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We compute both classical and quantum finite-size corrections at leading order in the strong coupling
limit for the (dyonic) giant magnon in the Lunin–Maldacena background. Based on the exact S-matrix
conjectured for the deformed theory, we generalize the Lüscher formula to include twisted boundary
conditions and show that the results match with those derived both by finite-size classical solutions of
the giant magnon and by algebraic curve analysis.
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1. Introduction

Integrability discovered in the AdS/CFT duality between type IIB
string theory on AdS5 × S5 and N = 4 super-Yang–Mills (SYM) the-
ory [1] led to many exciting developments and to understanding
non-perturbative structures of both string and gauge theories [2].
This duality has been generalized to a one-parameter marginal de-
formation of SYM, the so-called β-deformed SYM theory, which
still preserves N = 1 supersymmetry [3,4], and even to a three-
parameter deformed theory which has no supersymmetry [5,6].
The deformed SYM theory is obtained by replacing the original
N = 4 superpotential for the chiral superfields by:

W = ih tr
(
eiπβφψ Z − e−iπβφ Zψ

)
. (1.1)

The deformation breaks the supersymmetry down to N = 1 but
still maintains the conformal invariance in the planar limit to all
perturbative orders [3,4,7], since the deformation becomes exactly
marginal for real β if

hh = g2
YM, (1.2)

where gYM is the Yang–Mills coupling constant. When β is real,
this deformed SYM theory is dual to a type-IIB string theory on
the Lunin–Maldacena background [8], which is obtained by a so-
called TsT transformation.

In the weak coupling limit λ ≡ g2
YMNc � 1, various perturbative

analysis of the deformed SYM has been studied [6] and, in partic-
ular, anomalous dimensions for the one and two magnon states in
the su(2) sector have been computed up to four loops [9]. There
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have been several indications that the anomalous dimensions of
the β-deformed SYM are exactly solvable. Perturbative dilatation
operators are mapped to some integrable spin chains [10] and
all-loop Bethe ansatz equations have been proposed [11]. A first
non-trivial check about the perturbative four-loop anomalous di-
mension of the Konishi operator in the deformed gauge theory has
been done recently in [17] by computing it from the Lüscher for-
mula [12–14,16] based on some twisted S-matrix elements.

Finite-size corrections for this and other operators of the de-
formed theory have been then obtained by using few different
methods. One way is to introduce “operatorial” twisted bound-
ary conditions (BCs) [18], another is to consider the untwisted
Y-system with twisted asymptotic conditions [19]. Instead, our
approach in this Letter will be to combine both a Drinfeld–
Reshetikhin twisted S-matrix with ordinary twisted BCs [20]. In
the developments of AdS/CFT duality, the S-matrix has been play-
ing an essential role [21,22]. This approach has been recently
applied to compute next-to-leading order Lüscher (double wrap-
ping) corrections to the vacuum of the three parameters non-
supersymmetric deformed AdS5/CFT4 [24,25] (see also [26] for a
recent generalization to orbifolds and deformations of the AdS5
sector).

In the strong coupling regime, the string theory on this de-
formed background maintains the classical integrability [5,27], and
has identical excitations such as giant magnons [28], whose finite-
size effects have been obtained by transforming the AdS5 × S5

background under a TsT transformation [27]:

E − J = 2g sin
p

2
− 8

e2
g sin3 p

2
cosΦ e− J

g sin p/2 + · · · , (1.3)

where g =
√

λ
2π and the effect of the deformation β appears only

through the phase Φ:
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Φ = 2π(n2 − β J )

23/2 cos3 p
4

. (1.4)

Here n2 corresponds to the untwisted boundary conditions of the
isometric angles φ2 and is the integer closest to β J , such that
2π(n2 − β J ) is restricted between −π and π . We recall that in
the string classical limit one has J ∼ g � 1 and the deformation
parameter scales like β ∼ 1/g . For the dyonic case, the second an-
gular momentum Q scales like Q ∼ g .

