B∗(y) = 0 when y ∈ Y − E1 − E2. In fact, if we take B∗(y) = 0 when

y ∈ Y − E1− E2, then B∗(y) cannot ensure that it makes (15) get its maximum 1 because there ordinarily exists x0 ∈ X such
that R1(A(x0), B(y)) ∨ A∗(x0) = 1 and 0 < A∗(x0) ∧ R1(A(x0), B(y)) < 1. It follows from Definition 4.2 that we know the
conclusion is correct. �

Remark 4.6. Note that {y ∈ Y | R1(A(x), B(y)) = 0, A∗(x) = 1, x ∈ X} ∪ {y ∈ Y | R1(A(x), B(y)) = 1, A∗(x) = 0, x ∈ X} ⊂
Y − E1 − E2, thus B∗(y) = 0 and it also makes (5) take its maximum. But we can leave such extreme case out of account.

Similar to Propositions 4.7 and 4.8, we can prove Propositions 4.9 and 4.10.

Proposition 4.9. If →2 is R14, then the InfP-quasi-solution is B∗(y) = 0.

Proposition 4.10. If→2 is R14, then the InfP-solution is B∗(y) =
{
ε(y), y ∈ E
0, else where E = {y | supx∈X {R1(A(x), B(y))∧A

∗(x)} >
0}, and ε(y) ∈ (0, 1) is a very small positive number (y ∈ E).

Remark 4.7. As for the InfP-solution, a new solving idea is given in previous propositions. First, we get the unique InfP-
quasi-solution. Second, it follows from Theorem 4.1 that we achieve the InfP-solution by making slight adjustment to the
InfP-quasi-solution. Obviously, such a solving idea is different from the one of MinP-solutions or triple I solutions.

5. Logic basis of CRI method

Definition 5.1. If a mapping ⊗ : [0, 1]2 → [0, 1] is associative and commutative, and satisfies the conditions 1 ⊗ a = a
and that a ≤ b implies a ⊗ c ≤ b ⊗ c (a, b, c ∈ [0, 1]), then ⊗ is defined as a t-norm. If a t-norm ⊗ satisfies
a⊗∨{xi | i ∈ I} = ∨{a⊗ xi | i ∈ I}where a, xi ∈ [0, 1] and I 6= ∅ (i ∈ I), then it is left-continuous.



1974 Y.-M. Tang, X.-P. Liu / Computers and Mathematics with Applications 59 (2010) 1965–1984

Lemma 5.1 (Wang [19]). Let ⊗ be a left-continuous t-norm, define a → b = ∨{y ∈ [0, 1] | a ⊗ y ≤ b}, then (→,⊗) is a
symmetrical residual pair, and (i) a → b = 1 iff a ≤ b; (ii) a ≤ b → c iff b ≤ a → c; (iii) a → (b → c) = b → (a →
c); (iv) 1→ a = a; (v) ∧{a→ xi | i ∈ I} = a→ ∧{xi | i ∈ I}; (vi) ∨{ai | i ∈ I} → b = ∧{ai → b | i ∈ I}; (vii) a→ b is
increasing w.r.t. b and decreasing w.r.t. a.

Remark 5.1. In Lemma 5.1, we have a ⊗ b = b ⊗ a (noting that ⊗ is a left-continuous t-norm). Thus, the condition of
symmetrical residual pairs (i.e. a ⊗ b ≤ c iff a ≤ b → c), is equivalent to the one of residual pairs (i.e. a ⊗ b ≤ c iff
b ≤ a→ c). This means that (→,⊗) in Lemma 5.1 is also a residual pair.

Definition 5.2. If→: [0, 1]2 → [0, 1] is a strongly residual operator and its residualmapping⊗ is a left-continuous t-norm,
then→ is said to be a t-strongly residual operator.

Proposition 5.1. The implication operator→ gotten in Lemma 5.1 is a t-strongly residual operator.

Proof. Since→ satisfies (i), (v) and (vii) in Lemma 5.1, we have that→ obviously satisfies (C1), (C4) and (C7). Thus it is easy
to get that→ satisfies (C2) and (C3) by Proposition 3.3, hence→ is a strongly residual operator. It follows from Lemma 3.1
that ⊗→ gotten by (6) in Theorem 3.1 is the same as ⊗ in Lemma 5.1. Thus we achieve that→ is a t-strongly residual
operator by Definition 5.2. �

It is easy to prove Proposition 5.2 by Lemma 3.1.

Proposition 5.2. Suppose that, (→1,⊗1) is a residual pair gotten by Lemma 5.1 where ⊗1 is a left-continuous t-norm, and
(→2,⊗2) is a residual pair gotten by Theorem 3.1 where→2 is a t-strongly residual operator, then→1 =→2 iff ⊗1 = ⊗2.

The CRI method is subsequently generalized to the following form

B∗(y) = sup
x∈X
{A∗(x)⊗ R1(A(x), B(y))}, y ∈ Y (16)

where⊗ is a t-norm (see [9,34]). Wang pointed out the fact that the CRI method has no reasonable interpretation in theory
for a long time (see [34]). Aiming at this problem, from the point of view of universal triple I method, we shall give a
interpretation for the CRI method for the case that ⊗ is a left-continuous t-norm. In Proposition 3.2, it is easy to verify
that⊗G,⊗Go,⊗L,⊗0 are t-norms and that others are not.

Lemma 5.2 (Wang [19]). ⊗G,⊗Go,⊗L,⊗0 are all left-continuous t-norms, and their residual implication operations are
respectively RG, RGo, RL, R0.

Theorem 5.1. Suppose that, the CRI solution is expressed as formula (16) where ⊗ is a left-continuous t-norm, and R1 is the
implication operation residual to⊗, then the CRI solution is the MinP-solution where R2 = R1.

Proof. Let R2 be R1, then it follows from Proposition 5.1 that R2 is a strongly residual operator. Since (R2,⊗) is a residual
pair, by Theorem 4.2, we have that the MinP-solution is B∗(y) = supx∈X {A∗(x)⊗ R1(A(x), B(y))} (y ∈ Y ), which is the same
as the CRI solution. �

From Theorems 5.1 and 4.3 and Proposition 4.5, we can obtain Corollary 5.1.

Corollary 5.1. (i) If ⊗ = ⊗G in (16), then the CRI solution is B∗(y) = supx∈X {A∗(x) ∧ R1(A(x), B(y))}, and it is the MinP-
solution where R2 ∈ {RG, RM}.

(ii) If ⊗ = ⊗Go in (16), then the CRI solution is B∗(y) = supx∈X {A∗(x) × R1(A(x), B(y))}, and it is the MinP-solution where
R2 = RGo.

(iii) If ⊗ = ⊗L in (16), then the CRI solution is B∗(y) = supx∈Ey{A
∗(x)+ R1(A(x), B(y))− 1} where Ey = {x ∈ X | (A∗(x))′ <

R1(A(x), B(y))}, and it is the MinP-solution where R2 = RL.
(iv) If ⊗ = ⊗0 in (16), then the CRI solution is B∗(y) = supx∈Ey{A

∗(x) ∧ R1(A(x), B(y))} where Ey = {x ∈ X | (A∗(x))′ <
R1(A(x), B(y))}, and it is the MinP-solution where R2 = R0.

