
Theoretical Computer Science 60 (1988) 1-82
North-Holland

IJsbrand Jan AALBERSBERG” and Grzegon ROZENBERG
Department of Computer Science, University of Luiden, 2300 RA Leitlen, T%e Netherlands

Communicated by A. Salomaa
Received October 1986
Revised July 1987

Abstract. The theory of truces, originated by A. Mazurkiewicz in 1977, is an attempt to provide
a mathematical description of the behavior of concurrent systems. Its aim is to reconcile the
sequential nature of observutions of the system behavior on the one hand and the nonsequential
nature of causality between the actions of the system on the other hand.

One can see the theory of traces to be rooted in formal string language theory with the notion
of partial commutativity playing the central role. Alternatively one can see the theory of traces
to be rooted in the theory of labeled acyclic directed graphs (or even in the theory of labeled
partial orders).

This paper attempts to present a major portion of the theory of traces in a unified way. However,
it is not a survey in the sense that a number of new notions are introduced and a number of new
results are proved. Although traditionally most of the development in the theory of traces follows
the string-language-theoretic line, we try to demonstrate to the reader that the graph-theoretic
point of view may be more appropriate.

The paper essentially consists of two parts. The first one (Sections 1 through 4) is concerned
with the basic theory of traces. The second one (Section 5) presents applications of the theory of
traces to the theory of the behavior of concurrent systems, where the basic system model we have
chosen is the condition/event system itrtroduced by C.A. Petri.

Contents

Introduction

0. Preliminaries

1. Basic notions

1.1. Traces and dependence graphs-basics

1.2. Traces-more basics

1.3. Dependence graphs-more basics

2. Basic properties

2.1. Traces and trace languages

2.2. Dep-graphs and dep-graph languages

3. Trace languages revisited

3.1. Equations ou trace languages

3.2. Relations between various classes of trace languages

3.3. Closure properties of, decision problems for, and the complexity of various classes of
trace languages

4. Dep-graphs and dcp-graph languages revisited

4.1. Using dep-graphs to reason about traces

4.2. Dcp-graph languages and graph grammars

2
4
6
6
9

13
16
16
23
30
30
34

42
47
47
51

* Present affiliation: Philips Research Laboratories Eindhoven, 5600 JA Eindhoven, The Netherlands.

0304-3975/88/$3.50 @ 1988, Elsevier Science Publishers B.V. (North-Holland)

2 IJ. J. Aaibersberg, G. Rosenberg

5. Trace languages, d:pqraph languages, end Petri nets 55

5.1. C/E structures, C/E SJ stems, firing sequences, and processes 55

5.2. Decomposing C/E structures using traces 65

5.3. Traces, dep-graphs, and processes of C/E systems 7 1

5.4. Appendix (proof of Theorem 5.19) 74

Acknowiedgment 76

References 76

Annotated bibliography 78

Introduction

The theory of traces was originated by Mazurkiewicz (in [31]) as an attempt to
provide a mathematical description of the behavior of concurrent systems. The basic
aim o; this attempt is to provide tools for converting the sequential descriptions of
a system into nonsequential descriptions. More specifically, the idea can be explained
as follows. A natural way to describe the behavior of a (concurrent) system is
through sequential observers. Here, a record of the behavior of a system is given
as a linear sequence (string) of actions as observed by a sequential observer. The
set of all such records constitutes the (sequential) description of the system behavior.
The disadvantage of this approach is that such a record does not necessarily give
faithful information about the system: two actions a and b may appear adjacent
within a sequential record, while they are really performed concurrently within the
system. Thus, in order to extract faithful information about the system behavior
from the set of records by sequential observers, we have to have additional informa-
tion about the system itself. Trace theory solves this problem in an elegant way: the
information about the system is given as a binary relation (over the set of all
actions)- 0 4alled the independence relation of the system. A pair (a, b) belongs to
ths relation if there is no direct causal relationship between the actions a and b
within the system. Now, given a sequential record x of the form x1abx2, where the
pair (a, b) belongs to the indt. zndence relation associated with the system, one
may commute the diven occurrences of a and b obtaining in this way another valid
(equivalent) sequential record (namely x1 ZXZQ) of the system behavior. All this
reflects the fact that the sequencing of ab within x results from the sequential nature
of the observations rather than from the system properties. Thus within this approach
one deals with equivalence classes of observations rather than with single observa-
tions only.

The independence reiation as considered in the theory of traces is assumed to be
symmetric and irreflexive-both assumptions express specific axioms concerning
the phenomenon of concurrency (irreflexivity represents the assumption that no
action in a system can occur concurrently with itself and symmetry represents the
assumption that concurrency of actions is always mutual).

