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TRPV1-null mice are protected from diet-induced obesity
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Abstract We explored a role for the capsaicin receptor, tran-
sient receptor potential channel vanilloid type 1 (TRPV1), in
the regulation of feeding and body mass. On a 4.5% fat diet,
wild-type and TRPV1-null mice gained equivalent body mass.
On an 11% fat diet, however, TRPV1-null mice gained signifi-
cantly less mass and adiposity; at 44 weeks the mean body
weights of wild-type and TRPV1-null mice were �51 and 34 g,
respectively. Both groups of mice consumed equivalent energy
and absorbed similar amounts of lipids. TRPV1-null mice, how-
ever, exhibited a significantly greater thermogenic capacity.
Interestingly, we found that 3T3-L1 preadipocytes expressed
functional calcitonin gene-related peptide receptors. Thus, these
data support a potential neurogenic mechanism by which
TRPV1-sensitive sensory nerves may regulate energy and fat
metabolism.
� 2008 Federation of European Biochemical Societies. Pub-
lished by Elsevier B.V. All rights reserved.
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1. Introduction

The capsaicin receptor, transient receptor potential channel

vanilloid type 1 (TRPV1), is an ion channel expressed predom-

inantly in sensory nerves. TRPV1 detects a variety of noxious

physical and chemical stimuli including capsaicin, the pungent

component of chilli-peppers [1,2]. Numerous studies support a

fundamental role for TRPV1 in pain signaling; disruption of

the TRPV1 gene [3,4] and TRPV1 antagonists [5] markedly

attenuate thermal hyperalgesia. Interestingly, there is emerging

evidence for the participation of TRPV1 and capsaicin signal-

ing in other physiologic functions, including the regulation of

feeding and body weight [6]. Dietary administration of capsa-

icin and other chemically-related ‘‘vanilloid’’ compounds can

reduce food intake and increase energy expenditure in animals

and humans [7–10]. Vanilloids exert both short and long-term

effects. Acutely, capsaicin can reduce food intake, an effect that

may be related to altered satiety [7], or alternatively, via vis-

ceral malaise and anorexia [11]. In addition, capsaicin can

stimulate secretion of catecholamines producing a transient in-

crease in metabolism [12]. Chronic administration of vanilloids
Abbreviations: CGRP, calcitonin gene-related peptide; TRPV1, tran-
sient receptor potential channel vanilloid type 1; CRLR, calcitonin
receptor-like receptor
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reduces weight gain, adiposity and triglycerides in animals con-

suming high-fat diets [8,13]. Interestingly, chemical destruction

of capsaicin-sensitive neurons in neonates also affords protec-

tion from diet-induced obesity [14,15]. The precise role of

TRPV1 in these effects is unclear. Vanilloids exert complex

pharmacological effects at TRPV1, producing an initial activa-

tion followed by a long-lasting desensitization of the channel

[1,2]. In addition, capsaicin may signal independently of

TRPV1 [16,17]. Further, capsaicin treatment in neonates ab-

lates entire sensory nerves and therefore does not selectively

target TRPV1. To better understand the role of TRPV1 we ex-

plored the effects of a higher-fat diet in wild-type and TRPV1-

null animals. Our data reveal that disruption of the TRPV1

gene protects against diet-induced obesity. Further, we show

that preadipocytes are sensitive to calcitonin gene-related pep-

tide (CGRP), thus revealing a potential neurogenic mechanism

by which TRPV1-expressing neurons may regulate adipocyte

function.
2. Materials and methods

2.1. Body weight and feeding studies
All experimental procedures involving animals were approved by the

Georgetown University Animal Care and Use Committee and conform
to NIH guidelines. C57BL6 wild-type and TRPV1-null mice were
house either individually or in a group. Body mass was monitored
from 3 to 44 weeks of age while consuming either a 4.5% fat diet (Puri-
na diet 5001; 23.0% protein, 4.5% fat, 5.3% crude fiber, 49% carbohy-
drate, 3.04 kcal/g metabolizable energy, 12.1% of calories provided by
fat) or an 11% fat diet (Purina diet 5015; 17.0% protein, 11.0% fat,
3.0% crude fiber, 53.5% carbohydrate, 3.73 kcal/g metabolizable en-
ergy, 25.8% of calories provided by fat). For paired-feeding studies
male WT and TRPV1-null mice were housed individually. TRPV1-null
mice received food ad libitum while WT mice were restricted to the
amount of food consumed by their TRPV1-null counterpart. Both
mice received water ad libitum.
2.2. Body temperature
Body temperatures were measured in 9.5 week old mice with a rectal

thermometer inserted 1.8 cm before and 1 h after exposure to 0–2 �C.