Recently, a reanalysis of this calculation has led to a different
result for the phase Φ [29,30].1 For the case of the dyonic giant
magnon, the finite-size effect turns out to be

E − J = εQ (p) − 16g2 sin4(p/2)

εQ (p)
cosΦ

× exp

[
−2 sin2 p

2 εQ (p)[ J + εQ (p)]
Q 2 + 4g2 sin4 p

2

]
, (1.5)

Φ = 2π(n2 − β J ) + Q [ J + εQ (p)] sin p

Q 2 + 4g2 sin4 p
2

, (1.6)

where εQ (p) is the dyonic dispersion relation

εQ (p) =
√

Q 2 + 4g2 sin2 p

2
, (1.7)

and n2 now is allowed to be any integer number. In the non-dyonic
limit (Q /

√
λ → 0), the phase Φ becomes

Φ = 2π(n2 − β J ) (1.8)

which differs from (1.4). One of the main purposes of this Letter
is to confirm Eqs. (1.6) and (1.8) by calculating Lüscher μ-term
formula based on the twisted S-matrix and the twisted BCs. This
computes a shift in the energy due to the finite size of spatial
length from the S-matrix for all values of the ‘t Hooft coupling
constant. This method has been successfully applied to the un-
deformed AdS/CFT duality in [13,14,31,32,16,33]. Differently from
the undeformed case, we will modify the formula to include the
twisted BCs. We will also study a leading one-loop correction in
the strong coupling regime using the Lüscher F -term formula and
compare with the algebraic curve analysis.

2. Finite-size effects from the Lüscher formulas

It has been noticed that the three-parameter deformed Yang–
Mills theory can be described by a Drinfeld–Reshetikhin twisted
S-matrix with ordinary twisted BCs [20]. The twisted S-matrix is
given by

S̃(p1, p2) = FS(p1, p2)F ,

S(p1, p2) = S(p1, p2) ⊗ S(p1, p2), (2.1)

where S(p1, p2) is the su(2|2) S-matrix [22] and the twist matrix
F is given by

F = eiγ1(h⊗I⊗I⊗h−I⊗h⊗h⊗I), (2.2)

with a diagonal matrix h given by

h = diag

(
1

2
,−1

2
,0,0

)
. (2.3)

1 This result was originally derived for the spectrum of the CP3
β giant magnon

[29] and for the three-point correlation function of the S5
β giant magnon [30] but it

still holds for its energy since basically the same computation is involved.
The twisted BCs are imposed by a matrix M which appears in the
definition of the (inhomogeneous) transfer matrix

t(λ) = STraȧ MaȧS̃(aȧ)(a1ȧ1)(λ, p1) · · · S̃(aȧ)(aN ȧN )(λ, pN ), (2.4)

where the matrix Maȧ is given by

M = ei(γ3−γ2) Jh ⊗ ei(γ3+γ2) Jh, (2.5)

and J is the angular momentum charge which is related to the
length of spin chain by J = L − N . We will restrict our analysis to
the β-deformed case given by γ1 = γ2 = γ3 ≡ 2πβ .

2.1. Lüscher F -term and μ-term formulas

We propose that the Lüscher F -term formula for a generic
physical bound state with twisted BCs, is given by2

δE F
(aȧ)Q

= −
∫

dq

2π

(
1 − ε′

Q (p)

ε′
1(q�)

)
e−iq� J

×
∑

b,ḃ,b′,ḃ′
(−1)Fb+Fḃ

[
Mbḃ

b′ḃ′
(
S̃(b′ḃ′)(aȧ)Q

(bḃ)(aȧ)Q

(
q�(q), p

) − 1
)]

.

(2.6)

In the derivation of the F -term formula [12,14,15], there is a
step where the integration contour is shifted from complex to real
axis. When the S-matrix has a pole corresponding to a physical
bound state, the shift of contour can generate an extra term, which
is the so-called μ-term:

δEμ
(aȧ)Q

= −i

(
1 − ε′

Q (p)

ε′
1(q̃�)

)
e−iq̃� J

×
∑

b,ḃ,b′,ḃ′
(−1)Fb+Fḃ Res

q=q̃

[
Mbḃ

b′ḃ′ S̃
(b′ḃ′)(aȧ)Q

(bḃ)(aȧ)Q

(
q�(q), p

)]
,

(2.7)

where q̃ is the location of S-matrix the pole(s) and we use a short
notation q̃� = q�(q̃). In the strong coupling limit, the μ-term gives
the leading classical contribution, while the F -term correspond to
the first quantum finite-size correction.