It is evident that, following the above philosophy, the behavior of a system S can
be formalized now as a pair (L, I), where L is a set of strings representing alI
sequential records of S and I is the independence relation providing commutation

Theory of traces 3

rules for symbols of the alphabet of L. In this way one enters the area of partially

commutative string languages and hence the area of partially commutative monoids
(this was first observed in 141). It is interesting to know that the theory of partially

commutative monoids was initiated much earlier than the theory of traces. The first
work in this area is by Foata (in [12])-the main motivation here comes from
combinatorial problems arising from the rearrangements of strings. These purely
combinatorial considerations led to a by now quite rich theory (see, e.g., 1271 and
[30, Chapter lo]). As always it is exciting to observe how considerations arising
from fundamental problems in computer science and purely maihematical consider-
ations merge in a common framework.

There were other developments in computer science which led to the same
framework.

First of all, already in 1971 Keller has investigated (in [26]) the notion of partial
commutation within the theory of program schemes.

Secondly, in a number of papers (see, e.g., [14, 15, 161) FE and Roucairol
considered a formalism for reasoning about transactions in database systems. These
consideration: led, again, to the framework of p&ally commutative monoids.

This paper attempts to present a major portion of the theory of traces in a unified
way. Although it surveys quite a large part of the literature, it is not a survey in the
usual sense because

(i) it is somewhat selective in the choice of the material, and
(ii) a number of new notions are introduced and a number of new results are

proved.
It will be clear to the reader that this work strongly reflects our belief that

graph-theoretic considerations are natural and fruitful in the theory of traces. As a
matter of fact we try to emphasize the duality of the string- and the graph-oriented
points of view: while for some considerations viewing a trace as a set of strings is
useful, for other considerations looking at a trace via its so-called dependence graph
is more appropriate.

The paper is addressed to both formal language theorists and to researchers in
the theory of concurrency, especially to those interested in the theory of Petri nets.
We feel that both communities can benefit from learning about the theory of traces:
for language theorists it is a source of new, interesting and challenging problems,
while for a researcher in Petri nets it provides natural formal tools to describe their
behavior.

Basic knowledge of formal language theory is needed in reading this paper; in

reading Section 5 (which provides applications of trace theory to Petri nets), basic
knowledge about Petri nets is needed. However, since the knowledge of the basic
theory of Petri nets is less common than that of formal languages, Subsection 5.1
gives a brief introduction to those aspects of the theory of Petri nets that are needed
in Section 5.

The ‘mixed’ character of this paper (surveying known as well as providing new
notions and results) is reflected in the style of writing. own results are given

4 1J.A Aalbersberg, G. Rozenbetg

without proofs (except when we provide a new proof). At the end of each section
we provide bibliographtcal comments. Notions and results not pointed out in the
bibliographical comments are new. The only exception is Section 2 concerning the
basic results; many of the basic observations here were either stated at the same
time in a number of papers or they vuere a part of the folklore-for this reason they
are not explicitly pointed out in the bibliographfcal comments.

Independently of the list of references which 1s used throughout the paper, we
provide an annotated bibliography of the theory oi traces, which makes it easier
for the interested reader to get a more complete picture of the theory.

0. Preliminaries

we assume the reader to be familiar with basic formal string language theory, in
particular with the Chomsky hierarchy of string languages (see, e.g., [24, a]), and
with basic notions of graph theory (e.g., as presented in [22]).

‘Fhe empty set will be denoted by 0 and the set of all nonnegative integers will
be denoted by N. For a set A,

(i) #A denotes the cardinality of A,
(ii) id(A) denotes the set {(a, a): Q E A},

(iii) P(A) denotes the set of all subsets of A, and
(iv) for a subset B of P(A), U B denotes the set UbcB h

Furthermore, for sets A and B,
(i) A - B denotes the difference of A and B,

(ii) As B denotes the inclusion of A in B, and
(iii) A e B denotes the strict inclusion of A in B.

For a relation R over a set A,
(i) dom(R) denotes the domain of R,

(ii) ran(R) denotes the range of R,
(iii) R+ denotes the transitive closure of R, and
(iv) R* denotes the reflexive and transitive closure of R.

When we deal with an irreflexive relation R over a set A, we will use the terms
‘transitive’ and ‘complete’ in the foliowing sense:

(i) W is trunsifive if its reflexive closure is transitive, and
(ii) R is complete if its reflexive closure is complete.

When we specify a symmetric relation R over a set A, we often give it as a set of
unordered pairs rather than as a set of ordered pairs (i.e., we write {a, B} E R rather
than (a, b) E R and (6, a) E R). Finally, for a symmetric relation R over a set A, a
clique of is a subset I3 of A such that R is complete on B.