2.3. RT-PCR
Total cellular RNA was extracted using TRIzol (Invitrogen) accord-

ing to the manufacturer�s instructions. First strand cDNA synthesis
was performed using SuperScript III Reverse Transcriptase (Invitro-
gen) with the supplied oligo (dT)20 primer. Amplification of CRLR
was performed using Platinum Blue PCR Super Mix (Invitrogen) with
the following conditions: denaturation at 94 �C for 30 s, annealing at
54 �C for 45 s, and extension at 72 �C for 30 s for a total of 30 cycles;
and primers: CRLR, forward 5 0-GTTGCCAACGGATCACATTGC-
3 0 and reverse 5 0-ACAAAGCAGCACAAATCGGACC-3 0; b-actin,
forward 5 0-GCTGGTCGTCGACAACGGCT-30 and reverse 5 0-CAG-
GTCCAGACGCAGGGGGCATGG-3 0. Real-time amplifications
were performed using the ABI Prism 7900HT Sequence Detection
blished by Elsevier B.V. All rights reserved.
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System (Applied Biosystems) and SYBR Green PCR Master Mix (Ap-
plied Biosystems). RNA was extracted from white and brown adipose
tissues and skeletal muscle (quadriceps containing both fast-glycolytic
fibres – vastus and oxidative fibres – rectus femoris). Oligonucleotide
primers for mouse UCP1, UCP2, and UCP3 were the same as those
previously published [8]. b-Actin was amplified in parallel reactions
as an endogenous control. The amplification profile included denatur-
ation at 95 �C for 30 s, annealing at 55 �C for 30 s, and extension at
72 �C for 30 s for a total of 40 cycles. Dissociation curve analysis
was performed at the end of each real-time PCR run to ensure that pri-
mer dimers were not present. Additionally, the real-time PCR products
were verified on agarose gel. The comparative threshold cycle (CT)
method was use to determine the relative quantification of target
RNA. The target threshold cycle number was normalized to an endog-
enous reference (GAPDH), and relative amounts of UCP message
were normalized to b-actin.

2.4. Lipolysis in vitro and glycerol analysis
Lipolysis was assessed in adipose explants using methods previously

described [18]. Approximately, 100 mg explants of mouse gonadal adi-
pose tissues were minced and placed into a microtube containing 500 ll
Hanks buffer. Aliquots were removed at 0 and 5 h. Glycerol release
and plasma glycerol were measured using a glycerol assay kit (Cayman
Chemical Co., Ann Arbor, MI).

2.5. Fat absorption
Fat absorption was measured using methods previously described

[19]. Wild-type and TRPV1-null mice were fed a diet containing
Fig. 1. TRPV1-null mice gain less body mass than wild-type mice on a high-
male mice consuming either a low-fat (4.5%) or high-fat (11%) diet from 3 to
4.5% fat to an 11% fat diet at 22 weeks of age. (D) Representative photograp
age. (E) Mean body mass of male (age 34 wks: WT n = 11, TRPV1-null n = 7
n = 4 for both) mice consuming an 11% fat diet. t-test *P < 0.05, **P < 0.01,
(wt%) 16 fat, 45 non-fat dry milk, and 39 sucrose (30:15:55 fat:pro-
tein:carbohydrate energy%). The fat component was a mixture of
95% safflower oil and 5% sucrose octabehenate, a non-absorbable lipo-
philic marker. Fecal samples from the third day were analyzed by GC
for fatty acids.
2.6. Calcium imaging
Mouse 3T3-LI preadipocytes were cultured in Dulbecco�s Modified

