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Ž . Ž . Ž .Consider the second order nonlinear differential equation E y0 q a t f y s 0
Ž . w . Ž . 1Ž . Ž . Ž .where a t g C 0, ` , f y g C y`, ` , f 9 y G 0, and yf y ) 0 for y / 0.

Ž .Furthermore, f y also satisfies either a superlinear or a sublinear condition,
Ž . < <gy1which covers the nonlinear function f y s y y with g ) 1 and 0 - g - 1,

respectively, commonly known as the Emden]Fowler case. Here the coefficient
Ž .function a t is allowed to be negative for arbitrarily large values of t. Kamenev

Ž .type oscillation criteria involving integral averages for the linear equations L
Ž . Ž .y0 q a t y s 0 are extended to the nonlinear equation E by using more general

means. The results extend similar results on general means by Philos for the linear
Ž .equation L and also results based upon Kamenev’s integral averaging method

Ž .concerning the nonlinear equation E . Q 2000 Academic Press

1

Consider the second order nonlinear differential equation

wy0 q a t f y s 0, t g 0, ` , 1Ž . Ž . Ž ..
Ž . w . Ž . 1Ž . Ž .where a t g C 0, ` and f y g C y`, ` , f 9 y G 0 for all y, and

Ž . Ž .yf y ) 0 if y / 0. The prototype of Eq. 1 is the so-called Emden]Fowler
equation

< <gy0 q a t y sgn y s 0, g ) 0. 2Ž . Ž .
Ž . Ž .Here we are interested in the oscillation of solutions of 1 when f y

satisfies, in addition, the sublinear condition

« dy dy0
0 - , - ` for all « ) 0, FŽ .H H 1f y f yŽ . Ž .0 y«
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Ž . < <gwhich corresponds to the special case f y s y sgn y when 0 - g - 1,
and also the superlinear condition

` y«dy dy
0 - , - ` for all « ) 0, FŽ .H H 2f y f yŽ . Ž .« y`

Ž . < <gwhich corresponds to the special case f y s y sgn y when g ) 1. The
Ž .coefficient a t is allowed to be negative for arbitrarily large values of t.

Under these circumstances, in general not every solution to the second
Ž .order nonlinear differential equation 1 is continuable throughout the

entire half real axis. For this reason, we confine ourselves to those
Ž .solutions of 1 that exist and can be continued on some interval of the

w .form t , ` , where t G 0 may depend on the particular solution. A0 0
Ž .solution y t is said to be oscillatory if it has arbitrarily large zeros; i.e., for
w . Ž . Ž .each t g t , ` , there exists t G t such that y t s 0. Equation 1 is0 1 1

called oscillatory if all continuable solutions are oscillatory. Here we are
Ž . Ž .concerned with sufficient conditions on a t so that all solutions of 1 are

oscillatory.
Ž .In the linear case, i.e., Eq. 2 when g s 1, the most important simple

oscillation criterion is the well known Fite]Wintner Theorem which states
Ž .that if a t satisfies

T
lim A T s lim a t dt s q`, AŽ . Ž . Ž .H 0

Tª` Tª` 0

Ž . w xthen Eq. 2 is oscillatory when g s 1. Fite 5 assumed in addition that
Ž . w xa t is non-negative, while Wintner 17 in fact proved a stronger result

Ž .which required a weaker condition on a t and involved the integral
Ž .average of A t , namely,

1 T
lim A t dt s q`. AŽ . Ž .H 1TTª` 0

Ž . Ž .Clearly, A implies A . Wintner’s result was later improved by Hart-0 1
w x Ž .man 6 who proved that A can be replaced by the two weaker condi-1

tions

1 T
lim inf A t dt s yL ) y`, L ) 0, AŽ . Ž .H 2TTª` 0

and

1 T
lim sup A t dt s q`. AŽ . Ž .H 3T 0T

Ž . Ž . Ž .Obviously, A implies both A and A .1 2 3
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w xAnother extension of Wintner’s theorem is due to Kamenev 9 who
Ž .proved that the linear equation, Eq. 2 with g s 1, is oscillatory if for

some integer n ) 1,

1 T n
lim sup T y t a t dt s q`. AŽ . Ž . Ž .H 4nT 0Tª`

w x Ž .In an earlier paper 21 , we showed that A together with another4
Ž .condition similar to A , namely,2

t
lim inf a s ds s yL ) y`, L ) 0, AŽ . Ž .H 5

Tª` 0

Ž .is sufficient for the oscillation of the Emden]Fowler Eq. 2 for all g ) 0.
Ž .Note that condition A is equivalent to1