The Lüscher corrections need only the S-matrix elements which
have the same incoming and outgoing SU(2|2) quantum numbers
after scattering with a virtual particle. In particular, we consider
a bound state of Q su(2) magnons in the physical particle state,
namely (11̇)Q . It has momentum p and energy given by (1.7),
while the momentum of the virtual particle, q� , satisfies the fol-
lowing on-shell relation

q2 = −ε2
1 (q�). (2.8)

In this case, the twisted S-matrix elements can be written as

S̃(b′ḃ′)(11̇)Q

(bḃ)(11̇)Q
= [

eiπβ Q (hb+hb′ ) S
b′1Q

b1Q

] × [
e−iπβ Q (hḃ+hḃ′ ) S

ḃ′1̇Q

ḃ1̇Q

]
. (2.9)

Now, since the twisted BC matrix is a diagonal matrix which, in
the case of β-deformation, becomes

M = I⊗ e4iπβ Jh, (2.10)

then the sum in Eq. (2.6) results to be

2 The indexes a, ȧ denote the SU(2|2) ⊗ SU(2|2) labels.
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4∑
b=1

[
(−1)Fb e2iπβ Q hb S

b1Q

b1Q

] ×
4∑

ḃ=1

[
(−1)Fḃ e2i(2 J−Q )πβhḃ S

ḃ1̇Q

ḃ1̇Q

]
.

(2.11)

The explicit matrix elements are given by

S
ḃ1̇Q

ḃ1̇Q

(
y±, X±) = S

b1Q

b1Q

(
y±, X±) = S0

(
y±, X±)

sb
(

y±, X±)
,

(2.12)

where [32]

S2
0

(
y±, X±) = σBES

(
y±, X±)2 X+

X−

(
y−

y+

)Q y+ − X−

y− − X+

×
1 − 1

y+ X−

1 − 1
y− X+

y− − X−

y+ − X+
1 − 1

y− X−

1 − 1
y+ X+

, (2.13)

σBES being the BES [23] dressing factor, and

s1
(

y±, X±) = 1, s2
(

y±, X±) = y+ − X+

y+ − X−
1 − 1

y− X+

1 − 1
y− X−

,

s3,4
(

y±, X±) = y+ − X+

y+ − X−

√
X−
X+ . (2.14)

Here we are using the usual kinematic variables for the virtual
particle, solutions of the conditions

y−

y+ = eiq�; y+ + 1

y+ − y− − 1

y− = i

g
, (2.15)

and for the dyonic magnon:

X+

X− = eip; X+ + 1

X+ − X− − 1

X− = i Q

g
. (2.16)

2.2. Twisted algebraic curve and quantum finite-size correction from
the F -term

The (dyonic) giant magnon solution on the deformed S5
β can be

described by the following set of twisted quasi-momenta

p1̂(x) = αx

x2 − 1
+ φ1̂, p2̂(x) = αx

x2 − 1
+ φ2̂,

p3̂(x) = −αx

x2 − 1
+ φ3̂, p4̂(x) = −αx

x2 − 1
+ φ4̂,

p1̃(x) = αx

x2 − 1
+ i log

(
1/x − X+

1/x − X−

)
+ φ1̃,

p2̃(x) = αx

x2 − 1
− i log

(
x − X+

x − X−

)
+ φ2̃,

p3̃(x) = −αx

x2 − 1
+ i log

(
x − X+

x − X−

)
+ φ3̃,

p4̃(x) = −αx

x2 − 1
− i log

(
1/x − X+

1/x − X−

)
+ φ4̃, (2.17)

where α = Δ/g , Δ = J − Q + g
i (X+ − X−) and, since the defor-

mation does not affect AdS5, φ1̂, . . . , φ4̂ = 0. The twists φ1̃, . . . , φ4̃
can be fixed by observing that, in the language of [34], the twists
(φ1̃, φ1̂, φ2̂, φ2̃, φ3̃, φ3̂, φ4̂, φ4̃) correspond to (φ1, φ2, φ3, φ4, φ5, φ6,

φ7, φ8) [31], and then by comparing the twisted BAEs of [34] to the
Beisert–Roiban BAEs [11,20] with γ1 = γ2 = γ3 = 2πβ , L = J + Q .
For giant magnon states, we set all the numbers of Bethe roots
in the “SU(2)” grading to zero except the SU(2) Bethe roots with
K4 ≡ Q and used the condition
∏Q

j=1
x+

j

x−
j

= eip . Then the resulting

twists are

φ1̃ = p/2 + πβ Q , φ2̃ = −p/2 − πβ Q ,

φ3̃ = p/2 + πβ(2L − 3Q ),

φ4̃ = −p/2 − πβ(2L − 3Q ). (2.18)