Unless stated otherwise, we consider only finite, nonempty alphabets. The empty
string will be denoted by h. For a string x,

(i) 1 x 1 denotes the length of X,
enotes the number of occurrences of symbol a in x,

(iii) alph(x) denotes the set of symbols occurring in X,
(iv) for 1 s k s 1 x I, x(k) denotes the symbol occurring on the kth position in x

and, for k > 1 x I, x(k) denotes the empty string, and
(v) for an alphabet A, &(x) denotes the projection of x on A (i.e., the string

resulting from x by erasing from it all the symbols that are not in A).
For two strings x and y, x 11 y denotes the set of shuffles of x and y, while, for two
string languages Y and L, K 11 L denotes the union of all sets of shuffles of x and
y with x E K and y E L. The Parikh image of a string x (a string language I,) is

by e(x) respectively). The concatenation of string
languages and L denoted by l L; mostly we simply write KL. For an alphabet
A, a linear ordering c on A (which is extended to the linear ordering on A* in the
usual way), and a string language L over A, min(L) denotes the unique string x in
L such that y <: x does not hold for any y in L. Finally, REG, CF, and CS denote
the classes of regular string languages, context-free string languages, and context-
sensitive string languages (over the alphabet considered), respectively.

A (directed) node-Meled graph will be specified in the form (V, E, 2, I!, where
V is its set of nodes, E c_ V x V its set of edges, _X its label alphabet and 2 : V-, C
its node-labeling function (occasionally we will specify E in the form of an incidence
matrix). Analogously, a (directed) graph will be specified in the form (V, E), where
V and E are as described above. To avoid set-theoretical difhcuhies, we will assume
that we are given a ‘universal’ zountable set of elements, from which the nodes of
all the (directed) (node-laMed) graphs we consider are taken. We consider (direc-
ted) (node-labeled) graphs without loops i.e., without edges of the form (tr, v) where
I) is a node, only. The empty graph (i.e., the graph with the empty set of nodes) is
denoted by A. The set of all directed node-labeled graphs with label alphabet Z is
denoted by r(Z). Two (directed) node-labeled graphs Q! and fi are isomorphic,
denoted by a! = p, if there exists a node-label-preserving and adjacency-preserving
isomorphism between the corresponding sets of nodes. Two (directed) graphs ar
and p are isomor$ic, denoted by ar = /3, if there exists an adjacency-preserving
isomorphism between the corresponding sets of nodes. As customary, in order to
facilitate our notation, we will notationally not distinguish very carefully between
a ‘concrete’ (directed) (node-labeled) graph and an ‘abstract’ (directed) (node-
labeled) graph; an ‘abstract’ (directed) (node-labeled) graph is the class of all graphs

isomorphic to a ‘concrete’ (directed) (node-labeled) graph. For a directed node-
labeled acyclic graph ac = (V, E, Z, I) with n = # V, the (linear extension) language
of (Y, denoted by L(a), is the string language {x E 2” : vl, . . l , v,, is a sequence

without repetitions of all elements of V such that, for all 1 s i s n, I(Vi) = x(i), and,
for all 1s i, j s n, (vi,,-, vj) E E implies that i <j}. For a directed (node-labeled) acyclic
graph Q! with V as its set of nodes and E as its set of edges

(i) a node cut of a! is a subset S of V, such that, for all v, w E S, (v, W) E E+, and,
for all VE V-S, there exists a WES with either (v, w)EE+ or (w,vkE+,

(ii) an edge cut of cy is a subset S of E such that, for all (v, w), (y, 2) E S, neither
(w, y) E Ei nor (2, v) E E+, and such that t e directed (node-labeled) acyclic graph

6 IJ.J. Aalbersberg, G. Rozenberg

resulting from ar by removing all edges in S consists of more connected components

than Q! does,
(iii) min(cu) (max(cu)) denotes the set of those nodes of ti which do not have

incoming (outgoing respectively) edges,
(iv) a transitive edge of a! is an edge (v, wj of ac such that there exists a path of

length at least 2 from v to w,
(v) red+) (trans(a)) denotes the directed (node-labeled) acyclic graph resulting

from Q) by removing (adding respectively) all transitive edges, and
(vi) for a subset S of V, the (reduced, transitive) S-contracted version of a is the

directed (node-labeled) acyclic graph /? (red(p), trans(/?), respectively), where p
results from ar by removing all nodes in S together with all edges adjacent with a
node in S and by adding an edge from a node v (not in S) to a node w (not in S)
whenever there exists a node z in S such that (v, z) E E and (z, w) E E.