1 T
lim T y t a t dt s q`,Ž . Ž .HTTª` 0

which in turn implies that for any real a ) 1,

1 T a
lim T y t a t dt s q`. AŽ . Ž . Ž .H 6aTTª` 0

Ž . Ž . Ž .Condition A implies A trivially, so Kamenev’s condition A is6 4 4
Ž .weaker than the original Wintner criteria A .1

w xMore recently, Philos 14 introduced the concept of general means and
Ž .obtained further extensions of the Kamenev type oscillation criterion A 4

Ž .for the linear equation, i.e., 2 when g s 1. The subject of extending
oscillation criteria for the linear equation to that of the Emden]Fowler

Ž . Ž .Eq. 2 and more generally Eq. 1 has been of considerable interest in the
w xpast 30 years. It was at first Waltman 15 who showed that the

Ž . Ž .Fite]Wintner condition A remained valid for the oscillation of Eq. 20
w xand his result was extended to the more general equation by Bhatia 1 and

w xindependently using different methods by Wong 18 . The extension of the
Ž . Ž .Wintner condition A to Eq. 2 in the sublinear case 0 - g - 1 was1
w xgiven by Kamenev 7 , while for the superlinear case g ) 1 it was finally

w x Ž w x.proved in a substantive paper by Butler 2 see also Kamenev 8 . The
Ž .extension of Butler’s result to the more general Eq. 1 was only resolved

w xsatisfactorily in recent papers by this author 22, 23 . On the other hand,
Ž .Kamenev’s condition A is known to be valid also for the oscillation of4

Ž . w x2 in the sublinear case, i.e., 0 - g - 1; see 20 . In the superlinear case, it
Ž w x. Ž .was recently shown see 23 that A together with the following condi-4

tion that for some integer p ) 1 such that

1 T p
lim inf T y t a t dt s yL ) y`, AŽ . Ž . Ž .H 7pTTª` 0
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Ž . Ž . Ž .is sufficient for oscillation of 2 when g ) 1. Clearly, A implies A .5 7
Ž . Ž . Ž .Also, A implies both A and A and is in itself sufficient for the6 4 7

Ž .oscillation of Eq. 2 for all g ) 0. This extends the Wintner’s original
Ž . Ž .oscillation criterion A to the nonlinear Eq. 2 in a way rather different1

w x Ž . Ž .from that given by Butler 2 . On the other hand, conditions A and A2 3
Ž . Ž .imply A and A , respectively, hence Hartman’s oscillation criterion7 4

Ž .was also shown to be valid for the oscillation of the nonlinear Eq. 2 .
w x Ž .Our earlier result 23 was actually proved for the more general Eq. 1

Ž .subject to F and for some positive constant c1

f 9 y F y G cy1 ) 0, for all y , FŽ . Ž . Ž .3

Ž . y Ž . Ž .where F y s H d¨rf ¨ in the sublinear case and also to F and for0 2
some positive constant d

f 9 y G y G d ) 1, for all y , FŽ . Ž . Ž .4

Ž . ` Ž .where G y s H d¨rf ¨ in the superlinear case. The purpose of thisy
Ž . Ž .paper is to generalize conditions A and A by allowing more general4 7

w xmeans along the lines given in 14 . Oscillation criteria in terms of more
general means have also been obtained for second order linear matrix

w xequations involving symmetric matrix coefficients by Erbe et al. 4 and by
w x w xColes and Kinyon 3 . For other related results see 24 , and for general

Ž . w xdiscussion on oscillation criteria for Eq. 1 , we refer to 20 .

2

w x Ž .Following Philos 14 , we consider a non-negative kernel function h t, s
�Ž . 4 �Ž . 4defined on D s t, s : t G s G t . Denote D s t, s : t ) s G t : D.0 1 0

Ž .We shall assume that h t, s is sufficiently smooth in both variables t and s
so that the following conditions are satisfied

