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We compute both classical and quantum finite-size corrections at leading order in the strong coupling
limit for the (dyonic) giant magnon in the Lunin-Maldacena background. Based on the exact S-matrix
conjectured for the deformed theory, we generalize the Liischer formula to include twisted boundary
conditions and show that the results match with those derived both by finite-size classical solutions of

the giant magnon and by algebraic curve analysis.
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1. Introduction

Integrability discovered in the AdS/CFT duality between type 1IB
string theory on AdSs x S°> and N = 4 super-Yang-Mills (SYM) the-
ory [1] led to many exciting developments and to understanding
non-perturbative structures of both string and gauge theories [2].
This duality has been generalized to a one-parameter marginal de-
formation of SYM, the so-called B-deformed SYM theory, which
still preserves N =1 supersymmetry [3,4], and even to a three-
parameter deformed theory which has no supersymmetry [5,6].
The deformed SYM theory is obtained by replacing the original
N =4 superpotential for the chiral superfields by:

W =ihtr(e™PopyZ —e " Poyzy). (11)

The deformation breaks the supersymmetry down to N =1 but
still maintains the conformal invariance in the planar limit to all
perturbative orders [3,4,7], since the deformation becomes exactly
marginal for real g if
hh = gy, (12)
where gyy is the Yang-Mills coupling constant. When 8 is real,
this deformed SYM theory is dual to a type-IIB string theory on
the Lunin-Maldacena background [8], which is obtained by a so-
called TsT transformation.

In the weak coupling limit A = g%MNC <« 1, various perturbative
analysis of the deformed SYM has been studied [6] and, in partic-
ular, anomalous dimensions for the one and two magnon states in
the su(2) sector have been computed up to four loops [9]. There
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have been several indications that the anomalous dimensions of
the B-deformed SYM are exactly solvable. Perturbative dilatation
operators are mapped to some integrable spin chains [10] and
all-loop Bethe ansatz equations have been proposed [11]. A first
non-trivial check about the perturbative four-loop anomalous di-
mension of the Konishi operator in the deformed gauge theory has
been done recently in [17] by computing it from the Liischer for-
mula [12-14,16] based on some twisted S-matrix elements.

Finite-size corrections for this and other operators of the de-
formed theory have been then obtained by using few different
methods. One way is to introduce “operatorial” twisted bound-
ary conditions (BCs) [18], another is to consider the untwisted
Y-system with twisted asymptotic conditions [19]. Instead, our
approach in this Letter will be to combine both a Drinfeld-
Reshetikhin twisted S-matrix with ordinary twisted BCs [20]. In
the developments of AdS/CFT duality, the S-matrix has been play-
ing an essential role [21,22]. This approach has been recently
applied to compute next-to-leading order Liischer (double wrap-
ping) corrections to the vacuum of the three parameters non-
supersymmetric deformed AdSs/CFT4 [24,25] (see also [26] for a
recent generalization to orbifolds and deformations of the AdSs
sector).

In the strong coupling regime, the string theory on this de-
formed background maintains the classical integrability [5,27], and
has identical excitations such as giant magnons [28], whose finite-
size effects have been obtained by transforming the AdSs x S°
background under a TsT transformation [27]:

8 __J
E—J=2gsin2 — S gsin® L cospe g 4 ..., (1.3)
2 e 2

/N

where g = 3= and the effect of the deformation 8 appears only
through the phase @:
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2r(ny—BJ)
= o (14)

Here n, corresponds to the untwisted boundary conditions of the
isometric angles ¢, and is the integer closest to BJ, such that
2w (ny — BJ) is restricted between —m and m. We recall that in
the string classical limit one has | ~ g > 1 and the deformation
parameter scales like 8 ~ 1/g. For the dyonic case, the second an-
gular momentum Q scales like Q ~ g.

Recently, a reanalysis of this calculation has led to a different
result for the phase @ [29,30]." For the case of the dyonic giant
magnon, the finite-size effect turns out to be

B 16g2sin®(p/2)
E—]J=¢q(p)— WCOS®
e _2sin2 EeoJ +€q ()] (15)
P Q2 +4g?sin* b ’ .
® =27 (ny — ) + LT PIsinp (1.6)

Q2 +4g2sin” §

where €q (p) is the dyonic dispersion relation

€q(p)=,/Q2 +4g%sin® g, (1.7)

and n; now is allowed to be any integer number. In the non-dyonic
limit (Q /+/A — 0), the phase & becomes

& =2mw(n2—BJ) (1.8)

which differs from (1.4). One of the main purposes of this Letter
is to confirm Egs. (1.6) and (1.8) by calculating Liischer w-term
formula based on the twisted S-matrix and the twisted BCs. This
computes a shift in the energy due to the finite size of spatial
length from the S-matrix for all values of the ‘t Hooft coupling
constant. This method has been successfully applied to the un-
deformed AdS/CFT duality in [13,14,31,32,16,33]. Differently from
the undeformed case, we will modify the formula to include the
twisted BCs. We will also study a leading one-loop correction in
the strong coupling regime using the Liischer F-term formula and
compare with the algebraic curve analysis.