In [11], Wang mentioned several t-norms, such as the t-norm of Dubois–Prade defined as a⊗dp−β b = ab/max(a, b, β)
(β ∈ [0, 1]), the t-norm of Yager defined as a⊗y−ω b = 1 −min[1, ((1 − a)ω + (1 − b)ω)1/ω] (ω ∈ (0,∞)), and Einstein
product defined as a⊗ep b = ab/[2−(a+b−ab)]. Obviously,⊗dp−β = ⊗Gowhereβ = 1; and⊗dp−β = ⊗Gwhereβ = 0. For

⊗y−ω , ifω = 1, then⊗y−ω = ⊗L; ifω = 0.5, then a⊗y−0.5 b =
{
1− (g(a, b))2, g(a, b) ≤ 1
0, g(a, b) > 1where g(a, b) =

√
1− a+

√
1− b.

Proposition 5.3. ⊗dp−β ,⊗ep,⊗y−0.5 are all left-continuous t-norms, and their residual implication operations are respectively

Rdp−β , Rep, Ry−0.5 where Rdp−1 = RGo, Rdp−0 = RG, Rdp−β(a, b) =
{
1, a ≤ b
bβ/a, β ≥ a > b
b, a > b, a > β

(β ∈ (0, 1)), Rep(a, b) ={
1, a ≤ b
(2b− ab)/(a+ b− ab), a > b , Ry−0.5(a, b) =

{
1, a ≤ b
1− (
√
1− b−

√
1− a)2, a > b .
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Proof. We only prove the case of ⊗dp−β as an example. If β = 0, then ⊗dp−0 = ⊗G. If β = 1, then ⊗dp−1 = ⊗Go. Thus it
follows from Lemma 5.2 that⊗dp−β is left-continuous where β ∈ {0, 1}.
If β ∈ (0, 1), then we have three cases to be considered:
(a) Suppose a > β . Thus a⊗dp−β b = a ∧ b, and hence

a⊗dp−β ∨{xi | i ∈ I} = a ∧ (∨{xi | i ∈ I}) = ∨{a ∧ xi | i ∈ I} = ∨{a⊗dp−β xi | i ∈ I}.

(b) Suppose a ≤ β and xi ≤ β for ∀i ∈ I . Thus

a⊗dp−β ∨{xi | i ∈ I} = a× (∨{xi | i ∈ I})/β = ∨{a× xi/β | i ∈ I} = ∨{a⊗dp−β xi | i ∈ I}.

(c) Suppose a ≤ β and (∃i ∈ I)(xi > β). Let J = {j ∈ I | xj > β}, and hence ∨{xi | i ∈ I} = ∨{xj | j ∈ J} holds.
Considering⊗dp−β is a t-norm, we obtain ∨{a⊗dp−β xj | j ∈ J} = ∨{a⊗dp−β xi | i ∈ I}, thus

a⊗dp−β ∨{xi | i ∈ I} = a⊗dp−β ∨{xj | j ∈ J} = a ∧ (∨{xj | j ∈ J}) = ∨{a ∧ xj | j ∈ J}
= ∨{a⊗dp−β xj | j ∈ J} = ∨{a⊗dp−β xi | i ∈ I}.

Thus it follows from Definition 5.1 that⊗dp−β is a left-continuous t-norm.
Further, we shall prove that the implication operator residual to⊗dp−β is Rdp−β . Since a⊗dp−0 b = a ∧ b = a⊗G b and

a⊗dp−1 b = ab = a⊗Go b, then the implication operators residual to⊗dp−0,⊗dp−1 are respectively RG , Rdp−0, RGo , Rdp−1
by Propositions 3.2 and 5.2.

If β ∈ (0, 1), then a⊗dp−β b = ab/max(a, b, β) =
{
ab/β, a ∨ b ≤ β
a, a ≤ b, a ∨ b > β
b, a > b, a ∨ b > β

. Thus it follows from Lemma 5.1 that

Rdp−β(a, b) = ∨{y ∈ [0, 1] | a⊗dp−β y ≤ b}
= ∨({y ∈ [0, 1], a ∨ y ≤ β | a⊗dp−β y ≤ b} ∪ {y ∈ [0, 1], a > y, a ∨ y > β | a⊗dp−β y ≤ b}
∪{y ∈ [0, 1], a ≤ y, a ∨ y > β | a⊗dp−β y ≤ b})

= (∨{y ∈ [0, 1] | a ∨ y ≤ β, ay/β ≤ b}) ∨ (∨{y ∈ [0, 1] | a > y, a ∨ y > β, y ≤ b})
∨(∨{y ∈ [0, 1] | a ≤ y, a ∨ y > β, a ≤ b}).

If a ≤ b, then ∨{y ∈ [0, 1] | a ≤ y, a ∨ y > β, a ≤ b} = 1, and hence Rdp−β(a, b) = 1. If β ≥ a > b, then
Rdp−β(a, b) = (∨{y ∈ [0, 1] | y ≤ bβ/a, y ≤ β}) ∨ (∨∅) ∨ (∨∅) = bβ/a. If a > b, a > β , then Rdp−β(a, b) =
(∨∅) ∨ (∨{y ∈ [0, 1] | y ≤ b}) ∨ (∨∅) = b. Together we get that the implication operator residual to⊗dp−β is Rdp−β . �

Thus the implication operators considered in the present paper are extended from 16 kinds to 19 kinds. Theorem 4.2
is also suitable for Rep, Rdp−β , Ry−0.5. Obviously, Rep, Rdp−β , Ry−0.5 are all regular implication operators. It follows from
Theorem 5.1 and Proposition 5.3 that we can obtain Proposition 5.4.

Proposition 5.4. (i) If ⊗ = ⊗ep in (16), then the CRI solution is B∗(y) = supx∈X {A∗(x)⊗ep R1(A(x), B(y))} (y ∈ Y ), and it is
the MinP-solution where R2 = Rep.

(ii) If ⊗ = ⊗dp−β in (16), then the CRI solution is B∗(y) = supx∈X {A∗(x)⊗dp−β R1(A(x), B(y))} (y ∈ Y ), and it is the MinP-
solution where R2 = Rdp−β .

(iii) If ⊗ = ⊗y−0.5 in (16), then the CRI solution is B∗(y) = supx∈X {A∗(x)⊗y−0.5 R1(A(x), B(y))} (y ∈ Y ), and it is the MinP-
solution where R2 = Ry−0.5.

6. Fuzzy systems constructed by FMP-universal triple I method and their response functions

It is evident that formula (1) is suitable for the case of one rule in FMP problem. If there are n rules, then (1) should be
changed into:

FMP: for n given rules Ai → Bi and input A∗, to compute B∗ (output).

The inference relation of rule Ai → Bi can be regarded as a fuzzy relation from X to Y (i = 1, . . . , n), denoting by
Ai(x)→1 Bi(y) where implication operator→1 is previously chosen, and the whole reference rule should be R1(x, y) ,
∨
n
i=1(Ai(x)→1 Bi(y)) (see [14–16]). Thus formula (5), i.e. R1(A(x), B(y))→2(A∗(x)→2 B∗(y)), should be changed into:

R1(x, y)→2(A∗(x)→2 B∗(y)). (17)

Proposition 6.1. Suppose that→2 ∈ {RG, RGo, RM , R0, RL, RZ , RLa, RR, RY , RKD, RDP , RGR, R13, R14, R15, R16, Rep, Rdp−β , Ry−0.5},
and the FMP-solution derived from formula (5) is ϕ(R1(A(x), B(y))), then the FMP-solution derived from formula (17) is
ϕ(R1(x, y)).