Ž .H h t , t ' 0 for t G t ,Ž .1 0

 h
Ž .H t , s F 0 for t G s G t ,Ž .2 0 s

 h
Ž .H t , s ss t ' 0 for t G t ,Ž .3 0 s

 2 h
Ž .H t , s G 0 for t G s G t ,Ž .4 02 s

 h
y1Ž .H yh t , t t , s F M for t G t ,Ž . Ž .5 0 sst 0 00 s
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h t , sŽ .
Ž .H 0 - b F lim F B - ` for s G t ,6 0 0 0h t , ttª` Ž .0

where M , b , B are constants depending only on t ,0 0 0 0

 h
y1Ž . Ž .H yh t , t t , s sst s o 1 for all t G t , as t ª `,Ž . Ž .7 0 s

 2  2 h
Ž .H h t , s s t , s , for all t , s g D,Ž . Ž . Ž .8  s  t  t  s

 h
y1Ž .H l t , s s h t , s t , s is nondecreasing in tŽ . Ž . Ž .9  s

for all t , s g D .Ž . 1

Our first result is a simple generalization of Kamenev’s oscillation crite-
Ž . Ž .rion A for Eq. 1 in the sublinear case.4

Ž . Ž . Ž .THEOREM 1. Let f y satisfy F and F . Suppose that there exists a1 3
Ž . Ž . Ž .non-negatï e kernel function h t, s on D satisfying H ] H such that1 5

1 t
lim sup h t , s a s ds s q`, 3Ž . Ž . Ž .Hh t , tŽ . ttª` 0 0

Ž .and Eq. 1 is oscillatory.

Ž .Proof. We shall prove this by contradiction. Let y t be a nonoscilla-
Ž . Ž .tory solution of 1 which we can assume, in view of F and the sign1
Ž . w .condition that yf y ) 0 whenever y / 0, to be positive on t , ` . Define0

Ž . Ž Ž .. Ž . Ž . Ž Ž .. Ž . Ž .z t s F y t and so z9 t s y9 t rF y t . By 1 , we find that ¨ t s
Ž .z9 t satisfies the Riccati differential equation

¨ 9 t q f 9 y ¨ 2 t q a t s 0, t G t . 4Ž . Ž . Ž . Ž . Ž .0

Ž . Ž . Ž .Since f 9 y G 0, Eq. 4 implies that ¨ t satisfies the simple first order
Ž . Ž .differential inequality ¨ 9 t q a t F 0. Multiplying ¨ 9 q a F 0 through by

Ž .h t, s and integrating from t to t, we obtain0

t t
h t , s ¨ 9 s ds q h t , s a s ds F 0. 5Ž . Ž . Ž . Ž . Ž .H H

t t0 0

Ž . Ž .Now integrate the first integral by parts twice and we find by H , H ,1 2
Ž .H 3

 ht
h t , s ¨ 9 s ds s yh t , t ¨ t q t , s F x tŽ . Ž . Ž . Ž . Ž . Ž .Ž .H 0 0 0 st ss t0 0

 2 ht
q t , s z s ds. 6Ž . Ž . Ž .H 2 st0
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Ž . Ž . Ž .Substituting 6 into 5 and dividing through by h t, t , we arrive at0

 h
y1y¨ t q h t , t t , s F x tŽ . Ž . Ž . Ž .Ž .0 0 0 s ss t0

ty1q h t , t h t , s a s ds F 0. 7Ž . Ž . Ž . Ž .H0
t0

2 Ž . 2 Ž .Here we have dropped the integral involving  h t, s r s in 6 because
Ž . Ž . Ž . Ž .of H . We can now use H and 3 to deduce from 7 a desired4 5

Ž .contradiction upon taking lim sup as t ª `. Thus Eq. 1 is oscillatory in
the sublinear case.

Ž . Ž .a Ž .Remark 1. Let h t, s s t y s , a ) 1. It is easy to see that h t, s
Ž . Ž . Ž .satisfies all of H ] H . In this case, condition 3 becomes the familiar1 9

Ž . Ž .Kamenev’s criterion A . Theorem 1 also shows that assumption A is4 7
w xnot required in our earlier result 21 for the sublinear case, namely.

Ž . Ž . Ž . Ž .COROLLARY 1. Let f y satisfy F and F . Then condition A is1 3 4
Ž .sufficient for the oscillation of Eq. 1 .

Ž .In fact, n in A also does not have to be an integer but any real4
number greater than 1.

Ž . Ž Ž ..aRemark 2. Let h t, s s ln trs , a ) 1. It is easily verified that
Ž . Ž . Ž . Ž .h t, s satisfies H ] H in this case. To see that h t, s also satisfies1 8

Ž . Ž . wŽ . xy1H , note that l t, s s ya ln trs s which is non-decreasing in t for9
t ) s G t . We therefore have the following0

Ž . Ž . Ž . Ž .COROLLARY 2. Let f y satisfy F and F . If a t satisfies for some1 3
a ) 1

ya at tt
lim sup ln ln a s ds s `, 8Ž . Ž .Hž / ž /s sttª` 0

Ž .then Eq. 1 is oscillatory.