2. Finite-size effects from the Liischer formulas

It has been noticed that the three-parameter deformed Yang-
Mills theory can be described by a Drinfeld-Reshetikhin twisted
S-matrix with ordinary twisted BCs [20]. The twisted S-matrix is
given by
S(p1., p2) = FS(p1. p2)F,

S(p1, p2) = S(p1, p2) ® S(P1, P2), (21)

where S(p1, p2) is the su(2|2) S-matrix [22] and the twist matrix
F is given by

F = eiy1 (h®]I®H®I1—H®h®h®I[)’ (2_2)

with a diagonal matrix h given by

1 1

1 This result was originally derived for the spectrum of the CPﬁ giant magnon

[29] and for the three-point correlation function of the S% giant magnon [30] but it
still holds for its energy since basically the same computation is involved.

The twisted BCs are imposed by a matrix M which appears in the
definition of the (inhomogeneous) transfer matrix

t(A) = STrgg Madg(ad)(alél)()h p1)--- S(ad)(aNdN)()\a PN), (2.4)
where the matrix Mg is given by
M = el Jh & oilys+y2) b (2.5)

and J is the angular momentum charge which is related to the
length of spin chain by J =L — N. We will restrict our analysis to
the B-deformed case given by y1 = y» = y3 =276.

2.1. Liischer F-term and jt-term formulas

We propose that the Liischer F-term formula for a generic
physical bound state with twisted BCs, is given by?

[ (e
2 €1(q4)

(bb)( )
x Z (=D *T Mgbb’( (bb)(a;aq(q*(q)’p)_l)]'
bbb’ b’

F
6E(a(1)Q

(2.6)

In the derivation of the F-term formula [12,14,15], there is a
step where the integration contour is shifted from complex to real
axis. When the S-matrix has a pole corresponding to a physical
bound state, the shift of contour can generate an extra term, which
is the so-called p-term:

€ .
SEf, = —i(l Qm))e'q*f
Q €1(qx)

x 3 (R Res[Mzbb,S((sbl;(Lf)a)Q(q*(Q),P)],
b,b,b" b’

(2.7)

where ¢ is the location of S-matrix the pole(s) and we use a short
notation ¢, = ¢.(g). In the strong coupling limit, the p-term gives
the leading classical contribution, while the F-term correspond to
the first quantum finite-size correction.

The Liischer corrections need only the S-matrix elements which
have the same incoming and outgoing SU(2|2) quantum numbers
after scattering with a virtual particle. In particular, we consider
a bound state of Q su(2) magnons in the physical particle state,
namely (1i)Q. It has momentum p and energy given by (1.7),
while the momentum of the virtual particle, q,, satisfies the fol-
lowing on-shell relation

¢* = —€7(q.). (2.8)

In this case, the twisted S-matrix elements can be written as

s ()g _ inpQhythy) cb'la Bt i i
S Spre ] x [e 1055, (29)

Now, since the twisted BC matrix is a diagonal matrix which, in
the case of B-deformation, becomes
M =1 %7 hlh (2.10)

then the sum in Eq. (2.6) results to be

2 The indexes a,d denote the SU(2|2) ® SU(2|2) labels.
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4 4 .
Fp ,2im BQhy le _1\F; ,2i2)—Q)mph; cbla
b}_]( 1fve Sy x§ [(=D)Fbe bsbiq].

b=1
(2.11)
The explicit matrix elements are given by
bi b1
S; Q(y  X*) =S, Q(y , XF) = So(y™, XF)sp (yE, XF),
(2.12)
where [32]
+ Q .+ -
20k yE) _ + 2 X7 (Y y =X
So(y™. XF) = opes(y*. X¥) <y+) X+
1 1
1- y+—x y —x1- yT
e , (2.13)
1— =7 V" — 1- y+X+
oggs being the BES [23] dressing factor, and
+_xt+t1-— -
+ + y y—X+
s ,XT) =1, X ,
1(y7. X%) (V5 X5 = e T
y— X
+ + -
L oot yT—X X
S X ) =———/ —. 214
3.4(y ) y+—X*‘/X+ (214)