Proof. Let →2 ∈ {RG, RGo, RM , R0, RL, RZ , RLa, RR, RY , RKD, RDP , RGR, R13, R14, R15, R16, Rep, Rdp−β , Ry−0.5}. By foregoing
proving process and conclusions of FMP-solutions, we have that the process of getting solutions derived from (5) regards
R1(A(x), B(y)) (or written as A(x)→1 B(y)) as a single whole. It is obvious that there is R1(x, y) instead of R1(A(x), B(y))
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in (17) comparing with (5), which is the unique difference. If we replace every R1(A(x), B(y)) with R1(x, y) in the solving
process derived from (5), then we achieve the one derived from (17), thus it is easy to get that the conclusion is correct. �

The process of fuzzy reasoning from the fuzzy set A∗(x) to B∗(y) has been given in the present paper. However, from the
point of view of a whole fuzzy system, fuzzier and defuzzier should also be considered. The methods in common use are the
singleton fuzzier and centroid defuzzier (see [10,14–16]). First, transform x∗ into a singleton A∗(x) =

{
1, x = x∗

0, x 6= x∗ . Second,
carry through fuzzy reasoning via the FMP-universal triple I method to get fuzzy set B∗(y). Lastly, use centroid defuzzier to
achieve:

y∗ =
∫
Y
yB∗(y)dy

/∫
Y
B∗(y)dy.

Thus, there is output y∗ = F(x∗) for each input x∗. Then awhole single-input single-output (SISO) fuzzy system is constructed
where y = F(x) is said to be the response function of this fuzzy system.
But the centroid method makes no sense when B∗(y) ≡ 0. In [11], Wang made mention of several defuzziers including

centroid defuzzier, center average defuzzier and defuzzier of average from the maximum. And the last one (i.e. defuzzier of
average from the maximum), which takes

y∗ =
∫
hgt(Y )

ydy
/∫

hgt(Y )
dy

where hgt(B∗) = {y ∈ Y | B∗(y) = supy∈Y B∗(y)}, is partly similar to the centroid defuzzier. Thus, we mainly adopts the
centroid defuzzier, but utilizes the defuzzier of average from themaximumonly if B∗(y) ≡ 0 (notice here hgt(Y ) = Y ) in the
SISO fuzzy system in the present paper. Such a method (which uses two defuzziers) has already been proved to be effective
in [16].

Definition 6.1. Let Z be any nonempty set and C = {Ci}(1≤i≤n) a family of normal fuzzy sets on Z where the peak-point of
Ci is zi (i.e. the unique point satisfying Ci(zi) = 1 in Z). C is called a fuzzy partition of Z if (∀z ∈ Z)

(∑n
i=1 Ci(z) = 1

)
holds,

and Ci is defined as a base element in C. Thus C is also said to be a group of base elements of Z .

Remark 6.1. Definition 6.1 obviously implies (∀i, j) (i 6= j ⇒ zi 6= zj) and that C has Kronecker property, i.e. Ci(zj) = δij
where δij =

{
1, i = j
0, i 6= j .

To analyze response functions of fuzzy systems, suppose that A = {Ai}(1≤i≤n) and B = {Bi}(1≤i≤n) are respectively fuzzy
partitions of X and Y where Ai, Bi are integrable functions. We assume that X and Y are all real number intervals, e.g.,
X = [a, b] and Y = [c, d] in which a < x1 < x2 < · · · < xn < b, c < y1 < y2 < · · · < yn < d where xi, yi are
respectively peak-points of Ai, Bi. It is obvious that A and B have Kronecker property: Ai(xj) = δij = Bi(yj) since they are all
fuzzy partitions. Take h1 = y1 − c , hi = yi − yi−1 (i = 2, 3, . . . , n) and h = max1≤i≤n{hi}. From the definition of definite
integral, for the centroid defuzzier, we obtain:

y∗ =
∫
Y
yB∗(y)dy

/∫
Y
B∗(y)dy ≈

[
n∑
i=1

yiB∗(yi)hi

]/[
n∑
i=1

B∗(yi)hi

]
. (18)

Similarly, for the defuzzier of average from the maximum, we get:

y∗ =
∫
hgt(Y )

ydy
/∫

hgt(Y )
dy ≈

n∑
i=1

yihi

/ n∑
i=1

hi , c0.

The response functions of some fuzzy systems constructed by the FMP-universal triple I method will be given in what
follows.

Theorem 6.1. Let→2 ∈ {R0, RL, RZ , R13}.
(i) If →1 satisfies (C5), then the SISO fuzzy system constructed by the FMP-universal triple I method (FMP-

universal triple I system for short) is approximately a step response function (i.e. F(x) = c0). Especially, if →1 ∈

{RL, RG, RGo, R0, RGR, RDP , RKD, RR, RY , R13, R15, R16, Rep, Rdp−β , Ry−0.5}, then we have the same conclusion.
(ii) If →1 satisfies (C6), then there are two cases to be considered: (a) Suppose x∗ ∈ Ey. There exists a group of base functions

A∗ = {A∗i }(1≤i≤n) such that the FMP-universal triple I system is approximately a univariate piecewise interpolation function
regarding A∗i as its base functions (i.e. F(x) =

∑n
i=1 A

∗

i (x)yi), and A∗ is a fuzzy partition on X. Especially, if {yi}(1≤i≤n) is an
equidistant partition, then A∗ degenerates into A (i.e. F(x) =

∑n
i=1 Ai(x)yi). (b) Suppose x

∗
∈ X − Ey. The FMP-universal

triple I system is approximately a step response function (i.e. F(x) = c0).
Especially, if →1 ∈ {RM , RLa, R14}, then we have the same conclusion.
(iii) If →1 is RZ , then there are two cases to be considered: (a) Suppose x∗ ∈ Ey. There exists a group of base functions

A∗ = {A∗i }(1≤i≤n) such that the FMP-universal triple I system is approximately a univariate piecewise fitted function regarding A
∗

i
as its base functions (i.e. F(x) =

∑n
i=1 A

∗

i (x)yi). (b) Suppose x
∗
∈ X − Ey. The FMP-universal triple I system is approximately a

step response function (i.e. F(x) = c0).
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Proof. We only prove the case of →2 = R0 as an example. It follows from Theorem 4.3 and Proposition 6.1 that the
MinP-solution can be expressed as B∗(y) = supx∈Ey{A

∗(x) ∧ R1(x, y)} where Ey = {x ∈ X | (A∗(x))′ < R1(x, y)} and

R1(x, y) =
∨n
i=1 R1(Ai(x), Bi(y)). As for input x

∗, we get a singleton A∗x∗ , A
∗(x) =

{
1, x = x∗

0, x 6= x∗ .
(i) If→1 satisfies (C5), then we have two cases to be considered.
(a) Suppose x∗ ∈ Ey. By the structure of Ey, we have Ey = {x∗} and then the MinP-solution can be expressed as

B∗(y) = R1(x∗, y) =
∨n
i=1 R1(Ai(x

∗), Bi(y)). Since Bk(yi) = δki, it follows from (18) that

y∗ ≈

n∑
i=1
yiB∗(yi)hi

n∑
i=1
B∗(yi)hi

=

n∑
i=1
hi[

n∨
k=1
R1(Ak(x∗), Bk(yi))]yi

n∑
i=1
hi[

n∨
k=1
R1(Ak(x∗), Bk(yi))]

=

n∑
i=1
hiyi

n∑
i=1
hi
= c0.