Ž .We now consider the situation when condition 3 fails. Here, we require
Ž . Ž . Ž .that the kernel function satisfy the additional hypothesis H , H , H ,6 7 8

Ž .and H .9

Ž . Ž . Ž .THEOREM 2. Let f y satisfy F and F . Suppose that there exists a1 3
Ž . Ž . Ž .non-negatï e kernel function h t, s satisfying H ] H , and also there exists1 9

w .a function w g C t , ` such that0

1 t
lim sup h t , s a s ds G w t 9Ž . Ž . Ž . Ž .Hh t , tŽ . ttª`
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y1 2 Ž . 1w . Ž . Ž Ž . .for all t G t and that t w t f L t , ` , where w t s max w t , 0 ,0 q 0 q
i.e.,

`
y1 2s w s ds s `. 10Ž . Ž .H q

t0

Ž .Then Eq. 1 is oscillatory.

Proof. We proceed as in the proof of Theorem 1 and return to estimate
Ž . Ž . Ž .7 . Writing t for t in 7 and taking lim sup as t ª ` in 7 , we find by0
Ž . Ž .H and 9 that7

ty1w t F lim sup h t , t h t , s a s ds F ¨ t . 11Ž . Ž . Ž . Ž . Ž . Ž .H
ttª`

Ž . Ž . Ž .Multiply 4 through by h t, s and integrate from t to t to obtain by 60

t t2h t , s f 9 y s ¨ s ds q h t , s a s dsŽ . Ž . Ž . Ž . Ž .Ž .H H
t t0 0

 h
F h t , t ¨ t y t , s F x tŽ . Ž . Ž . Ž .Ž .0 0 0ž / s ss t0

 2 ht
y t , s F x s ds. 12Ž . Ž . Ž .Ž .H 2 st0

2 Ž . 2 Ž .The last integral involving  h t, s r s is non-negative by H . We now4
claim that the limit of the ratio

ty1 2h t , t h t , s f 9 y ¨ s ds 13Ž . Ž . Ž . Ž . Ž .H0
t0

Ž .exists, possibly infinite, by showing that the ratio in 13 is non-decreasing
in t. It suffices to show that

 h t , sŽ .t 2f 9 y s ¨ s ds G 0.Ž . Ž .Ž .H
 t h t , tŽ .t 00

Ž .Since f 9 y G 0, the above is true provided that

 h t , s h t , s  Ž . Ž .
s ln h t , s y ln h t , t G 0.Ž . Ž .0½ 5 t h t , t h t , t  t  tŽ . Ž .0 0

Ž .This then reduces to proving that  ln h t, s r t is non-decreasing in s. By
Ž .H we interchange partial differential with respect to s and t and find by8
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Ž .H that9

   
ln h t , s s ln h t , sŽ . Ž .

 s  t  t  s

  h l
y1s h t , s t , s s t , s G 0.Ž . Ž . Ž .

 t  s  t

Ž . Ž .Thus the limit of the expression in 13 exists. Now, dividing 12 through
Ž . Ž . Ž .by h t, t and taking lim sup as t ª `, we obtain by H and 11 that0 5

ty1 2w t q lim h t , t h t , s f 9 y ¨ s ds F ¨ t q M F x t ,Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž .H0 0 0 0 0
tª` t0

Ž .from which it follows that the limit in 13 must be finite and bounded by
Ž Ž .. Ž . Ž .the constant M s M F x t q ¨ t y w t . We now suppose that1 0 0 0 0

Ž . 2 1w .f 9 y ¨ f L t , ` . For any B ) 0, there exists t ) t such that0 1 0
t Ž . 2 Ž .H f 9 y ¨ G B for all t G t . Observe that by Ht 1 20

ty1 2h t , t h t , s f 9 y ¨ s dsŽ . Ž . Ž . Ž .H0
t0

s hty1 2s h t , t y t , s f 9 y ¨ dsŽ . Ž . Ž .H H0 ž / st t0 0

 hty1 y1G h t , t B y t , s ds s Bh t , t h t , t . 14Ž . Ž . Ž . Ž . Ž .H0 0 1 st1