Another possible way is to use the twisted boundary conditions for
the worldsheet excitations set by [5,18]

Z ↔ ei2πβ Q , Y11̇ ↔ ei2πβ J , Y21̇ ↔ ei2πβ( J−Q ) (2.19)

for the scalars, and

θ1α̇ ↔ eiπβ Q , θ2α̇ ↔ e−iπβ Q , η1̇α ↔ eiπβ(2 J−Q ),

η2̇α ↔ e−iπβ(2 J−Q ) (2.20)

for the fermions with α = 3,4. Then one can obtain the twists
(2.18), up to the terms depending on the momentum p, by map-
ping the worldsheet excitations to the various physical polariza-
tions of the algebraic curve fluctuations [35]:

(i j)AdS5 = (1̂3̂), (1̂4̂), (2̂3̂), (2̂4̂) ↔ (Z34̇, Z33̇, Z44̇, Z43̇),

(i j)S5 = (1̃3̃), (1̃4̃), (2̃3̃), (2̃4̃) ↔ (Y12̇, Y11̇, Y22̇, Y21̇),

(i j)Fermions = (1̂3̃), (1̂4̃), (2̂3̃), (2̂4̃), (1̃3̂), (1̃4̂), (2̃3̂), (2̃4̂)

↔ (η2̇3, η1̇3, η2̇4, η1̇4, θ14̇, θ13̇, θ24̇, θ23̇). (2.21)

If we use ˜̃
φ1(2π) − ˜̃

φ1(0) = p = pws + 2πβ Q and ˜̃
φ2(2π) −

˜̃
φ2(0) = 2π(n2 − β J ) in the notations of [6], our twists (2.18) also
match the quasi-momentum asymptotic behaviors for the SU(2)β
sector derived there3

P (x) −→
x→∞

pws

2
+ πβ( J + Q ) − 2π( J − Q )√

λx
+ · · · ,

P (x)−→
x→0

− pws

2
+ πβ( J − Q ) + 2π( J + Q )√

λ
x + · · · ,

where P (x) = 1
2 (p3̃(x) − p2̃(x)) = 1

2 (p1̃(1/x) − p4̃(1/x)).4

While the twisted quasi-momenta are shifted by constants, the
fluctuation frequencies Ωi j(x) of the deformed theory are the same
as those of the undeformed theory and polarization independent,
i.e. same for all the (i, j) [31]:

Ωi j(x) = 2

x2 − 1

(
1 − x

X+ + X−

X+ X− + 1

)
. (2.22)

The one-loop quantum effects are the summation over all fluctua-
tion frequencies,

δΔone-loop = 1

2

∑
i j

∑
n

(−1)Fi j Ωn
i j

=
∫

dx

2π i
∂xΩ(x)

∑
i j

(−1)Fi j e−i(pi−p j),

where the sum runs over all the physical polarizations (2.21). The
only change from the computations for the undeformed theory is
the summand in the integral above, that is

3 Actually it is not clear how to extend the analysis of [6] to unphysical configu-
rations, such as a single (dyonic) giant magnon, and to all the finite-gap solutions
of the β-deformed theory. We thank S. Frolov for making this point.

4 The twisted quasi-momenta (2.17) with the twists (2.18) satisfy the inversion
symmetry p1̃,2̃,3̃,4̃(x) = −p2̃,1̃,4̃,3̃,

(1/x), p1̂,2̂,3̂,4̂(x) = −p2̂,1̂,4̂,3̂,
(1/x).
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∑
i j

(−1)Fi j e−i(pi−p j)

= e
−i 2αx

x2−1

(
eiπβ(2 J−Q ) x − X−

x − X+

√
X+
X−

+ e−iπβ(2 J−Q ) xX+ − 1

xX− − 1

√
X−
X+ − 2

)

×
(

eiπβ Q x − X−

x − X+

√
X+
X− + e−iπβ Q xX+ − 1

xX− − 1

√
X−
X+ − 2

)
.

For the non-dyonic giant magnon, one should take a limit Q → 1
and then β Q → 0, X± → e±ip/2.