(b) Suppose x∗ 6∈ Ey. We have B∗(y) = 0 and then the centroid method makes no sense, so we utilize the defuzzier of
average from the maximum. Thus we obtain y∗ ≈ c0 and the response function can be expressed as F(x) = c0.
It follows from Propositions 3.1 and 5.3 and Lemma 5.1 that RL, RG, RGo, R0, RGR, RDP , RKD, RR, RY , R13, R15, R16, Rep, Rdp−β ,

Ry−0.5 satisfy (C5), thus we have the same conclusion.
(ii) If→1 satisfies (C6), then we have two cases to be considered.
(a) Suppose x∗ ∈ Ey. It is similar to get Ey = {x∗} and B∗(y) =

∨n
i=1 R1(Ai(x

∗), Bi(y)). Since Bk(yi) = δki, it follows from
(18) that

y∗ ≈

n∑
i=1
yiB∗(yi)hi

n∑
i=1
B∗(yi)hi

=

n∑
i=1
hi[

n∨
k=1
R1(Ak(x∗), Bk(yi))]yi

n∑
i=1
hi[

n∨
k=1
R1(Ak(x∗), Bk(yi))]

=

n∑
i=1
hiAi(x∗)yi

n∑
i=1
hiAi(x∗)

.

Denote A∗i (x
∗) , hiAi(x∗)/

[∑n
i=1 hiAi(x

∗)
]
, then we have y∗ =

∑n
i=1 A

∗

i (x
∗)yi. Let A∗ , {A∗i }(1≤i≤n), F(x) ,

∑n
i=1 A

∗

i (x)yi.
Considering Ak(xi) = δki (i, k = 1, . . . , n), it follows

F(xi) =
n∑
k=1

A∗k(xi)yk =
n∑
k=1

hkAk(xi)yk

/ n∑
k=1

hkAk(xi) = yi (i = 1, . . . , n),

then F(x) is a univariate piecewise interpolation functionwhich regards A∗i as its base functions. Furthermore,
∑n
i=1 A

∗

i (x) =∑n
i=1

[
hiAi(x)/

(∑n
i=1 hiAi(x)

)]
= 1 holds for ∀x ∈ X , thus A∗ is a fuzzy partition on X . At last, if {yi}(1≤i≤n) is an equidistant

partition (i.e. (∀i)(hi = h)), then it is evident that A∗i = Ai, A
∗
= A, and hence F(x) =

∑n
i=1 Ai(x)yi.

(b) Suppose x∗ ∈ X − Ey. We can similarly obtain y∗ ≈ c0. Consequently, the conclusion is correct.
It follows from Proposition 3.1 that RM , RLa, R14 satisfy (C6), thus we have the same conclusion.
(iii) If→1 = RZ , then we have two cases to be considered.
(a) Suppose x∗ ∈ Ey. Similarly we have Ey = {x∗} and B∗(y) = R1(x∗, y) =

∨n
i=1 RZ (Ai(x

∗), Bi(y)). Since Bk(yi) = δki, it
follows from (18) that

y∗ ≈

n∑
i=1
yiB∗(yi)hi

n∑
i=1
B∗(yi)hi

=

n∑
i=1
hi[

n∨
k=1
((1− Ak(x∗))

∨
(Ak(x∗) ∧ Bk(yi)))]yi

n∑
i=1
hi[

n∨
k=1
((1− Ak(x∗))

∨
(Ak(x∗) ∧ Bk(yi)))]

=

n∑
i=1
hi[Ai(x∗)

∨
(
n∨
k=1
(1− Ak(x∗)))]yi

n∑
i=1
hi[Ai(x∗)

∨
(
n∨
k=1
(1− Ak(x∗)))]

.

Denote Ci(x∗) , Ai(x∗) ∨ (
∨n
k=1(1 − Ak(x

∗))) and A∗i (x
∗) , hiCi(x∗)/

∑n
i=1 hiCi(x

∗), then y∗ ≈
∑n
i=1 A

∗

i (x
∗)yi. Let

A∗ , {A∗i }(1≤i≤n) and F(x) ,
∑n
i=1 A

∗

i (x)yi. Since Ak(xi) = δki, we obtain:

F(xi) =

n∑
j=1
hj[Aj(xi) ∨ (

n∨
k=1
(1− Ak(xi)))]yj

n∑
j=1
hj[Aj(xi) ∨ (

n∨
k=1
(1− Ak(xi)))]

=

n∑
j=1
hjyj

n∑
j=1
hj
= c0 (i = 1, . . . , n).

Obviously, it cannot make F(xi) = yi hold for any i, thus F(x) is a univariate piecewise fitted function which regards A∗i as
its base functions.
(b) Suppose x∗ ∈ X − Ey. We can similarly obtain y∗ ≈ c0, thus the conclusion is correct. �
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Remark 6.2. From Theorem 6.1, if→1 = →2 ∈ {R0, RL, R13} (which is the case of the triple I method), then response
function is a step response function, which can hardly be used in practical fuzzy system. However, whenwe let→1 be other
implication operator (e.g.→1 ∈ {RM , RLa, R14, RZ }), the corresponding fuzzy systems can be used and then their capabilities
are greatly improved. Thus the FMP-universal triple I method provides some ideal choices which cannot be offered by the
triple I method of FMP. This implies that the FMP-universal triple I method is more excellent.

Theorem 6.2. Let→2 ∈ {RG, RGo, RM}.
(i) If →1 satisfies (C5), then the conclusion is the same as Theorem 6.1(i).
(ii) If→1 satisfies (C6), then there exists a group of base functionsA∗ = {A∗i }(1≤i≤n) such that the FMP-universal triple I system

is approximately a univariate piecewise interpolation function taking A∗i as its base functions (i.e. F(x) =
∑n
i=1 A

∗

i (x)yi), and A∗

is a fuzzy partition on X; especially, if {yi}(1≤i≤n) is an equidistant partition, thenA∗ degenerates intoA (i.e. F(x) =
∑n
i=1 Ai(x)yi).

Especially, if →1 ∈ {RM , RLa, R14}, then we have the same conclusion.
(iii) If →1 is RZ , then there exists a group of base functions A∗ = {A∗i }(1≤i≤n) such that the FMP-universal triple I system is

approximately a univariate piecewise fitted function taking A∗i as its base functions (i.e. F(x) =
∑n
i=1 A

∗

i (x)yi).

Proof. We only prove the case of→2 = RG as an example. It follows from Theorem 4.3 and Proposition 6.1 that the MinP-
solution can be expressed as B∗(y) = supx∈X {A∗(x) ∧ R1(x, y)} where R1(x, y) =

∨n
i=1 R1(Ai(x), Bi(y)). As for input x

∗, we
get a singleton A∗x∗ . Thus B

∗(y) = R1(x∗, y) =
∨n
i=1 R1(Ai(x

∗), Bi(y)).
(i) Suppose that→1 satisfies (C5). Since Bk(yi) = δki, it follows from (18) that

y∗ ≈

n∑
i=1
yiB∗(yi)hi

n∑
i=1
B∗(yi)hi

=

n∑
i=1
hi[

n∨
k=1
R1(Ak(x∗), Bk(yi))]yi

n∑
i=1
hi[

n∨
k=1
R1(Ak(x∗), Bk(yi))]

=

n∑
i=1
hiyi

n∑
i=1
hi
= c0.