Ž . Ž .Letting t ª ` in 14 and by H , we find6

ty1 2lim h t , t h t , s f 9 y ¨ s ds G Bb ) 0. 15Ž . Ž . Ž . Ž . Ž .H0 0
tª` t0

Ž . Ž .Since B is arbitrary, 15 contradicts that the limit in 13 is finite, so it
Ž . 2 1w . ` Ž . 2must be the case that f 9 y ¨ g L t , ` . Let K s H f 9 y ¨ . Using the0 0 t0

Ž .Schwarz inequality, we find by F3

11
22y9 s 1Ž .t t t2F y t y F y t s ds F f 9 y ¨Ž . Ž . Ž .Ž . Ž . H H H0 ž / ž /f y s f 9 yŽ . Ž .Ž .t t t0 0 0

1
2

t1
2'F K c F y s ds . 16Ž . Ž .Ž .H0 ž /t0
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` Ž Ž .. Ž . < Ž Ž .. <If H F y t dt - `, then 16 yields F y t F M for some constant Mt 2 20
Ž .independent of t. Otherwise, there exists t ) t such that 16 gives2 0

1
2

t1
2'F y t F 2 K c F y s ds , t G t . 17Ž . Ž . Ž .Ž . Ž .H0 2ž /t0

Ž .Upon a quadrature of 17 , we obtain a constant M such that for t G t3 2

1 1
2 2

t t 11
2'F y s ds F F y s ds q 2 K c t y t F M t . 18Ž . Ž . Ž . Ž .Ž . Ž .H H 0 1 3ž / ž /t t0 0

Ž . Ž . < Ž Ž .. <Using 18 in 17 , we find that F y t F M t holds for some constant4
Ž Ž .. 1w . Ž .M for all t G t , and this also holds when F y t g L t , ` . From 17 ,4 2 0

Ž . Ž .11 , and F , we obtain3

` ` ` y1y1 2 y1 2 2t w t dt F t ¨ t dt F M F y s ¨ s dsŽ . Ž . Ž . Ž .ŽH H Hq 4
t t t2 2 2

`t 2 2F cM f 9 y ¨ F cM f 9 y ¨ s cM K ,Ž . Ž .H H4 4 4 0
t t2 0

Ž . Ž .which contradicts 10 . Thus the existence of non-oscillatory solution y t
Ž .is ruled out, so Eq. 1 is oscillatory and the proof is complete.

3

Ž . Ž . Ž . Ž .We now turn to the superlinear Eq. 1 where f y satisfies F and F2 4
and prove an extension of our earlier result using Kamenev type condi-

Ž . Ž .tions A and A . Our main result is4 7

Ž . Ž . Ž .THEOREM 3. Let f y satisfy F and F . Suppose that there exist2 4
Ž . Ž . Ž . Ž .non-negatï e kernel functions h t, s and h t, s on D satisfying H ] H1 2 1 7

such that

1 t
lim sup h t , s a s ds s `, 19Ž . Ž . Ž .H 1h t , tŽ . ttª` 1 0 0

and also

1 t
lim inf h t , s a s ds s yL ) y`, L ) 0. 20Ž . Ž . Ž .H 2h t , ttª` Ž . t2 0 0
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Ž .Furthermore, if h t, s satisfies in addition2

2 2 h  h2 2
t , s F d t , s h t , s , HŽ . Ž . Ž . Ž .1 2 102 s  s

Ž .with d - d, then Eq. 1 is oscillatory.1

w xTheorem 3 extends our result 23 as follows:

Ž . Ž . Ž .COROLLARY 3. Let f y satisfy F and F . Suppose that there exists2 4
a ) 1 and b G 0 such that

1 T a
lim sup yt a t dt s `, A 9Ž . Ž . Ž .H 4aT 0Tª`

and

1 T blim inf T y t a t dt s yL ) y`, L ) 0. A 9Ž . Ž . Ž .H 7bTTª` 0

Ž .Then Eq. 1 is oscillatory.

Corollary 3 improves our earlier result where a , b are assumed to be
w xintegers both of which must be greater than 1. The proof given in 23 is

based upon iterated integration so a , b must be integers and the question
was raised as to the validity of the theorem when a , b are simply real

w xnumbers; see 23, p. 90, Remark 1 . Our proof of Theorem 3 to be given
below not only allows a , b to be any real numbers but b is only required

w xto be G 0. It was mentioned in 23 that if there is any positive integer
Ž .then A remains valid when p is replaced by any integer q ) p by an7

inductive argument which requires p to be an integer. However, it is easily
Ž .verified that A 9 also remains valid when b is replaced by any real7

s ) b and b is any real number G 0. To see this, we observe from an
integration by parts