IJnless stated explicitly otherwise, all functions considered will be total. F’or a
set V, a subset S of V, and a function f on V, f Is denotes the function f restricted
to S. The notation 0(f (n)), with f: N -) N, has the reserved meaning for indicating
the complexity of algorithms.

Finally, for the basics of the theory of (free partially commutative) monoids (this
is needed in Subsections 1.2 and 3.2 only), we refer the reader to [27]; for the basics
of the theory of semilinear sets (this is needed in Subsections 3.2 and 3.3 only), we
refer the reader to [19]; and for the basics of the theory of NP-completeness (this
is needed in Subsection 3.3 only), we refer the reader to [18].

1 .l. Traces and dependence graphs--basics

The most fundamental notion of trace theory is that of independent and dependent
actions. In order to formalize the (in)dependence of actions, we need the following
definition.

efinition. (1) Le; C be an alphabet. An independenck. relation (over 2) is a
symmetric and irreflexive binary relation over C. A dependence relation (over 2) is
a symmetric and reflexive binary relation over Z.

(2) A reliance alphabet is a triple (Z, 1, D), where C is an alphabet, I is an
independence relation over C and D is a dependence relation over C such that
IuD=CxC and InD=Q).

(3) Let C = (2, I, D) be a reliance alphabet and let a, b E 2. Whenever {a, b} e I,
we say that a and b are independent (in C) and whenever (a, 6) E D, we say that a
and b are dependent (in C).

For a given reliance alphabet C, we will denote its alphabet by alph(C), its
independence relation by ind(C) and its dependence relation by dep(C).

7Remy sf traces

1.2. Remark. It is easily seen that, for a given reliance alphabet C, ind(C) and
dep(C) are each others complement in alph(C) x alph(C). Hence, given an alphabet
and an independence (dependence) relation over that alphabet, the corresponding
dependence (independence respectively) relatkn is uniquely determined. Con-
sequently, it would suffice to specify one of them only. However, while in some
considerations in the theory of traces the independence relation plays the central
role, in other considerations one concentrates on the dependence relation; thus it
seems to be convenient to include both an in-dependence and a dependence relation
in the specification of a reliance alphabet.

Since symmetric binary relations can be represented by undirected graphs, we
can give a reliance alphabet C by either giving an undirected graph which represents
ind(C) or giving an undirected graph which represents dep(C). This leads us to
the following definition.

1.3. Definition. Let C = (2, I, D) be a reliance alphabet.
(1) The independence graph of C, dtnoted by I(C), is the undirected graph (2, I).
(2) The dependence graph Q’ C- denoted by D(C), is the undirected graph

(X, D -id(Z)).

Thus, in the terminology as above, both the independence graph of C and the
dependence graph of C are constructed by considering every symbol in C as a
node-in the independence graph an edge between two nodes is established if and
only if they are independent in C (and hence different) and in the dependence
graph an edge between two nodes is established if and only if they are dependent
in C and different (hence, the reflexive part of dep(C) is not represented in D(C)).

1.4. Example. Let C = {a, b, c, d, e}, let

I = Ha, 61, {b, 4, W, 4, (4 41

and let

D = Ha, 4 {a, 4, Ia, eL{b, 4, k dl, k 4) LJ id(V-

Then,
(i) C = (2, I, D) is a reliance alphabet,

(ii) I(C) is as depicted in Fit. 2 (a), and
(iii) D(C) is as depicted ir. Fig. l(b).

Considering adjacent independent symbols in a string to be commuting, one can
relate different strings as follows.

-.

efinition. Let C = (2, I, D) be a reliance alphabet.
(1) The relation + c C* x C * is defined as follows: for x, y E *, x +Y if and

only if there exist x1, x2 E C* and {a, b} E I such that x = x, abx2 and y = x&J;w,.

8 IJJ Aalbersberg, G. Rozenberg

(4

Fig. 1

(W

(2) The C-equivalence relation s c c 2,” x S* is defined as the least equivalence

relation over C* containing +. For X, y E X*, x and y are called Coeq~ivaZe~t if
and only if x = cy.

Thus, for a given reliance alphabet C, two strings over alph(C) are C-equivalent
if and only if they can be obtained from each other by commuting (a finite number
of times) adjacent independent symbols. In other words, ac identifies ‘commuta-
tively simiiar’ strings-each such group of strings (an equivalence class of = =) is
called a trace.

1.6. Definition. Let C = (Z, I, D) be a reliance alphabet.
(1) For an x E Z*, the trace of x (over C), denoted by [J&, is the equivalence

class of EC containing x.
(2) A trace (over C) is a set t of strings over C such that t = [iJc for some

x E 6”. A set of traces (over C) is called a trace Za~g~age (over C).
(3) For an x E 6* and a trace t over C, x is called a representative of t if and

only if t = [x]~.