Here we are using the usual kinematic variables for the virtual
particle, solutions of the conditions

Y- g 1 _ 1 i

— =gl y + — —-—=— (2.15)
yt vt y- g

and for the dyonic magnon:

Xt ; 1 1

=, Xt+ ——-X" - IQ. (2.16)
X— X+t X- g

2.2. Twisted algebraic curve and quantum finite-size correction from
the F-term

The (dyonic) giant magnon solution on the deformed SZ can be
described by the following set of twisted quasi-momenta

ox ox
Pi(X)sz_l + ¢35, PQ(X)ZXZ—_‘F%,
—OX —OX
p3(x) = Z-1 + ¢35, pi(x) = +¢4,
_ +
pi0 = X pilog( X=X g
1 x2—1 1/x — X~ 1
ox . X
p3(x) = Z-1 —llog(x >+¢§,
- X+
P30 = o +ilog( —~— ) + o3,
x2 -1 X—X—
_ _X+
P30 = o —ilog x=XTN L, (217)
xs—1 1/x —

where a = A/g, A=]—Q + %.(XJr — X7) and, since the defor-
mation does not affect AdSs, 5, ---,9;=0. The twists (T RN
can be fixed by observing that, in the language of [34], the twists
(#7. D7, @5, b5, ¢35, b3, B3, ¢3) correspond to (¢1, ¢z, ¢3, Pa, Ps, P,
¢7, ¢s) [31], and then by comparing the twisted BAEs of [34] to the
Beisert-Roiban BAEs [11,20] with y1 =y, =y3=278,L=]+Q.
For giant magnon states, we set all the numbers of Bethe roots
in the “SU(2)” grading to zero except the SU(2) Bethe roots with

+ .
K4 = Q and used the condition ]_[?:1 j:% =¢e'P. Then the resulting
i

twists are

=p/2+7mBQ, =-p/2-7mBQ,
¢3=p/2+7BR2L-3Q),
s =—p/2—mBR2L-3Q). (2.18)

Another possible way is to use the twisted boundary conditions for
the worldsheet excitations set by [5,18]

Z<—>ei2”ﬂQ, Yii <—>ei2”'6], Yy < el27TAU-Q) (219)
for the scalars, and

014 < eiﬂﬂQ, Br <> e*!’ﬂﬂQ’ Nigy < eiﬂﬂ(ZlfQ)’

N3 < TPCImO (2.20)

for the fermions with o = 3,4. Then one can obtain the twists
(2.18), up to the terms depending on the momentum p, by map-
ping the worldsheet excitations to the various physical polariza-
tions of the algebraic curve fluctuations [35]:

(ij)aass = (13), (14), (23), Q4) & (Z34. Z33. Z43. Z43),

(if)ss = (13), (14), 23), 24) < (Yy3, Yqi» Vo3, Yai),

(if)rermions = (13), (14), (23), (24), (13), (14), (23). 24)
< (M33: Miz> Mag> Migs 014 013, 0240 623)- (2.21)

If we use $1(27m) — $1(0) = p = pws + 27Q and $(27) —
$2(0) = 2 (n; — BJ) in the notations of [6], our twists (2.18) also
match the quasi-momentum asymptotic behaviors for the SU(2)g
sector derived there®

Dws 2n (] - Q)
PO 2, 5 AU+ Q) m T
Po — 25 By - )+ T Dy

where P(x) = 5(p3(0) — p3(®) = 3 (pj(1/0) — p3(1/x).*

While the twisted quasi-momenta are shifted by constants, the
fluctuation frequencies £2;j(x) of the deformed theory are the same
as those of the undeformed theory and polarization independent,
i.e. same for all the (i, j) [31]:

2 Xt + X~
@i = a3\ xrx 11

The one-loop quantum effects are the summation over all fluctua-
tion frequencies,

1 .
SAone-loop = 5 Z Z(_l)FU QS
ij n
dx
:/2_ X_Q(X)Z( ])Fue*I(Px P;)

ij

(2.22)

where the sum runs over all the physical polarizations (2.21). The
only change from the computations for the undeformed theory is
the summand in the integral above, that is

3 Actually it is not clear how to extend the analysis of [6] to unphysical configu-
rations, such as a single (dyonic) giant magnon, and to all the finite-gap solutions
of the B-deformed theory. We thank S. Frolov for making this point.