T bqsybT y t a t dtŽ . Ž .H
0

sT syby1 bs s y b T y s T y t a t dt ds. 21Ž . Ž . Ž . Ž . Ž .H H
0 0

Ž . sŽ . b Ž . bBy A 9 there exists T ) 0 such that H T y t a t dt G yLs for7 0 0
s G T .0
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Using this and the fact that s ) b , we can estimate as

sT syby1 bT y t T y t a t dt dsŽ . Ž . Ž .H H
0 0

T syby1 bw xG T y s yls dsŽ .H
T0

LT syby1 sybb bG yLT T y s ds s y T T y T . 22Ž . Ž . Ž .H 0s y b0

Ž . Ž . Ž . sSubstituting 22 into 21 and dividing 21 through by T , we find

T s sybys bysT T y t a t dt G yLT T y T ,Ž . Ž . Ž .H 0
0

which gives

T s sybys byslim inf T T y t a t dt G yL lim T T y TŽ . Ž . Ž .H 0
Tª` Tª`0

s yL ) y`.

This observation allows us to formulate Corollary 3 thereby answering the
question raised earlier. In particular, when b s 0 Corollary 3 reduces to

w xour original result in 23 .
Ž . Ž .aTo see Corollary 3 follows from Theorem 3, we let h t, s s t y s ,1

Ž . Ž .sa ) 1, and h t, s s t y s , s G b G 0 where s is chosen to be large so2
Ž .y1 Ž .that s s y 1 - d. It is easy to see that for such a choice of h t, s and1

Ž . Ž . Ž . Ž . Ž .sh t, s , H ] H are again satisfied. For s G b ) 0, h t, s s t y s2 1 7 2
Ž . Ž .y1also satisfies H with d s s s y 1 since10 1

2 2 h s  hl 22 sy22t , s s s t y s F h t , s t , s .Ž . Ž . Ž . Ž .2 2ž / s s y 1  s

Ž . Ž . Ž . Ž .Thus conditions A 9, A 9 imply conditions 19 and 20 , respectively,4 7
so Corollary 3 follows as a special case of Theorem 3.

Ž . Ž . Ž .Proof of Theorem 3. Since f y satisfies F , we can define w t s2
Ž Ž .. Ž . Ž .G y t for a nonoscillatory solution of 1 y t which can without loss of

w . Ž . Ž .generality be assumed to be positive on t , ` . In view of 1 , w t satisfies0

w0 t s a t q f 9 y w92 t , t G t . 23Ž . Ž . Ž . Ž . Ž .0

Ž . Ž . Ž .Denote u t s w9 t , then 23 becomes a first order Riccati differential
Ž .equation in u t ,

u9 t s a t q f 9 y u2 t . 24Ž . Ž . Ž . Ž . Ž .
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Ž . 2 1w .We consider two separate cases, that of f 9 y u g L t , ` and that of0
Ž . 2 1w . Ž . Ž .f 9 y u f L t , ` . Multiplying 24 through by h t, s and integrating by0 1

parts, we find
 ht 1yh t , t u t y t , s u s dsŽ . Ž . Ž . Ž .H1 0 0  st0

t t 2s h t , s a s ds q h t , s f 9 y u s ds. 25Ž . Ž . Ž . Ž . Ž . Ž .H H1 1
t t0 0

` Ž . 2 Ž .Let K s H f 9 y u and observe by the Schwarz inequality and by F0 t 40

that
y9 sŽ .t

G y t s G y t y dsŽ . Ž .Ž . Ž . H0 f y sŽ .Ž .t0

11
22 1t t2F G y t q f 9 y uŽ . Ž .Ž . H H0 ½ 5 ½ 5f 9 yŽ .t t0 0

1
2

ty1'F G y t q K d G y s ds .Ž . Ž .Ž .Ž . H0 0 ½ 5
t0

` Ž Ž .. < Ž Ž .. <Suppose that H G y s ds - `; then it follows that G y t F B fort 10

some constant B depending only on t . Otherwise, there exists t G t1 0 1 0
such that

1
2

ty1'G y t F 2 K d G y s ds , t G tŽ . Ž .Ž . Ž .H0 1½ 5
t0

t Ž Ž .. y1Ž .2which upon a quadrature yields H G y s ds F K d t y t Ft 0 00y1 2 Ž Ž .. y1K d t . Thus G y t F 2 K d t for t G t , and in any case there exists0 0 1
Ž Ž ..a constant B such that G y t F B t for all t G t where B depending2 2 0 2

only on t .0
Ž .We now return to 25 and integrate by parts to obtain

 h  2 ht t1 1y t , s u s ds s y t , s G y t y G y s ds� 4Ž . Ž . Ž . Ž . Ž .Ž .Ž .H H 02 s  st t0 0