For a reliance alphabet C, the trace [hlc over C will be denoted by 1 and the
set of all traces over C will be denoted by O(C).

e. Let C be the reliance alphabet given in Example 1.4. Then,
(i) bade + abde, abde f c adbe and hence, bade sc abde, abde zc adbe and

bade zc adbe, and
(ii) [abdelc = (bade, abde, adbe, baed, abed} is the trace of abde (over C).

While adjacent independent symbols in a string are commuting, dependent sym-
bols in a string are ordered-in this way each trace yields a directed node-labeled
acyclic graph as follows.

Let C = (Z, 1, D) be a reliance alphabet.
,...a;,E~*f~rsomen~Oanda,,...,a,E~.~ecanonicaldepen-

dense graph of x (over C), denoted by (x),., is the directed node-labeled acyclic

Theory of traces

graph (V, E, Z; I), where:
(i) V= (1,. . . , n},

(ii) for all 1 s i s n, l(i) = q, and
(iii) E c V x V is such that, for all 1 s i, j s n, (i, j) E E if and only if [i <j and

* {ui, uj}E D].
(2) For an XE X*, a dependence graph of x (over C) is a directed node-labeled

acyclic graph d over C such that d =(x),.
(3) A dependence graph (over C) is a directed node-labeled acyclic graph d over

C such that d = (& for some x E Z? A set of dependence graphs (over C) is called
a dependence graph language (over C).

(4) For X, y E Z*, x and y are called C-isomorphic if and only if (& s(y)=.

Thus, for a given reliance alphabet C and a string x over alph(C), the canonical
dependence graph of x over C is obtained by drawing arrows ‘from left to right’
between every two nodes that correspond to dependent (occurrences of) symbols
in x.

For a given reliance alphabet C, the set of all dependence graphs over C will be
denoted by A(C). Furthermore, although we will elaborate more on the notations
used in this paper at the end of this section, we now already want to note that the
term ‘dependence graph (over C)’ will often be abbreviated as ‘dep-graph (over C)‘.

1.9. Example. Let C be the reliance alphabet given in Example 1.4. The graph
depicted in Fig. 2 is a dependence graph of dbcee (over C).

e

b

Fig. 2

1.2. Traces-more basics

In this subsection we will provide more basic notions and notations concerning
traces and trace languages.

The following easy to prove properties are essential for defining some basic notions
later on.

a. Let C = (2, I, D) be a reliance alphabet.
(1) Forx,yEX*, x +y implies 1x1= lyl.

(2) -ForX,,X2,Y,,Y2E sc x2 and y, +y2 imply that xlyl = c x2y2-

10 1J.J. Aalbersberg, G. Rozederg

Hence, for a given reliance alphabet C,
(i) two C-equivalent strings over alph(C) have the same length, and

(ii) the C-equivalence relation is a congruence with respect to the operation of
string concatenation.

Now we move to basic operations on traces and trace languages.

efioition. Let C = (Z; I, D) be a reliance alphabet.
(1) For a t&9(C), the length oft, denoted by Itl, is defined by Itl=lxl, where

x E C* is a representative of t.
(2) For tl , t2 E O(C), the trace composition of tl and t2, denoted by tl 0 t2, is

defined by tl 0 t2 = [xIx2]c, where x1, x2 E C* are representatives of tl and t2 respec-
tively.

(3) For Tl , T2 z O(C), the trace composition of Tl and T2, denoted by Tl 0 T2, is
defined by Tl 0 T2 = { tl 0 t2 : tl E Tl and t2 E T2}.

(4) For a T C_ O(C) and n 2 0, the n-th truce power of T, denoted by T”, is defined
inductively as follows: T() = { 1) and T”+l = T 0 Tns

(5) For a T c e(C), the trace itei-dtion bf T, denoted by T*, is defined by
T* = u;zO T”.

1.12. Remark. (1) It is easily seen that Lemma 1.10 implies that both the length of
a trace and the trace composition operation are well-defined notions.

(2) The reader should not confuse the trace composition of traces with the string
concatenation of traces. While it is true that one gets the trace composition of two
traces by taking the trace of an arbitrary element of the string concatenation of
these traces, the trace composition and the string concatenation may yield different
sets. So, for a given reliance alphabet C and tl, t2 E O(C), the trace composition
of t, and t2 is the trace tl 0 t2 = [x,x~]~, where x1, x2 E (alph(C))* are arbitrary
representatives of tl and t2 respectively, while the string concatenation of tl and t2
is the set of strings tl t2 = {x1x2 : x1 E tl and x2 E tf}.