Therefore the response function can be expressed as F(x) = c0. Similar to Theorem 6.1(i), we can get the same conclusion
for the case of→1 ∈ {RL, RG, RGo, R0, RGR, RDP , RKD, RR, RY , R13, R15, R16, Rep, Rdp−β , Ry−0.5}.
(ii) Suppose that→1 satisfies (C6). It is similar to Theorem 6.1(ii) (when x∗ ∈ Ey) that we can prove it. Moreover, it

follows from Proposition 3.1 that RM , RLa, R14 satisfy (C6), thus we have the same conclusion.
(iii) Suppose that→1 = RZ . It is similar to Theorem 6.1(iii) (when x∗ ∈ Ey) that we can prove it. �

Theorem 6.3. Let→2 ∈ {RLa, RY , RR, RKD, RGR, R15, R16}, then the FMP-universal triple I system is approximately a step response
function (i.e. F(x) = c0).

Proof. Suppose that →2 ∈ {RLa, RY , RR, RKD}. We only prove the case of →2 = RLa as an example. It follows from
Propositions 4.4 and 6.1 that the MinP-solution can be expressed as B∗(y) =

{
1, y ∈ E
0, y ∈ Y − E where E = {y ∈ Y |

supx∈X {R1(x, y) × A∗(x)} > 0} and R1(x, y) =
∨n
i=1 R1(Ai(x), Bi(y)). As for input x

∗, we get a singleton A∗x∗ . We have two
cases to be considered.
(a) Suppose R1(x∗, y) > 0. Then we get y ∈ E and B∗(y) = 1, therefore

y∗ ≈

n∑
i=1
yiB∗(yi)hi

n∑
i=1
B∗(yi)hi

=

n∑
i=1
yihi

n∑
i=1
hi
= c0.

(b) Suppose R1(x∗, y) = 0. Thenwe get y ∈ Y−E and B∗(y) = 0, thus the centroidmethodmakes no sense andwe utilize
the defuzzier of average from the maximum, then we obtain y∗ ≈ c0. Therefore the response function can be expressed as
F(x) = c0.
Suppose that→2 ∈ {RGR, R15, R16}. We only prove the case of→2 = R16 as an example. The MinP-solution can be

expressed as B∗(y) = supx∈Ey{A
∗(x)} where Ey = {x ∈ X | (A∗(x))′ < R1(x, y)}. For the case of x∗ ∈ Ey, we have Ey = {x∗}

and B∗(y) = 1. For the case of x∗ 6∈ Ey, we have B∗(y) = 0. It is similar to Theorem 6.1(i) that we can obtain the response
function which is expressed as F(x) = c0. �

When→2 ∈ {RG, RM , RGo, RL, R0, Rep, Rdp−β , Ry−0.5}, the FMP-universal triple I method degenerates into the CRI method
(by Corollary 5.1 and Proposition 5.4). Thus, in Theorems 6.1 and 6.2, we have already given the conclusions of the CRI
method corresponding to→2 ∈ {RG, RM , RGo, RL, R0}. When→1 =→2, the FMP-universal triple I method degenerates into
the triple I method for the FMP problem, and we can easily achieve the following corollary.

Corollary 6.1. Let→1 =→2 ,→ (i.e., aiming at the case of the triple Imethod).
(i) Suppose that →∈ {R0, RL, R13, RG, RGo, RLa, RR, RY , RKD, RGR, R15, R16}, then the FMP-universal triple I system is

approximately a step response function.
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(ii) Suppose that → is RM , then there exists a group of base functions A∗ = {A∗i }(1≤i≤n) such that the FMP-universal
triple I system is approximately a univariate piecewise interpolation function which takes A∗i as its base functions.
(iii) Suppose that → is RZ , then there are two cases to be considered: (a) Suppose x∗ ∈ Ey, there exists A∗ = {A∗i }(1≤i≤n)

such that the FMP-universal triple I system is approximately a univariate piecewise fitted function which regards A∗i as its base
functions. (b) Suppose x∗ ∈ X − Ey, the FMP-universal triple I system is approximately a step response function.

Remark 6.3. In [14], Li provided response functions of the triple I methods based on some implication operators, which
uniformly used the centroid method, and took complementary definition when B∗(y) ≡ 0. For example, let→ be RZ . When
x∗ 6∈ Ey, B∗(y) ≡ 0 and Li took B∗(y) = sup{A∗(x) ∧ RZ (x, y)}, and then got y∗ by the centroid method in [14]. It is obvious
that such treating method violates the fact that B∗(y) is a constant. However, in the present paper, we utilize the defuzzier
of average from the maximum and achieve y∗ ≡ c0, thus it is evident that this treating method in the present paper is more
reasonable.

The response function where→2 ∈ {R0, RL, RZ , R13, RG, RGo, RM , RLa, RR, RY , RKD, RGR, R15, R16} has been given. But it
becomes complicated for the case of→2 ∈ {RDP , R14, Rdp−β , Rep, Ry−0.5}, so we do not investigate it here. Especially, when
→2 ∈ {RDP , R14}, it is corresponding to the InfP-solution whose properties (including response ability) are also interesting
research topics, which will be analyzed in other paper in the future.
We shall summarize the FMP-universal triple I method.
By previous theorems, such FMP-universal triple I systems can be divided into 3 kinds. (i) The FMP-universal triple I

system is approximately an interpolation function. Thus it can be universal approximator and then usable in practice, such
as the FMP-universal triple I system where (→1,→2) ∈ {RM , RLa, R14} × {R0, RL, RZ , R13, RG, RGo, RM} (which may demand
x∗ ∈ Ey). (ii) The FMP-universal triple I system is approximately a fitted function. Hence it may be usable, such as the FMP-
universal triple I system where (→1,→2) ∈ {RZ } × {R0, RL, RZ , R13, RG, RGo, RM} (which may demand x∗ ∈ Ey). (iii) The
FMP-universal triple I system is approximately a step response function. Thus it only has step response ability, therefore
it can hardly be used in practice, such as the FMP-universal triple I system where→2 ∈ {RLa, RR, RY , RKD, RGR, R15, R16} or
(→1,→2) ∈ {RL, RG, RGo, R0, RGR, RDP , RKD, RR, RY , R13, R15, R16, Rep, Rdp−β , Ry−0.5} × {R0, RL, RZ , R13, RG, RGo, RM}.
Considering related CRI method and triple I method, it is similar to get corresponding conclusions. The CRI system

(i.e. the SISO fuzzy system constructed by the CRI method) where (→1,→2) ∈ {RM , RLa, R14, RZ } × {RG, RGo, RM , R0, RL}
can be practicable. Meanwhile, the triple I system (i.e. the SISO fuzzy system constructed by the triple I method) where
→∈ {RM , RZ } can be practicable, however the triple I system where→∈ {R0, RL, R13, RG, RGo, RLa, RR, RY , RKD, RGR, R15, R16}
can hardly be used.
It is readily seen that the FMP-universal triple I method provides some effective choices which cannot be offered by the