 2 ht 1F t , s G y s dsŽ . Ž .Ž .H 2 st0

 2 ht 1F B t , s dsŽ .H2 2 st0

 h t , sŽ .1s yB . 26Ž .2 ½ 5ss t s 0
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Ž . Ž . y1Ž . Ž .Using 26 in 25 and dividing through by h t, t , we find by H1 0 5

ty1h t , t h t , s a s dsŽ . Ž . Ž .H1 0 1
t0

 ht 1y1F yu t y h t , t t , s u s dsŽ . Ž . Ž . Ž .H0 1 0  st0

 h1y1F yu t y B h t , t t , sŽ . Ž . Ž .0 2 1 0  s ss t0

F yu t q B M - `. 27Ž . Ž .0 2 0

Ž .Taking lim sup as t ª ` in 27 , we obtain the desired contradiction to
Ž . Ž . 2 1w .19 . This completes the proof in the case when f 9 y u g L t , ` .0

Ž . 2 1w .Now we return to the case when f 9 y u f L t , ` . On this occasion,0
Ž . Ž .we multiply 24 by h t, s and proceed to obtain a similar statement to2

Ž .25 with h substituting for h2 1

 ht t2 2yh t , t u t s t , s u s ds q h t , s f 9 y u dsŽ . Ž . Ž . Ž . Ž . Ž .H H2 0 0 2 st t0 0

t
q h t , s a s ds. 28Ž . Ž . Ž .H 2

t0

y1 ŽClaim that for any chosen 0 - l - 1 such that d l - d this is possible1
. � 4since d - d there exists a sequence t , t ª `, satisfying1 n n

1  ht t 2n n2h t , s f 9 y u s ds G y t , s u s ds. 29Ž . Ž . Ž . Ž . Ž . Ž .H H2 n nl  st t0 0

Ž . Ž .Now suppose that 29 holds. Using this in 28 , we find

tny h t , s a s ds y h t , t u tŽ . Ž . Ž . Ž .H 2 n 2 n 0 0
t0

tn 2G 1 y l h t , s f 9 y u s ds. 30Ž . Ž . Ž . Ž . Ž .H 2 n
t0

Ž . 2 1w .Since f 9 y u f L t , ` , we note from0

s ht t 2n n2 2h t , s f 9 y u s ds s y t , s f 9 y u dsŽ . Ž . Ž . Ž . Ž .H H H2 n n st t t0 0 0

Ž .and H that6

tny1 2lim h t , t h t , s f 9 y u s ds s `. 31Ž . Ž . Ž . Ž . Ž .H2 n 0 2 n
t ª` tn 0
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Ž . Ž .Applying 31 to 30 and since 0 - l - 1, we obtain

tnlim h t s a s dsrh t , t s y`,Ž . Ž . Ž .H 2 n 2 n 0
nª` t0

Ž . Ž .which contradicts 20 . It remains to prove assertion 29 . Suppose that no
� 4such sequence t exists; then there must exist t G t so that for all t G tn 0

we have

1  ht t 22II t s h t , s f 9 y u s ds F y t , s u s ds. 32Ž . Ž . Ž . Ž . Ž . Ž . Ž .H H2 l  st t0 0

Note that

2 h  ht 2 2
t , s G y s ds s y t , s G y tŽ . Ž . Ž . Ž .Ž . Ž .H 02  s s ss tt 00

 ht 2y t , s u s ds. 33Ž . Ž . Ž .H
 st0

Ž . Ž Ž ..w Ž .Ž . < x Ž .Denote N t s G y t y  h r s t, s . We can now use 33 ,ss t0 0 2 0

Ž .H , and Schwarz’s inequality to obtain10

2
 ht 2

t , s u s dsŽ . Ž .H
 st0

 2 h 1t t 22F d h t , s f 9 y u s ds t , sŽ . Ž . Ž . Ž .H H1 2 2ž / ž /f 9 y s Ž .t t0 0