4 The twisted quasi-momenta (2.17) with the twists (2.18) satisfy the inversion
symmetry pj 5330 =-p3733 (1/%. P1 33300 =-p;3333 1/0.
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Z(_l)Fije*"(Pi*pj)
ij

; _x- [x+
:e—lﬁ%(emﬂ(u—cz)x X~ X

x— XtV x—
- xXT -1 /X~
e—iTARJ-Q) 25
+ xX——1V Xt
o (empaX= X" [XT | impoXXT -1 X7
x— XtV X- xX——1V X+t '

For the non-dyonic giant magnon, one should take a limit Q — 1
and then BQ — 0, X* — e*iP/2,

It can be shown explicitly that this result matches exactly the
S-matrix supertrace given by Eqs. (2.11) and (2.14), once it is mul-

jax
tiplied by the exponential factor e=9+J ~ ¢ lg(xz-ﬂ, in the strong
coupling approximation y* ~ x. On the other hand, the matching
of the kinematic part

_/d_q(l_GQ(p)>_,,:/d_X_axQ(x)---
27 €1(q.) 2mi
R Ut

is inherited without changes from the undeformed case [31]. This
completes the matching and then confirms the validity of the
quantum corrections calculated by using our F-term formula (2.6)
and the twisted quasi-momenta (2.17).

(2.23)

2.3. The pu-term calculation

In order to calculate explicitly the p-term from Eq. (2.7), we
shall follow basically the calculations of [32]. We just recall here
that we need to compute the residues of the S-matrix (2.11)-
(2.14) in both its s-channel pole at y~ = X* and t-channel pole
at y© = X*. Then, since s, s3 and s4 are negligible in the classical
limit g > 1, we need to consider only the s; factors, multiplied by
the respective twists e?27#J/—Q and e”#Q which will give a final
overall factor e2#J in front of the result of [32].

Indeed, we have that, at both poles y~ = X* and y* = X¥, the
virtual particle momentum g, and the exponential factor become

- i -
Foe— L s exp[— — } (2.24)
gsin(557) gsin(E51%)

where we introduced 6 defined by
0

sinh - = L (2.25)
2 2gsink

From Eq. (2.8) one obtains
€, (p)  sinZsin 2519

-2 2 (2.26)

€1(q*)
while the explicit evaluation of the residues at the leading order
gives

0
cosh 5

)
4igsin® § €q (p)

. p—if
gsin -

2 _
0y i 0T

e?ihJ exp |:— :| (2.27)

- p—if
sin =~
Combining all these contributions together, taking the difference of
the contribution from the residue in y~ = X+ and y™ = X* [32]
and the real part of the final result, we get

8gsin® 2 , ¢
T Lt Re{ezn,ﬁ]exp[_Lq(pg)“
(e cosh 3 gsin p—21

16g2sin* &
€q(p)

2 sin? ElJ+e€q(mleq(p)
P Q2+4g2sin* 2 7

0s @

(2.28)

that agrees with Eq. (1.5), with @ being exactly the same as
Eq. (1.6). In particular, in the non-dyonic limit & — 0, the result
reduces to

8
SEM. =S8 g3 gcos(Znﬂ ])exp[— (2.29)

(1)1~ @2

.] ]
2g Sl“( 2 )
that HlatCheS eXaCt]y Eq. (1.8).

3. Concluding remarks

In this Letter we have proposed Liischer formulas for w-term
and F-term corrections of a dyonic magnon state for the S-
deformed AdSs/CFT4 theory.

It turns out that the resulting finite-size corrections depend on
the parameter 8 only through an overall factor cos(2m 8J), which
has been observed for the first time in [29] and [30]. The expres-
sion of the phase @ is then in contrast to that derived in [27],
and has been confirmed in this Letter both in the dyonic and
non-dyonic cases, by classical and first quantum finite-size cor-
rections calculated on the basis of the S-matrix proposed in [20],
but we checked that the same results can be derived by using the
Y-system'’s asymptotic solutions of [19] or the twisted transfer ma-
trices derived by [18]. Then essentially we solved the long standing
issue of matching string results for the finite-size effects of giant
magnons on the g-deformed $> and Liischer corrections [7,15],
that are derived by using the information of a twisted S-matrix
with twisted BCs.

Now, it would be interesting to extend our analysis of the
strong coupling finite-size corrections to all the orders in the vol-
ume L, along the lines of [36]. This would entail the formulation
and the solution of a set of twisted TBA/Y-system equations for
SU(2) excited states. Also the analysis of the three-parameters de-
formation would be an interesting generalization of our results.
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