Eagle�s Medium with 10% bovine calf serum. Cells were loaded with
1 lM Fluo 4-AM (Molecular Probes, Eugene, OR) for 20 min and
washed for a further 10–20 min prior to recording. The dye was excited
at 480 ± 15 nm. Emitted fluorescence was filtered with a 535 ± 20 nm
bandpass filter, captured by a SPOT RT digital camera (Diagnostic
Instruments, Sterling Heights, MI) and read into a computer. Analysis
was performed offline using Simple PCI software (Compix Inc., PA).
Drugs were applied via a micropipette (�5–10 lm diameter) positioned
at a distance of �100 lm from the cell of interest.
2.7. Chemicals
Capsaicin was obtained from Tocris Cookson (Ellisville, MO, USA)

and prepared as a stock solution in ethanol. CGRP was obtained from
Phoenix Pharmaceuticals Inc. (Burlingame, CA, USA) and prepared as
a stock solution in water. Drugs were diluted into physiological solu-
tion prior to experiments.
fat diet. (A and B) Mean body mass of wild-type (WT) or TRPV1-null
25 weeks of age (n = 5 for both). (C) Male mice (n = 5) switched from a
h of male WT and TRPV1-null mice on an 11% fat diet at 44 weeks of
and age 44 wks: WT n = 4, TRPV1-null n = 5) and female (age 40 wks:
***P < 0.001.
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3. Results

3.1. TRPV1-null mice have reduced body mass and adiposity on

a higher-fat diet

We explored changes in body mass of wild-type (WT) and

TRPV1-null mice consuming either a low-fat (4.5%) or high-

er-fat (11%) diet. When placed on a low-fat diet, both groups

exhibited a similar weight gain from 3 to 25 weeks of age

(Fig. 1A). In contrast, when placed on a higher fat diet wild-

type mice gained greater body mass with significant differences

beginning at �17 weeks of age (Fig. 1B). At 44 weeks, the

mean body mass of WT and TRPV1-null male mice was

�51 g and �34 g, respectively (Fig. 1D and E). A similar dif-

ference was noted in female mice; with a mean body mass of

47 g and 31 g, respectively (Fig. 1E) at 40 weeks. We also ob-

served differential weight gain when adult mice raised on a

low-fat diet were switched to a higher-fat diet (Fig. 1C). WT

mice gained significantly greater mass compared with

TRPV1-null mice within a 6 week period.

Fig. 2A and B shows that this increase in body mass was

associated with greater adiposity. WT animals raised on an

11% fat diet (28 weeks) had significantly greater abdominal

and subcutaneous fat than their TRPV1-null counterparts

(Fig. 2A and B). In addition, adipose tissue from WT mice

had markedly larger adipocytes (Fig. 2C). Furthermore, both

the fat content of the liver and the size of lipid droplets were

greater in WT compared with TRPV1-null animals (Fig. 2C

and D).
Fig. 2. TRPV1-null mice have reduced adiposity. (A) Representative photog
adipose tissue from the abdominal cavity and subcutaneous fat in WT an
Representative cross-sections of gonadal adipose tissue (hematoxylin and eo
scale bar indicates 10 lm) from WT and TRPV1-null mice on a high-fat diet.
TRPV1-null mice; ***P < 0.001 t-test).
3.2. Wild-type and TRPV1-null mice consume equivalent energy

but possess different thermogenic capacities

To test whether food intake accounted for differences in

body mass and adiposity we monitored cumulative energy in-

take. Fig. 3A shows that WT and TRPV1-null animals con-

sumed equivalent energy on low-fat and high-fat diets. To

confirm this result we performed paired-feeding experiments

in which WT mice consuming high-fat chow were restricted

to the food intake of TRPV1-null counterparts. Fig. 3B shows

that WT mice still gained significant body mass on this regi-

men. Thus, these data rule out differences in energy intake be-

tween WT and TRPV1-null animals. Further, to test for

differences in intestinal fat absorption we performed fecal fat

analysis. Fig. 3C shows that both WT and TRPV1-null ani-

mals absorbed �98% of dietary fats.