It can be shown explicitly that this result matches exactly the
S-matrix supertrace given by Eqs. (2.11) and (2.14), once it is mul-

tiplied by the exponential factor e−iq� J  e
−i 2 J x

g(x2−1) , in the strong
coupling approximation y±  x. On the other hand, the matching
of the kinematic part

−
∫
R

dq

2π

(
1 − ε′

Q (p)

ε′
1(q�)

)
· · · =

∫
U+

dx

2π i
∂xΩ(x) · · · (2.23)

is inherited without changes from the undeformed case [31]. This
completes the matching and then confirms the validity of the
quantum corrections calculated by using our F -term formula (2.6)
and the twisted quasi-momenta (2.17).

2.3. The μ-term calculation

In order to calculate explicitly the μ-term from Eq. (2.7), we
shall follow basically the calculations of [32]. We just recall here
that we need to compute the residues of the S-matrix (2.11)–
(2.14) in both its s-channel pole at y− = X+ and t-channel pole
at y+ = X+ . Then, since s2, s3 and s4 are negligible in the classical
limit g � 1, we need to consider only the s1 factors, multiplied by
the respective twists ei2πβ J−Q and eiπβ Q , which will give a final
overall factor e2iπβ J in front of the result of [32].

Indeed, we have that, at both poles y− = X+ and y+ = X+ , the
virtual particle momentum q� and the exponential factor become

q̃∗ = − i

g sin(
p−iθ

2 )
→ e−iq̃∗ J ≈ exp

[
− J

g sin(
p−iθ

2 )

]
, (2.24)

where we introduced θ defined by

sinh
θ

2
≡ Q

2g sin p
2

. (2.25)

From Eq. (2.8) one obtains

1 − ε′
Q (p)

ε′
1(q̃

∗)
≈ sin p

2 sin p−iθ
2

cosh θ
2

, (2.26)

while the explicit evaluation of the residues at the leading order
gives

1

(y±)′
Res

y±=X+ S2
0 = ±4ig sin2 p

2

sin p−iθ
2

e2π iβ J exp

[
− εQ (p)

g sin p−iθ
2

]
. (2.27)

Combining all these contributions together, taking the difference of
the contribution from the residue in y− = X+ and y+ = X+ [32]
and the real part of the final result, we get

δEμ

(11̇)Q
= −8g sin3 p

2

cosh θ
Re

{
e2π iβ J exp

[
− J + εQ (p)

g sin p−iθ

]}

2 2
= −16g2 sin4 p
2

εQ (p)
cosΦ

× exp

[
−2 sin2 p

2 [ J + εQ (p)]εQ (p)

Q 2 + 4g2 sin4 p
2

]
, (2.28)

that agrees with Eq. (1.5), with Φ being exactly the same as
Eq. (1.6). In particular, in the non-dyonic limit θ → 0, the result
reduces to

δEμ

(11̇)Q =1
= −8g

e2
sin3 p

2
cos(2πβ J )exp

[
− J

2g sin(
p
2 )

]
, (2.29)

that matches exactly Eq. (1.8).

3. Concluding remarks

In this Letter we have proposed Lüscher formulas for μ-term
and F -term corrections of a dyonic magnon state for the β-
deformed AdS5/CFT4 theory.

It turns out that the resulting finite-size corrections depend on
the parameter β only through an overall factor cos(2πβ J), which
has been observed for the first time in [29] and [30]. The expres-
sion of the phase Φ is then in contrast to that derived in [27],
and has been confirmed in this Letter both in the dyonic and
non-dyonic cases, by classical and first quantum finite-size cor-
rections calculated on the basis of the S-matrix proposed in [20],
but we checked that the same results can be derived by using the
Y-system’s asymptotic solutions of [19] or the twisted transfer ma-
trices derived by [18]. Then essentially we solved the long standing
issue of matching string results for the finite-size effects of giant
magnons on the β-deformed S5

β and Lüscher corrections [7,15],
that are derived by using the information of a twisted S-matrix
with twisted BCs.

Now, it would be interesting to extend our analysis of the
strong coupling finite-size corrections to all the orders in the vol-
ume L, along the lines of [36]. This would entail the formulation
and the solution of a set of twisted TBA/Y-system equations for
SU(2) excited states. Also the analysis of the three-parameters de-
formation would be an interesting generalization of our results.
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