CRImethod and triple Imethod of FMP. Therefore, the FMP-universal triple Imethod has bigger choosing space, and there are
more useful FMP-universal triple I systems than the CRI systems and triple I systems. In practical application, such as design
of fuzzy controllers, we can get better andmore usable fuzzy controllers (e.g. having universal approximation, stability) and
fuzzy reasoning strategies. Consequently, from such point of view, the FMP-universal triple I method is superior.
Meanwhile, the FMP-universal triple I method has close relationship with the triple I method and CRI method. Thus it

provides an important idea to investigate the latter twomethods, which is analyzed from the characteristic and relationship
of→1 and→2. So the research of universal triple I methodwill help to obtain the essence of triple I method and CRImethod,
and to achieve the contacts and differences between them.
Further, we shall analyze the significance of generalization from the triple I method to the universal triple I method. The

triple I method is proposed for formula (4) (i.e. (A(x) → B(y)) → (A∗(x) → B∗(y))). But it follows from Theorem 6.3
that the FMP-solution and its response function are totally determined by the second and third implication operator
in formula (4) (corresponding to →2 in (5)) if →2 ∈ {RLa, RY , RR, RKD, RGR, R15, R16}. And, by Theorems 6.1 and 6.2, if
→2 ∈ {R0, RL, RZ , R13, RG, RGo, RM}, then the response function is unitedly determined by→1 and→2. So it is reasonable to
let the first implication operator take→1, and the second and third operators take→2. Thus, it has clear basis to generalize
(4) to (5) (i.e. (A(x)→1 B(y))→2(A∗(x)→2 B∗(y))). Moreover, from the previous conclusions, in the basically same range,
there are only two usable fuzzy systems via the triple I method, and meanwhile there are 28 usable fuzzy systems via the
universal triple I method. As a result, the overladen request to keep→1 = →2 holds back the development of the triple I
method to a certain extent. Summarizing the above, it has clear theoretical value and practical meaning to generalize the
triple I method to the universal triple I method.

7. FMT-universal triple I method

In this section, we shall focus on the FMT problem expressed as (2).

Definition 7.1. Suppose that A ∈ F(X), B, B∗ ∈ F(Y ), nonempty set F is the set of A∗(x) which makes (5) get its maximum
for any x ∈ X and y ∈ Y in 〈F(X),≤F 〉, C∗(x) is the supremum of F. If C∗(x) is the maximum of F, then C∗(x) is called a
MaxT-solution. If C∗(x) is not the maximum of F, then C∗(x) is called a SupT-quasi-solution; in F, pick out a fuzzy set C∗∗(x)
as big as possible, and call C∗∗(x) a SupT-solution.
Let FMT-universal triple I solution (FMT-solution for short) be a general designation ofMaxT-solution and SupT-solution.
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It is similar to Theorem 4.1 that we can prove Theorem 7.1.

Theorem 7.1. There exists a unique fuzzy set C∗(x) such that
(i) C(x)≤F C∗(x) for ∀C(x) ∈ F, and
(ii) there is D(x) ∈ F satisfying D(x0) > C∗(x0)− ε for ∀x0 ∈ X and ∀ε > 0;
then C∗(x) is the supremum of F. Specially, if C∗(x) ∈ F also holds, then C∗(x) is a MaxT-solution.

Definition 7.2. A residual operator R is called a FMT-residual operator if it satisfies the following conditions:
(C9) R(a, b) is decreasing w.r.t. a (a, b ∈ [0, 1]);
(C10) R(a, b) is left-continuous w.r.t. a (a ∈ (0, 1], b ∈ [0, 1]).

Especially, if R also satisfies (C4), then R is said to be a FMT strongly residual operator.

It is similar to Proposition 4.1 that we can prove Proposition 7.1.

Proposition 7.1. If R2 is a FMT-residual operator, then the FMT-solution A∗(x) is the MaxT-solution, and the maximum of (5) is
N(x, y) = (A(x)→1 B(y))→2(0→2 B∗(y)).

Corollary 7.1. If R2 is a FMT strongly residual operator, then the FMT-solution A∗(x) is the MaxT-solution, and the maximum of
(5) is N(x, y) = 1.

Definition 7.3. We say that an implication operator R has contrapositive symmetry if it satisfies
(C11) R(a, b) = R(b′, a′) (a, b ∈ [0, 1]).

If a residual operator R has contrapositive symmetry, then define R as a symmetrical residual operator. If a symmetrical
residual operator R is also a strongly residual operator, then call R a strongly symmetrical residual operator.

Similar to Theorem 4.2, we can prove Theorem 7.2.

Theorem 7.2. Suppose that, R2 is a strongly symmetrical residual operator, and⊗ is its residual mapping, then theMaxT-solution
can be expressed as A∗(x) = infy∈Y {B∗(y)⊕ (R1(A(x), B(y)))′} (x ∈ X) where a⊕ b = (a′ ⊗ b′)′ (a, b ∈ [0, 1]).

Lemma 7.1. RL, R0, RGR, RDP , RKD, RR, R13 satisfy (C11) in the considered 19 implication operators.

Corollary 7.2. Suppose that, R2 ∈ {RL, R0, RGR, R13}, and ⊗ is the residual operation w.r.t. R2, then the MaxT-solution can be
expressed as A∗(x) = infy∈Y {B∗(y)⊕ (R1(A(x), B(y)))′}, x ∈ X.

Theorem 7.3. Suppose that→2 satisfies (C4) and
(C12) a ≤ R(b, c) iff b ≤ R(a, c) (a, b, c ∈ [0, 1]),
then MaxT-solution can be expressed as A∗(x) = infy∈Y {R1(A(x), B(y))→2 B∗(y)}, x ∈ X.

Proof. First, we shall prove:

(A(x)→1 B(y))→2(A∗(x)→2 B∗(y)) = 1, x ∈ X, y ∈ Y . (19)

In fact, it follows from the expression of A∗(x) that A∗(x) ≤ R1(A(x), B(y))→2 B∗(y), x ∈ X, y ∈ Y . Since→2 satisfies (C12),
we have R1(A(x), B(y)) ≤ A∗(x)→2 B∗(y). Thus formula (19) holds (noting that→2 satisfies (C4)).
Second, we shall show that A∗(x) is the maximum. Let C(x) ∈ F, then (A(x)→1 B(y))→2(C(x)→2 B∗(y)) = N(x, y) = 1

(x ∈ X, y ∈ Y ) since →2 satisfies (C4) and (C12). And we get R1(A(x), B(y)) ≤ C(x)→2 B∗(y) and then C(x) ≤
R1(A(x), B(y))→2 B∗(y). Therefore C(x) is a lower bound of

{R1(A(x), B(y))→2 B∗(y) | y ∈ Y }, x ∈ X .

Thus, it follows from the expression of A∗(x) that C(x) ≤ A∗(x) (x ∈ X).
Together we obtain that A∗(x) is the MaxT-solution by Definition 7.1. �

Lemma 7.2. RL, RG, RGo, R0, Rdp−β , Rep, Ry−0.5 satisfy (C12) in the considered 19 implication operators.

Corollary 7.3. If →2 ∈ {RL, RG, RGo, R0, Rdp−β , Rep, Ry−0.5}, then MaxT-solution can be expressed as A∗(x) =

infy∈Y {R1(A(x), B(y))→2 B∗(y)}, x ∈ X.

Definition 7.4. If a regular implication operator R satisfies (C11), then R is said to be normal.

From Proposition 4.3, we can get Lemma 7.3. If R1 = R2, then the MaxT-solution degenerates into the triple I solution of
FMT, and we have Corollary 7.4 from Theorem 7.2.

Lemma 7.3. Normal implication operators are all strongly symmetrical residual operators.
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Corollary 7.4. Suppose that, R2 is a strongly symmetrical residual operator, and⊗ its residual mapping, and take R1 = R2 , R,
then the MaxT-solution (i.e. the triple I solution of FMT) can be expressed as A∗(x) = infy∈Y {B∗(y) ⊕ (R(A(x), B(y)))′} where
a⊕ b = (a′ ⊗ b′)′ (a, b ∈ [0, 1], x ∈ X).

By Lemma 7.3, it follows fromCorollary 7.4 thatwe can get Corollary 7.5. From Theorem 7.3, we can achieve Corollary 7.6.