(3) It is easily seen that the trace composition operation is associative, i.e., for
a given reliance alphabet C and for tl , t2, t3 E O(C), tl 0 (t2 0 t3) = (tl 0 t2) 0 t3. Hence,
for a given reliance alphabet C, (O(C), 0, 1) is the quotient monoid of

(blPW))“, l , A) with respect to = c. This monoid is usually termed the free partially

commutative monoid generated by C.

3. le. Let C be the reliance alphabet given in Example 1.4. Then,
(i) I[abdelc I =4;

(ii) for the traces tl = [adlc = {ad} and t2 = [belt = {be} over (7 the string con-
catenation tl f2 equals { adbe} while the trace composition t1 0 t2 equals t = [abdelc =
(bade, abde, adbe, baed, abed); and

(iii) for the trace language T = {[able} over C, p = (I}, T’ = T, T2 =
([ablco Cab]& = ([abablc) = ((aabb, akdb, abba, baab, baba, bbaa)),T” = ([anbn]c)
for n 2 0, and T* = {[akb”lc : k 2 0).

Theory of traces 11

Trace languages may be specified using string languages. As a matter of fact,
there are several methods of using string languages to specify trace languages.

1.14. Definition. Let C = (Z, I, D) be a reliance alphabet and let K c C*.
(1) The existential trace language of K (over C), denoted by [K]:, is the set

(te O(C): tnK #0}.
(2) The universal trace language of K (over C), denoted by [K]:, is the set

{tEO(C):tc_K}.

(3) The consistent trace language of K (over C), denoted by [K],, equals [K]$
if [K]: = [K]: and is undefined otherwise.

1.15. Remark. Note that, in the notation as above,

[K]~=(tEO(C):thereexistsxEt suchthatxEK} and

[K]~={tEO(C):forallxEt, XEK};

this explains the names ‘existential’ and ‘universal’ respectively.

The above defined notions can be illustrated as follows.
Let C = (2, I, D) be a reliance alphabet and let K c C*. Then the C-equivalence

relation EC implies the partition & of C* into an infinite number of equivalence
classes (see Fig. 3(a)), while K implies the partition nK of C* into two subsets of
Z*, namely K and C*- K (see Fig. 3(b)).

Superimposing (showing at the same time) the two above partitions, we get the
picture which is shown in Fig. 3(c). Now all elements of & that have a nonempty
intersection with K form the existential trace language of K (see Fig. 3(d)); thus
[K]: consists of all traces which contain at least one string from K. Furthermore,
all elements of & that are included in K form the universal trace language of K
(see Fig. 3(e)); thus [K]: consists of all traces which contain only strings from K.
If & c & (i.e., superimposing & and & yields the situation as depicted in
Fig. 3(f)), then the set of all elements of & having a nonempty intersection with
K equals the set of all elements of & that are included in K, and thus all these
elements form the consistent trace language of K (see Fig. 3(g)).

1.16. Remark. Note that, for a given reliance alphabet C = (2, I, D),

and moreover, ([SIC)* = [X*lc = O(C).

7. e. Let C = (t;, 1, D) be the reliance alphabet such that C = {Q, 6) and
I= ((a, b}} (hence, = {(a, a), (b, W)=

(1) @(C)={tG : there exist m, n 3 0 sue

#b(x) = nHm
(2) Let K = { ab}*{ ba}*. Then,

12 IJ. J. Aalbersberg. G. Rozenberg

b

L*-K .

d

. . l

. I

. 0
.

. . . .

. . f .
.

.

Fig. 3

Theory of traces 13

0 i

() ii
. . .

() 111

[K]~=(~~X*:there exists an IIZ~O such that ~={xEZ*:#JX)=

#bW = 4;
[K]: = (1, [ab]}; and
[K], is undefined, because [K]$ f [K]:.

(3) Let K = {a}*{ b}(a)*{ b)(a)*. Then,
(i) [K]$=(tCX*:there exists an ma0 such that t={XEZ*:#a(X)=m and

#b(x) = 2));

(ii) [K]: = [K]:; and, consequently,
(iii) [Ml, is defined and [I& =[K]z =[K]F.

Since we use string languages to specify trace languages, we may use classes of
string languages to define classes of trace languages. Thus, e.g., the classical Chomsky
hierarchy yields the following classification of trace languages.

1.18. Definition. Let C = (.&, I, D) be a reliance alphabet and let T E O(C).
(I) T is existentially regular (context-free, context-sensitive) if T = [K]: for a

regular (context-free, context-sensitive, respectively) string language K c C *.