Next, we tested for differences in energy expenditure. Previ-

ous studies have found that obese mice have a reduced thermo-

genic capacity compared with lean animals and this is reflected

by an impaired ability to maintain body temperature in a cold

environment [20]. We therefore measured core body tempera-

tures before and after a 1 h cold exposure (0–2�C) in mice

fed either a low-fat or high-fat diet. Fig. 3D shows that cold

exposure produced a 2 �C drop in rectal temperature in WT

mice fed a low-fat diet (n = 8, P < 0.01). A significantly greater

decrease of 3.4 �C, was seen in WT animals consuming a high-

fat diet (n = 6, P < 0.01). In addition, WT mice consuming a

high-fat diet had a lower resting body temperature compared

with animals consuming a low-fat diet (P < 0.01). In contrast,
raphs of visceral fat in female WT and TRPV1-null mice. (B) Mass of
d TRPV1-null mice on an 11% fat diet (n = 3, *P < 0.05 t-test). (C)
sin staining, scale bar indicates 200 lm) and liver (Oil Red-O staining,
(D) Mean area of hepatocyte lipid droplets (n = 300 from 3 WT and 3



Fig. 3. Wild-type and TRPV1-null mice have the same food intake and intestinal fat absorption but different energy expenditure. (A) Cumulative
energy intake of male mice on a 4.5% fat or 11% fat diet for 8 days (n = 4). (B) Mean gain in body mass for WT and TRPV1-null mice after 7 weeks of
paired feeding (n = 3; *P < 0.05, **P < 0.01 t-test). (C) Total fat absorption by WT and TRPV1-null mice (n = 3). (D) Mean body temperatures of
WT (left) and TRPV1-null (right) mice at room temperature (RT) and after one hour at 0–2 �C (Cold) while consuming either the low-fat (4.5% fat)
or high-fat (11% fat) diet (WT: 4.5% fat n = 7, 11% fat n = 6, **P < 0.01 ANOVA; TRPV1-null: 4.5% fat n = 7, 11% fat n = 3, NS by ANOVA).
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cold exposure produced no significant change in body temper-

ature in TRPV1-null mice consuming either diet (Fig. 3D,

n = 3–7). Aside from an attenuated fever response, TRPV1-

null mice display normal thermoregulation [21]. These data

suggest that TRPV1-null animals have a greater capacity for

thermogenesis than WT animals, and a higher resting meta-

bolic rate when consuming a high-fat diet.

Altered thermogenesis may reflect the activity of uncoupling

proteins, particularly in brown fat. Indeed, mice fed a capsai-

cin-rich diet exhibit increased mRNA levels for several uncou-

pling proteins [8]. However, we observed no differences in

mRNA expression of uncoupling proteins (UCP1-3) in brown

and white adipose tissue, and skeletal muscle of WT and

TRPV1-null mice fed a high-fat diet (data not shown). Fur-

ther, both the plasma glycerol levels (WT 25.6 ± 1.6 mg/dL;

TRPV1-null 25.2 ± 3.2 mg/dL, n = 7–9) and in vitro lipolytic

capacity (WT, 0.36 ± 0.07 mg glycerol g�1 h�1; TRPV1-null

0.37 ± 0.09 mg glycerol g�1 h�1, n = 4) were identical in both

sets of animals.

3.3. Adipocytes express functional CGRP receptors

TRPV1 is predominantly expressed on sensory nerve termi-

nals. In turn, these nerves release the neuropeptides, substance

P (SP) and calcitonin gene-related peptide (CGRP). Therefore,

we explored whether TRPV1 could exert an action on prea-

dipocyte function through neurogenic mechanisms. Fig. 4A

shows that CGRP (50 nM) elicited Ca2+ transients in a subset

of 3T3-L1 preadipocytes (30%, 27 of 89 cells), consistent with

activation of an inositol trisphosphate signalling pathway. RT-

PCR confirmed expression of the CGRP receptor, calcitonin
receptor-like receptor (CRLR) (Fig. 4B). In contrast, SP

(50 nM) failed to evoke Ca2+ transients (data not shown,

n = 50). Interestingly, a recent study has described expression

of TRPV1 in 3T3-L1 preadipocytes [22]. However we found

that the TRPV1 ligand, capsaicin (10 lM), failed to evoke

Ca2+ responses (n = 64) whereas all cells responded robustly

to application of 2 mM extracellular ATP (Fig. 4C and D).
4. Discussion

These results reveal a novel role for TRPV1 and sensory

nerves in the regulation of obesity. We show that TRPV1-defi-

cient mice are resistant to diet-induced increases in body mass

and adiposity. The phenotype of these knock-out animals clo-

sely matches that of animals following chemical destruction of

sensory afferent neurons [14,15]. Our data therefore suggest

that TRPV1 is the key target of these sensory nerve lesions.

