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1. INTRODUCTION 

In this paper we consider a convex function f: (a, 6) -+ R, where 
-co < a < b < co. We recall that f is convex if for all x1, x2 E (a, b) and 
a,,a,>Osuchthata,+a,=l, 

f is strictly convex if, in addition, whenever a,x, -t a2x2 is strictly between 
x, and x2, 

f(a,x, + a24 < aIf + azf(x2>- 

If f is convex, it is continuous; its left and right derivatives, f L and f’+, 
exist, are finite, and are non-decreasing; f L < f ‘+ , and except for at most 
countably many x E (a, b), f L(x) = f’(x) = f’+(x). 

Jensen’s inequality can be stated as follows: 
Suppose that f is convex on (a, b). Then, for x ,,..., x, in (a, b) and 

PI ,.--3 Pn > 0, P, + *** + Pn > 03 

(1) 

The inequality in the title of the paper states that, under the additional 
assumption of monotonicity of f, there is a specific point in (a, b) at which 
the value of f is greater than or equal to the right-hand side of (I). 

THEOREM 1. Suppose that f is convex and increasing on (a, b). 
Then for x1 ,..., x, E (a, b), Pl ,***, Pn > 0, p, + ... + p, > 0, and 
P,f;(x,l+ ... + p,, f ‘+ (x,) > 0, we have 

Plf(XJ + ... + P,fkJ <f Pllf:xllx, + .** +P,Y+Wx, 
pl+...+pn ’ ( P,f:(x,) + *-. + P,f’;@J ) 

. (2) 
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A more general version of Jensen’s inequality can be stated as follows: 
Suppose that f is convex on (a, b), that (E, a,~) is a probability measure 

space, and that X: (E, 8) + (a, b) is measurable. If X and f 0 X are in L+), 
then 

The corresponding generalization of Theorem 1 is 

THEOREM 2. Suppose that f is convex and increasing on (a, b). Suppose 
also that X: (E, 8) + (a, b) is measurable, that f 0 X, f: Q X, and 
(f'+ o X)X are in L(p) and that s,(f'+ 0 X)d,u > 0. Then 

(4) 

If, in addition we assume that f is strictly convex, then equality holds in (4) 
if and only ifX is constant ,u a.e. 

Both theorems remain valid if at any occurrence off’+(x) we write instead 
any value in the interval [f I(x), f'+(x)] . Note merely that inequalities (5) 
and (6) below, on which the proofs depend, continue to hold with such 
replacement. ("‘f $" was chosen for ease in stating the theorems.) 
Furthermore, both theorems are also true if f is a convex and decreasing 
function; the only changes needed in the hypotheses are to require 
P,f:w + *.. fp, f'+(x,) < 0 in Theorem 1, and I, f’+ 0 X dp < 0 in 
Theorem 2. For if f: (a, b) -P R is a convex and decreasing function, then 
3 (-6, -a) + R, defined by 3(x) = f(-x), is a convex and increasing 
function, and Theorems 1 and 2 applied to f yield the same theorems with f, 
just as before. 

In Section 2, inequalities (2) and (4) will be established and the case of 
equality will be discussed. Section 3 contains several applications. Section 4 
contains concluding remarks. 

2. THE PROOFS OF THE COMPANION INEQUALITIES 

The proofs of (2) and (4) are based on the inequality 

f(Y)>f(x)+ (Y--x)f;(x), (5) 

valid for any convex function on (a, b) and arbitrary x, y E (a, b). The proof 
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that (in the case of strict convexity) equality holds in (4) only if X is 
constant ,u a.e. depends on the inequality 

f(Y) > f(x) + (Y - x> f; (x)3 (‘5) 

valid for any strictly convex function on (a, b) and arbitrary distinct 
x, y E (a, b). 

To simplify typesetting, set 

A = Plf;(xJxl+ *‘- + Pnf;kJxn 
P*s:(X,) + *** + P,f:(xJ . 

To prove Theorem 1, observe that A E (a, b) since A is a convex 
combination of x, ,..., x,, and so by (5), 

f(A > a f(Xk) + (A - Xk) s: (Xk>T k = l,..., n. 

Multiply the kth inequality by pk and add the inequalities thus obtained; we 
lind 

(PI + *-* + p,)f(A) > i, Pkf(Xk) +A k$l Pkf:tXk) - k$, Pkf:(Xk)Xk, 

and Theorem 1 is proved since 

A f p,f+(Xk) - 2 E)kf :cxk) xk = O- 
k=l k=l 

We begin the proof of Theorem 2 by establishing 
is similar to that of (2). Set 

inequality (4). The proof 

A E (a, b), and by (5), for every t E E, 

f(A) > (f: 0 X)(t) + (A - XWU’+ 0 X)(t)- 

Integrate this inequality with respect to ,B and observe that 
A s,(j”+ o X) dp - (,(f’+ o X)Xdp = 0; (4) is immediate. 

To complete the proof of Theorem 2, we consider the case of equality in 
(4). If X is constant ,U a.e., then (4) is an obvious equality. We now show 
that if we require f to be strictly convex, then for equality to hold in (4), it is 
also necessary that X be constant ,u a.e. 
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Since f is increasing and convexity is strict on (a, b), have f ‘+ > 0, and 
2: E -+ R as defined by the equation 

is measurable on E. 
From (3) and (4), and the continuity and strict monotonicity off, we see 

that there is a unique x, E (a, b) such that f(x,) = (, f 0 X &. We rewrite 
(7) as 

Z(t) - x0 = 
f (x0) - ((f o x)(t) + (x, - w))(f; o JXt)) 

(f: o x)(t) 
(8) 

From (6), and the fact that f ‘+ > 0, we see that for all t E E, X(t) # x0 if and 
only if Z(t) > x0 , while X(t) = x0 if and only if Z(t) = x0. 