(2) T is universally regular (context-free, context-sensitive) if T = [K 1°C for a
regular (context-free, context-sensitive, respectively) string language K c 2 *_

(3) T is consistently regular (context-free, context-sensitive) if T = [K]c for a
regular (context-free, context-sensitive, respectively) string language K c C *.

Given a reliance alphabet C, we will use the following notations to denote the
classes of trace languages defined above. Tz(REG), TF(REG) and Tc (REG) denote
the classes of existentially, universally and consistently regular trace languages (over
C), respectively; analogously we have the notations Tz(CF), TE(CF), Tc(CF),
Tz(CS), Tg(CS), and T,(CS).

1.3. Dependence graphs-more basics

In this subsection we will introduce more basic notions and notations concerning
dependence graphs and dependence graph languages.

First we introduce some slightly different types of dependence graphs.

efinition. Let C = (2, I, D) be a reliance alphabet.
(1) Let x E C*. The canonical reduced (transitive) dependence graph of x (over

C), denoted by (x& ((x) > respectively), is the directed node-labeled acyclic graph
red(@)& (trans((&) respectively).

(2) Let x E C*. A reduced (transitive) dependence graph of x (over C) is a directed
node-labeled acyclic graph d over C such that d c(x)> (d s(x)k

(3) A reduced (transitive) dependence graph (over C) is a direct
acyclic graph d over such that d = (x& (d = (x): respectively)
A set of reduced (transitive) dependence graphs (over C) is called a reduced
(transitive respectively) dependence graph language (over C).

14 IJ. J. Aalbersberg, G. Rmenberg

IIence, in the notation as above, (x): is obtained from (x)~ by omitting from it
all ‘transitive’ edges and (x)‘, is obtained from (& by adding to it all possible
‘transitive’ edges.

For a given reliance alphabet C, the set of all reduced (transitive) dependence
graphs over C will be denoted by A’(C) (A’(C) respectively).

Note that, for a given reliance alphabet C and an x E (alph(C))*,
(x); and (x)‘, are unique because (x)~ is unique. Furthermore, note that, for a
given reliance alphabet C and an x E (alph(C))*, all of (x)c, (x)& and (x)‘, represent
the same partial order on the occurrences of symbols of X: (x)& is the covering graph
of the partial order in question, while (x)k fully represents it. It is clear that, while
w0rkin.g with these (different types of) dependence graphs which are convenient
mathematical objects, we actually work with, and take the point of view of, labeled
partial orders.

1.21. Example. Let C be the reliance alphabet given in Example 1.4. The graph
depicted in Fig. 4(a) is a reduced dependence graph of dbcee (over C) and the
graph depicted in Fig. 4(b) is a transitive dependence graph of dbcee (over C).

(a) (W

Fig. 4

The different types of dependence graph languages may be specified using
(different sorts of) string languages. This leads us to the following notions.

22. Let C = (S, I, D) be a reliance alphabet.
(1) Let K c C*. The (r&wed, transitive) dependence graph language of K (over

C), denoted by (I& ((Kj i_-, (IQ’,, respectivrly), is the set {d E A(C) : there exists
an x E K such that d = (x).. -) ({d E A’(C) : there exists an x E K such that d = (x);},
{d E A’(C) : there exists ar: x E K such that d = (x)‘,}, respectively).

(2) Let W c r(Z). W i,i: called regular (context-free) if W = (K& for a regular
(context-free respectively) Wing language K G C *.

iven a reliance alphabet C, (REG) and (CF) will denote the classes of
regular and context-free dependence graph languages (over C) respectively.

‘14eory of traces 15

We now move to consider graph composition operations on graphs. Later on,
they will turn out to be useful in dealing with different types of dependence graphs.

1.23. Definition. Let C = (Z, 1, D) be a reliance alphabet.
(1) Let gl = (VI, El, Z,ll) and g2 = (V2, &, Z, 12) be two directed node-labeled

graphs, such that VI n V2 = 0. The (reduced, transitive) graph composition of g, and

g2 (over a, denoted bY g1 q g2 (IA&r5 g2, 816 g2, respectively), is the directed
node-labeled graph g = (V, E, Z, 1) (g = red(V, E, S, l), g = trans(V, E, Z, I), respec-
tively), where:

(i) V= V,u V,;
(ii) E = El u E2u {(vl, v2) E VI x V2: {l,(q), 12(v2)} E D}; and

(iii) for all DE V, Z(v)=Z,(v) if VE V, and I(v)=Iz(v) if VE V,.
(2) Let gn and g2 be two directed node-labeled graphs over C. A directed node-

labeled graph g over C is called a (reduced, transitive) graph composition of g, and
g2 (over C) if there exist gi =(VI, E,,Z, I,)andgi=(V,, E2J, 1,),suchthatg’,=g,,
g3: Z- g2, V, n V2 = 0, and g = g: 0 gi (g = g: 6 g$, g = g: d g$, respectively).