Interestingly, animals that chronically consume dietary vanil-

loids are also protected from diet-induced obesity [8,13]. Vanil-

loids produce an initial activation followed by long-term

desensitization of TRPV1, suggesting that their pharmacolog-

ical effect may be mediated through inhibition of TRPV1. On

the other hand, the possibility that vanilloids signal indepen-

dently of TRPV1 cannot be excluded [16,17]. Thus, three sep-

arate methods of manipulating TRPV1: selective disruption of

the TRPV1 gene, destruction of TRPV1-expressing sensory

neurons and pharmacological activation/desensitization of

TRPV1 produce equivalent effects on body mass and adipos-

ity. Taken together, these data suggest that TRPV1 signalling



Fig. 4. Mouse 3T3-L1 preadipocytes express functional CGRP receptors. (A) CGRP (50 nM) produced Ca2+ transients in 3T3-L1 preadipocytes. (B)
Adipocytes express mRNA for the CGRP receptor, CRLR. (C and D) Capsaicin (10 lM) failed to produce Ca2+ transients in adipocytes, though
cells responded to ATP (2 mM).
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promotes fat accumulation, and inhibition of this signalling is

therefore protective.

We found that both WT and TRPV1-null animals exhibited

equivalent energy intake. Further, intestinal absorption of fat

was identical in both groups and this agrees with earlier find-

ings that lipid absorption is unaffected in animals [13] or hu-

mans [10] treated chronically with capsaicin, which elicits a

functional loss of TRPV1. These data suggest that altered en-

ergy utilization likely accounts for the differential weight gain.

Consistent with this hypothesis, we found that WT mice have a

reduced thermogenic capacity compared to TRPV1-null coun-

terparts and this effect was more marked on a higher-fat diet.

Resting body temperature was also lower in WT animals con-

suming a high-fat compared with a low-fat diet. This is consis-

tent with a diet-induced reduction in metabolic rate. Obese

strains of mice are known to have decreased thermogenesis

and a lower resting body temperature [20]. Interestingly,

TRPV1-null animals exhibit normal locomotor activity [23]

suggesting that this factor per se does not account for altered

energy utilization.

The precise molecular mechanism by which TRPV1 influ-

ences energy and lipid handling is unclear. One potential path-

way is through insulin signalling. Activation of TRPV1 in

sensory nerve terminals triggers the secretion of CGRP and

SP, two neuropeptides known to modulate pancreatic islet

function [24,25]. Notably, elevated levels of CGRP contribute

to insulin resistance [26]. Indeed, C57/Bl6 mice are prone to

age-onset diabetes and obesity and TRPV1-null animals on
this background are reported to have increased glucose toler-

ance and insulin sensitivity [25]. In this context, it is interesting

that we only observed differences in body mass in mice older

than �15 weeks. Similarly, altered weight and adiposity in cap-

saicin-desensitized rats is only seen after 14 weeks of age [14].

These data support a role for TRPV1 in age-onset obesity. Sec-

ond, TRPV1 could directly regulate adipocyte function. Pre-

adipocytes are reported to express TRPV1 [22] and treatment

with capsaicin blocks the differentiation of these cells into ma-

ture adipocytes [17,22]. However, whether capsaicin modulates

adipocyte function via TRPV1 is uncertain. Capsaicin can in-

hibit NF-kappa B and modulate adipocyte function indepen-

dently of TRPV1 [16,17]. Moreover, we could not confirm

functional TRPV1 signaling in mouse 3T3-L1 preadipocytes;

these cells failed to produce elevations in [Ca2+] in response

to capsaicin. Third, our data point to a potential neurogenic

pathway by which TRPV1 may regulate adipocyte function.

TRPV1 triggers the release of neuropeptides from sensory

nerve terminals that are known to innervate fatty tissues. We

found that 3T3-L1 preadipocytes exhibit functional responses

to CGRP and express the CGRP receptor, CRLR. Interest-

ingly, levels of CGRP are elevated in obese humans and ani-

mals [26,27]. Thus, it will be important to explore whether

CGRP can promote obesity through direct modulation of adi-

pocytes.

In summary, our data reveal a role for TRPV1 in promoting

fat accumulation and weight gain. Pharmacologic inhibitors of

TRPV1 are currently under development for pain treatment.
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Our data suggest that TRPV1 antagonists or agonists that pro-

mote TRPV1 desensitization, may have additional utility in the

treatment for obesity.
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