Integrate both sides of (7) with respect to p and divide by I, f ‘+ 0 XC+. 
We find 

where A is as defined above. If X is not constant ,u a.e., then 
E, = {t E E: X(t) # x0} = {t E E: Z(t) > x0} has positive measure. Since 
E\E, = (t E E: Z(t) =x0}, we see from (9) that A > x0, and so 
f, f o X dp = f (x0) < f(A); thus the inequality in (4) is strict and the proof 
of Theorem 2 is complete. 

The following example illustrates one of the possibilities for equality in (4) 
(more specifically, in (2)) when convexity is not strict. (A sketch will make 
the construction clear.) 

Suppose A(x) = m,x + bi, i = 1,2 and x E R, where 0 < m, < m,. Define 
f = Sup(f,, f2) and let 5 jr be defined by fi(2) = fi(2) = jL Suppose xi and 
x2 are fixed points such that xi < 2 < x2. jr is in the open interval 
(f (xl), f (x2)) and so there exist ai, (x2 > 0 such that a, + a2 = 1 and 
a, f (x,) + a2 f (x2) = jr. An easy calculation shows that 

~=alf’(x,)xl +a2fl(x2)x2 
aIf’ + a/(x,) ’ 

(f ‘(x,) = m, and f’(x,) = m2 .) Thus 

alf(xl)+a,f(x,)=y= f(.C)=f a1~‘(~~~x~~+t~21:~2~X2) . 
( I 2 2 
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3. APPLICATIONS 

In this section we give two applications, one of inequality (4) (which 
yields a familiar result), and one of inequality (2) (which might be new). 
Since all integrals are over E, we will drop “E” from the integral sign. 

lo. Define f: R + R by f(x) = 0 for x < 0 and f(x) = xp, p > 1, for 
x > 0. If X: E + R is non-negative, bounded, and measurable, and not a null 
function, then from (4) 

after rearranging we obtain 

By familiar approximation techniques of real analysis, notably the Lebesgue 
monotone convergence theorem, (11) can easily be shown to hold for all 
non-negative extended real valued measurable X. With q > 0, replace X by 
XQ and raise both sides of (11) to the l/q. If we now set q = C-S and 
p = t/(t - s), wh ere 0 < s < t, we recover the well known result 

(~Xsdp)‘s< (j”Pdp)“‘, if 0 < s < C. (12) 

It is also well known that (12) holds if s < t < 0; this too can be obtained 
from (11) by first replacing X by l/X, and then proceeding in a similar 
fashion. 

2’. Suppose g: {z:IzI <R}+C is analytic. Let M(r) = 
Max {I g(z)l: IzI = r} for 0 < r < R. From the maximum modulus theorem 
and the Hadamard three circles theorem we are able to conclude that 
log M(r) is a convex increasing function of log r. That is, the composite 
function log o A4 o exp is convex and increasing on (0, R). Since log and exp 
have strictly positive derivatives, we conclude that the one-sided derivatives 
M’+ and ML exist and satisfy A4’_ GM’+ and that they are equal except for 
at most countably many r E (0, R). 

Take any r,, rZ E (0, R) and a1 , a, > 0 such that al + a, = 1. Hadamard’s 
inequality states 

M(rY’rF2) Q (M(rl)>al (M(r,))“? ; (13) 
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the companion inequality, which will be proved below, states 

where 

We begin the proof by setting u1 = log r-i, u2 = log rz, and with f: (-co, 
log R) -+ R defined by f(u) = log M(e”), we apply inequality (2): 

aI log M(eU1) + a2 log M(e@) (16) 

<log M exp 
( I 

a,[M+(eUL)/M(eUL)] euxul t a,[M~(e”2)/M(eu2)] eu2u2 
a, [iW+ (eU1)/M(eU1)] eul t a2 [M$ (e”*)/M(e”*)] e”2 I) ’ 

If we now apply exp to both sides of (16) and replace U, and u, by log rl 
and log r2 respectively, we find 

= W=pC.Pl lois 6 + & log 5 1) 
= M(ryl r$‘), and the proof is complete. 

4. CONCLUDING REMARKS 

Hardy, Littlewood, and Polyi’s “Inequalities,” is still an excellent source; 
all our “well known” results are to be found there. 

For a discussion of the differentiability of M(r), Otto Blumenthal, “uber 
ganze transzendente Funktionen,” Jahresbericht d. Deutschen Mathem.- 
Vereinigung, XVI, Heft 2, 1905, seems to be the best we could find. 
M;(r) > M’_( r can occur. We remark that in (14), any M’+ may be ) 
replaced by ML (or any value inbetween) and the inequality remains valid. 
(In this connection, compare the remarks following the statement of Theorem 
2.) 

Besides the elementary convex monotone functions (e.g., f(x) = ex, 
f(x) = x(log + x)~, k > 1) which often provide useful companion inequalities, 
there are other functions from analytic function theory whose companion 
inequalities may be worth investigating. For example, the Nevanlinna 
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characteristic T(r, f) of a meromorphic f (see Einar Hille, “Analytic 
Function Theory,” Vol. II) is known to be an increasing convex function of 
log r. Its differentiability properties were recently investigated by D. W. 
Townsend (Abstracts A. M. S. Vol. 1, No. 1, January 1980, Abstract 773- 
30-12). 