Corollary 7.5. Suppose that, R2 is a normal implication operator, and ⊗ its residual mapping, and take R1 = R2 , R, then
the MaxT-solution (i.e. the triple I solution of FMT) can be expressed as A∗(x) = infy∈Y {B∗(y) ⊕ (R(A(x), B(y)))′} where
a⊕ b = (a′ ⊗ b′)′ (a, b ∈ [0, 1], x ∈ X).

Corollary 7.6. Suppose that, R2 satisfies (C4) and (C12), and take R1 = R2 , R, then the MaxT-solution (i.e. the triple I solution
of FMT) can be expressed as A∗(x) = infy∈Y {R(R(A(x), B(y)), B∗(y))}, x ∈ X.

Remark 7.1. Corollary 7.5 is the same as Theorem 2 in Ref. [19], while Corollary 7.5 is a special case of Corollary 7.4 which
can be applicable for more implication operators. The form of triple I solution in Corollary 7.6 is the same as Corollary 3.3
in Ref. [31], however the latter needs the conditions of (C4), (C12), (C7) and (C8). Thus Corollary 3.3 in Ref. [31] is a special
case of Corollary 7.6 in the present paper.

8. α-universal triple I method

It is similar to the idea of universal triple I method, the α-triple I method can be generalized to the α-universal triple I
method. We define the α-universal triple I method as the α-triple I method derived from

(A(x)→1 B(y))→2(A∗(x)→2 B∗(y)) ≥ α. (20)
If the maximum of (5) is constantly 1 (e.g., when→2 is a strongly residual operator), then the universal triple I method can
be regarded as the α-universal triple I method where α = 1, so it is a special case of the α-universal triple I method. But, if
the maximum of (5) is not constantly a number (e.g., when→2 ∈ {RZ , RM}), then the universal triple I method has no direct
relationship with the α-universal triple I method.
The α-FMP-solution will be defined in what follows, and the definition of α-FMT-solution (including α-MaxT-solution,

α-SupT-quasi solution, α-SupT-solution and Fα) can be achieved similarly. For convenience, assume that Eα and Fα are
nonempty sets.

Definition 8.1. Suppose that A, A∗ ∈ F(X), B ∈ F(Y ), nonempty set Eα is the set of B∗(y) which makes (20) hold for any
x ∈ X and y ∈ Y in 〈F(Y ),≤F 〉, D∗(y) is the infimum of Eα . If D∗(y) is the minimum of Eα , then D∗(y) is called an α-MinP-
solution. If D∗(y) is not the minimum of Eα , then D∗(y) is called an α-InfP-quasi solution; in Eα , pick out a fuzzy set D∗∗(y)
as small as possible, and call D∗∗(y) an α-InfP-solution.
Let α-FMP-universal triple I solution (α-FMP-solution for short) be a general designation of α-MinP-solution and α-InfP-

solution.

It is similar to Theorem 4.1 that we can prove Theorems 8.1 and 8.2.

Theorem 8.1. There exists a unique fuzzy set D∗(y) such that
(i) D∗(y)≤F D(y) for ∀D(y) ∈ Eα , and
(ii) there is C(y) ∈ Eα satisfying C(y0) < D∗(y0)+ ε for ∀y0 ∈ Y and ∀ε > 0;
then D∗(y) is the infimum of Eα . Specially, if D∗(y) ∈ Eα also holds, then D∗(y) is an α-MinP-solution.

Theorem 8.2. There exists a unique fuzzy set C∗(x) such that
(i) C(x)≤F C∗(x) for ∀C(x) ∈ Fα , and
(ii) there is D(x) ∈ Fα satisfying D(x0) > C∗(x0)− ε for ∀x0 ∈ X and ∀ε > 0;
then C∗(x) is the supremum of Fα . Specially, if C∗(x) ∈ Fα also holds, then C∗(x) is an α-MaxT-solution.

Theorem 8.3. Suppose that,→2 is a residual operator, and⊗ its residual mapping, then the α-MinP-solution can be expressed
as

B∗(y) = sup
x∈X
{A∗(x)⊗ [R1(A(x), B(y))⊗ α]}, y ∈ Y . (21)

Specially, if →2 ∈ {RG, RL, R0, RGo, RGR, RKD, RR, RY , R13, R15, R16, Rdp−β , Rep, Ry−0.5}, then we have the same conclusion.

Proof. First, we shall prove:

(A(x)→1 B(y))→2(A∗(x)→2 B∗(y)) ≥ α, x ∈ X, y ∈ Y . (22)

In fact, it follows from the expression of B∗(y) that A∗(x)⊗ [R1(A(x), B(y))⊗ α] ≤ B∗(y), x ∈ X, y ∈ Y . Since (→2,⊗) is a
residual pair, we obtain: R1(A(x), B(y)) ⊗ α ≤ A∗(x)→2 B∗(y) and then α ≤ R1(A(x), B(y))→2(A∗(x)→2 B∗(y)), i.e. (22)
holds. Thus B∗(y) ∈ Eα .
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Second, we shall show that B∗(y) is the minimum. Let D(y) ∈ Eα , then (A(x)→1 B(y))→2(A∗(x)→2 D(y)) ≥ α
(x ∈ X, y ∈ Y ). Since (→2,⊗) is a residual pair, we obtain: R1(A(x), B(y)) ⊗ α ≤ A∗(x)→2 D(y) and then A∗(x) ⊗
[R1(A(x), B(y))⊗ α] ≤ D(y) (x ∈ X, y ∈ Y ). Hence, D(y) is an upper bound of

{A∗(x)⊗ [R1(A(x), B(y))⊗ α] | x ∈ X}, y ∈ Y .

Thus it follows from (21) that B∗(y)≤F D(y). These imply that B∗(y) is the minimum of Eα .
Together we get that B∗(y) is the α-MinP-solution by Definition 8.1. Especially, if→2 ∈ {RG, RL, R0, RGo, RGR, RKD, RR, RY ,

R13, R15, R16, Rdp−β , Rep, Ry−0.5}, then→2 is a residual operator, thus we have the same conclusion. �

If R1 = R2, then the α-MinP-solution degenerates into the α-triple I solution of FMP, and we have Corollary 8.1 from
Theorem 8.3.

Corollary 8.1. Suppose that, R2 is a residual operator, and ⊗ its residual mapping, and take R1 = R2 , R, then the α-MinP-
solution (i.e. the α-triple I solution of FMP) can be expressed as B∗(y) = supx∈X {A∗(x)⊗ [R(A(x), B(y))⊗ α]}, y ∈ Y .

By Proposition 4.3 and Lemma 3.4, it follows from Corollary 8.1 that we can get Corollaries 8.2 and 8.3.

Corollary 8.2. Suppose that, R2 is a regular implication operator, and ⊗ its residual mapping, and take R1 = R2 , R, then the
α-MinP-solution (i.e. the α-triple I solution of FMP) can be expressed as B∗(y) = supx∈X {A∗(x)⊗ R(A(x), B(y))⊗ α}, y ∈ Y .

Corollary 8.3. Suppose that, R2 satisfies (C7) and (C8), and ⊗ its residual mapping, and take R1 = R2 , R, then the α-MinP-
solution (i.e. the α-triple I solution of FMP) can be expressed as B∗(y) = supx∈X {A∗(x)⊗ [R(A(x), B(y))⊗ α]}, y ∈ Y .

Remark 8.1. Corollary 8.2 is the same as Theorem 3 in Ref. [19] (noting that ⊗ is associative, commutative). However
Corollary 8.2 is a special case of Corollary 8.1 which can be applicable for more implication operators.