 2 ht 2y1F d d II t t , s G y s dsŽ . Ž . Ž .Ž .H1 2ž / st0

 ht 2y1F d d II t N t y t , s u s ds . 34Ž . Ž . Ž . Ž . Ž .H1 0½ 5 st0

Ž . Ž .Using 32 in 34 above, we have

y1 h d d  ht t2 1 2
t , s u s ds F N t y t , s u s ds ,Ž . Ž . Ž . Ž . Ž .H H0½ 5 s l  st t0 0
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or

y1 y1d d  h d dt1 2 1
1 y t , s u s ds F N t . 35Ž . Ž . Ž . Ž .H 0ž /l  s lt0

Ž . Ž .Combining 35 and 32 we find

y1y1 y11 d d d d1 1
II t F 1 y N t . 36Ž . Ž . Ž .0ž /l l l

Ž . y1Ž . Ž .Since H implies that lim sup h t, t N t s B - ` for some constant5 0 0 2
Ž . Ž .B , dividing 36 by h t, t and taking lim sup produces a desired contra-2 0

Ž . Ž . 2diction to 31 . This completes the proof in the case when f 9 y u f
1w .L t , ` and concludes the proof of Theorem 3.0

Ž .An immediate consequence of Corollary 3 is that condition A alone6
Ž .implies oscillation of Eq. 1 which improves upon our earlier result when

Ž . Ž .a is assumed to be an integer. For b s 0, condition A 9 becomes A ,7 5
w xso Corollary 3 also includes our first result in 21 .

w xRemark 3. Our results differ from that of Philos 14 in that we impose
Ž 2 2 .Ž .conditions on  hr s t, s whereas Philos assumed a growth condition

Ž 2 2 .Ž . Ž . Ž .aon  hr s t, s . In the special case of h t, s s t y s , a ) 1, both
our conditions and that of Philos are satisfied. Philos’ assumptions on the
kernel function are more effective for the linear equation and do not seem

Ž .to carry over readily to the more general nonlinear Eq. 1 .

Remark 4. We now apply our results to the following Emden]Fowler
Equation

s < <gy1y0 q t sin t y y s 0, g ) 0. 37Ž .

When g s 1, i.e., the linear equation, a complete classification with
w x w xrespect to oscillation can be found in Willett 16 and Wong 19 . For the

Ž .superlinear equation, i.e., g ) 1, Eq. 37 is oscillatory if and only if
w xs G y1. For s ) 0, it was proved by Butler 2 by a completely different

method and the proof is rather complicated. For the sublinear equation,
w x Ž .i.e., 0 - g - 1, Butler 2 also proved that Eq. 37 is oscillatory provided

Ž .s G 1. In this case, it is known that Eq. 37 is oscillatory if and only if
w x w xs G yg . Kura 10 and independently Kwong and Wong 11 showed that

Ž . Ž .Eq. 37 is oscillatory if s ) yg . Oscillation of 37 when s s yg was
w xsettled by Kwong and Wong 12 and also independently using different

w x Ž . s Ž .methods by Onose 13 . When s ) 1, a t s t sin t fails to satisfy A ,0
Ž . Ž . Ž . Ž .A , A , and A , and also A . However, we can apply Corollary 1 to1 2 3 6

Ž .show that Eq. 37 is oscillatory if s ) 1 in the sublinear case, i.e.,
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0 - g - 1. In the superlinear case, i.e., g ) 1, we can apply Corollary 3
Ž . Žand note that condition A 9 is satisfied for any a ) 1 in fact for any4

. sa ) 0 . On the other hand, choosing b ) s , it is easily shown that t sin t
Ž . Ž .also satisfies A 9 so that Eq. 37 is oscillatory for all s ) 1 and g ) 0.7

This offers an alternative approach considerably simpler than that of
w x w x w xButler 2 , Kura 10 , and Kwong and Wong 11 .

Ž . Ž . Ž .Remark 5. It is easy to give examples of f y satisfying F and F1 3
which are not of the form of Emden]Fowler type. Consider

1
2< < < <y0 q s sin t y 1 q y sign y s 0. 38Ž .Ž .

Ž . Ž . Ž . Ž . Ž .'Here f y s y 1 q y for y ) 0 and f y s yf yy . Note that F y s
y1'2 tan y and for all y

1
y1f 9 y F y s 1 q 3 y tan y G 1.Ž . Ž . Ž .'y

Ž Ž . Ž . . Ž .In fact, f 9 y F y ª 1 as y ª 0. Applying Corollary 1 to Eq. 38 , we
deduce that it is oscillatory for all s ) 1. Examples in the superlinear case,

Ž . Ž . Ž .i.e., f y satisfying F and F , can be formulated in a similar way.2 4
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