Remark 8.2. In [31], Liu investigated the triple I method based on pointwise sustaining degrees (i.e. the triple I method
from (A(x) → B(y)) → (A∗(x) → B∗(y)) ≥ α(x, y)). By Theorem 3.1 of [31], he pointed out the fact that the
α(x, y)-triple I solution of FMP can be expressed as B∗(y) = supx∈X {[α(x, y)⊗2 R(A(x), B(y))]⊗2 A∗(x)} where (→,⊗2)
is a symmetrical residual pair if R satisfies (C7) and (C8). When α(x, y) degenerates into α, the α-triple I solution of
FMP is B∗(y) = supx∈X {[α⊗2 R(A(x), B(y))]⊗2 A∗(x)}. By Proposition 3.4 in the present paper, it follows that B∗(y) =
supx∈X {A∗(x)⊗ [R(A(x), B(y))⊗ α]}where (→,⊗) is a residual pair. Thus the α-triple I solution of FMP from Theorem 3.1
of [31] is equivalent to Corollary 8.3 in the present paper.

It is similar to Theorem 8.3 that we can prove Theorem 8.4.

Theorem 8.4. Suppose that,→2 is a symmetrical residual operator, and⊗ its residual mapping, then the α-MaxT-solution can
be expressed as A∗(x) = infy∈Y {[(B∗(y))′ ⊗ (R1(A(x), B(y))⊗ α)]′}, x ∈ X. Specially, if →2 ∈ {RL, R0, RGR, RKD, RR, R13}, then
we have the same conclusion.

Theorem 8.5. Suppose that, →2 is a residual operator satisfying (C12), and ⊗ its residual mapping, then the α-
MaxT-solution can be expressed as A∗(x) = infy∈Y {[R1(A(x), B(y)) ⊗ α]→2 B∗(y)}, x ∈ X. Specially, if →2 ∈

{RL, RG, RGo, R0, Rdp−β , Rep, Ry−0.5}, then we have the same conclusion.

Proof. First, we shall prove:

(A(x)→1 B(y))→2(A∗(x)→2 B∗(y)) ≥ α, x ∈ X, y ∈ Y . (23)

In fact, it follows from the expression of A∗(x) that A∗(x) ≤ [R1(A(x), B(y))⊗ α]→2 B∗(y), x ∈ X, y ∈ Y . Since→2 satisfies
(C12) and (→2,⊗) is a residual pair, we have R1(A(x), B(y))⊗ α ≤ A∗(x)→2 B∗(y) and (23) holds. Thus A∗(x) ∈ Fα .
Second, we shall show that A∗(x) is the maximum. Let C(x) ∈ Fα , then (A(x)→1 B(y))→2(C(x)→2 B∗(y)) ≥ α

(x ∈ X, y ∈ Y ). Since (→2,⊗) is a residual pair and→2 satisfies (C12), we have R1(A(x), B(y)) ⊗ α ≤ C(x)→2 B∗(y)
and then C(x) ≤ [R1(A(x), B(y))⊗ α]→2 B∗(y). Therefore C(x) is a lower bound of

{[R1(A(x), B(y))⊗ α]→2 B∗(y) | y ∈ Y }, x ∈ X .

Thus it follows from the expression of A∗(x) that C(x)≤F A∗(x). These imply that A∗(x) is the maximum of Fα .
Therefore A∗(x) is the α-MaxT-solution. Especially, if→2 ∈ {RL, RG, RGo, R0, Rdp−β , Rep, Ry−0.5}, then it is easy to know

that→2 is a residual operator satisfying (C12), thus we have the same conclusion. �

If R1 = R2, then the α-MaxT-solution degenerates into the α-triple I solution of FMT. It follows from Lemma 7.3,
Theorem 8.4, Lemma 3.4 and Theorem 8.5 that we can get Corollaries 8.4 and 8.5.

Corollary 8.4. Suppose that, R2 is a normal implication operator, and ⊗ its residual mapping, and take R1 = R2 , R, then the
α-MaxT-solution (i.e. theα-triple I solution of FMT) can be expressed as A∗(x) = infy∈Y {[(B∗(y))′⊗(R(A(x), B(y))⊗α)]′}, x ∈ X.
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Corollary 8.5. Suppose that, R2 satisfies (C7), (C8) and (C12), and ⊗ is its residual mapping, and take R1 = R2 , R, then the
α-MaxT-solution (i.e. the α-triple I solution of FMT) can be expressed as A∗(x) = infy∈Y {R[R(A(x), B(y))⊗ α, B∗(y)]}, x ∈ X.

Remark 8.3. In Theorem 4 of [19], Wang got the fact that if R is a normal implication operator, then the α-triple I solution
of FMT is A∗(x) = infy∈Y {α′ ⊕ B∗(y) ⊕ (R(A(x), B(y)))′} = infy∈Y {[(B∗(y))′ ⊗ (R(A(x), B(y)) ⊗ α)]′}, which is the same as
Corollary 8.4 in the present paper. By the way, we can get the similar result from Corollary 3.2 in [31].

Remark 8.4. In Theorem 3.2 of [31], Liu pointed out the fact that the α(x, y)-triple I solution of FMT can be expressed as
A∗(x) = infy∈Y {R[α(x, y)⊗2 R(A(x), B(y)), B∗(y)]} where (R,⊗2) is a symmetrical residual pair if R satisfies (C7), (C8) and
(C12). Similar to Remark 8.2, we can achieve that the α-triple I solution of FMT from Theorem 3.2 of [31] is equivalent to
Corollary 8.5 in the present paper.

9. Conclusions

In the present paper, the triple I method is generalized to the differently implicational universal triple I method of (1, 2,
2) type. The main contributions and conclusions are as follows.
(i)A newdefinition of residual operator is given, and then the definition and related results of residual pairs are provided.
(ii) The universal triple I method is investigated. The related universal triple I solutions (including FMP-solution, FMT-

solution, α-FMP-solution, α-FMT-solution) are strictly defined by the infimum, where such solutions are divided into two
parts respectively corresponding to the minimum and infimum. Moreover, we put emphasis on the FMP-solutions, where
the unified forms of solutions w.r.t. strongly residual operators are achieved, and a new idea for getting InfP-solutions is put
forward.
(iii) The logic basis of a sort of CRI method is studied. It is found that the CRI method is a special case of the universal

triple I methodwhere⊗ is a left-continuous t-norm in (16). This makes progress in relationships among the universal triple
I method, triple I method and CRI method.
(iv)We discuss the response functions of SISO fuzzy systems respectively constructed by the universal triple I method,

triple I method and CRI method. It is found that the universal triple I method can provide bigger choosing space and get
better fuzzy controllers. Further, we analyze the significance of generalization from the triple I method to the universal
triple I method.
If formula (5) is further generalized, that is, three implication operators are chosen without any limitation, then formula

(4) is changed into the following form

(A(x)→1 B(y))→2(A∗(x)→3 B∗(y)). (24)

The triple I method derived from formula (24) is called differently implicational universal triple I method. It is obvious that
the differently implicational universal triple I method of (1, 2, 2) type is its special case. The work concerning differently
implicational universal triple I method will be a research emphasis in the future.
What is more, the problems related to the differently implicational universal triple I method of (1, 2, 2) type (more

widely, the differently implicational universal triple I method), such as its reversibility, continuity, universal approximation,
stability, constructing and design of reasonable fuzzy systems, will be involved step by step in the further research.
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