124. mark. In order to facilitate our notation, we have not included the subscript
C in the graph composition symbols (q ,&, and d). Still it should be clear that the
different types of graph compositions of directed node-labeled graphs are dependent
on the reliance alphabet involved.

1.25. Example. Let C be the reliance alphabet given in Example 1.4, let dI be the
dependence graph over C as depicted in Fig. S(a), and let d2 be the dependence
graph over C as depicted in Fig. 5(b). Then a graph composition of dI and d2, a
reduced graph composition of d, and d2 and a transitive graph composition of dl
snd d2 are shown in Figs. 2,4(a) and 4(b) respectively.

d

b

(4

Fig. 5

(b)

16 1.U. Aalbersbetg, G. Rozenberg

Bibliographical comments
The notions of an independence relation, a reliance alphabet, a trace, and a trace

language were introduced by Mazurkiewicz in [31]-this paper has initiated the
theory of traces. The correspondence between the theory of traces and the theory
of partially commutative momMs was established in [4]. Given this correspondence
one may consider an alternative origin of the theory of traces (see Introduction).

The existential way of defining trace languages via string languages was indicated
in [3 19; however, the first extensive research on existentially regular, existentially
context-free, and existentially context-sensitive trace languages is presented in [46].
Consistently regular trace languages were introduced in [4].

Finally, because of the correspondence between traces and dependerdce graphs
(discussed in the next section) dependence graphs are considered eithl.r explicitly
or implicitly in quite a number of papers (see, e.g., [3 1, 33, 461).

2. Basic properties

In this section a number of basic properties of traces and trace languages (Subsec-
tion 2.1) as well as of dep-graphs and dep-graph languages (Subsection 2.2) are
considered.

We begin by giving a result relating traces with dep-graphs.

2.1. Theorem. Let C -_= (2, I, 0) be a reliance alphabet and let x, y E C*. 78en [x] =
[y] if and only if (x) s(y).

The above result underlies much of the philosophy (and techniques) of trace
theory as presented in this paper. It says that, for a given reliance alphabet C,
identifying strings having the same trace (which is done on basis of ind(C)) yields
the same result as identifying strings having the same dep-graph (which is done on
basis of dep(C)); thus strings are C-equivalent if and only if they are C-isomorphic.

2.1. Traces and trace languages

In this subsection we provide basic properties concerning traces and trace
languages and introduce a number of new notions and notations related to these
properties.

Since, according to Theorem 2.1, a dep-graph is ‘invariant’ for all strings belonging
to a given trace, we can associate a dep-graph with a whole trace. Consequently,
we get a clear correspondence between traces and dep-graphs, which can be partly
expressed through the following definition (the other part of this correspondence
is expressed through Definition 2.25.

. Let C = (Z, I, D) be a reliance alphabet. For a d E d(C) (d E A’(C),
d E A’(C)), the trace of d (over C), denoted by Cdl=, is the trace [& where x E C*
is such that d +x), (d s(x)‘,, d = (x)‘c, respectively).

7heory of traces 17

mark. Viewing a dep-graph d over a reliance alphabet C as a representation
of a labeled partial order P, [dlc is nothing else as the set of strings corresponding
to linear extensions of 77.

Again, in the notation as above, we write l[ldjj rather than [&, whenever C is
understood from the context.

In understanding basic properties of traces, the following easy to prove results
are quite useful.

2.4. Theorem. Let C = (Z, I, D) be a reliance alphabet. Let al, a2 E C, ul, u2 E C* and

t1, f2, $3, t4E @W.

(1) [u,] = 1 ifand only ifu, = h.
(2.1) t1 0 [al] = t20 [a21 and a1 f a2 imply:

(9 Ia, 9 d E 4 and

(ii) there exists s E O(C) such that tl = s 0 [a,] and t2 = s 0 [a*].
(2.2) [a,] 0 tl = [a21 0 t2 and a1 # a2 imply:

(9 Ia, 9 4 E 4 and

(ii) there exists s E O(C) such that t1 = [a,] 0 s and t2 = [a,] 0 s.
(3) tl 0 t2 0 t3 = tl 0 t4 0 t3 if and only if tz = t4.

(4) If VI, bk If or all b, E alph(u,) and b, E alph(u,) such that bl # b2, then

M O [%I = CUII II M-

2.5. Theorem, Let C = (E, I, D) be a reliance alphabet.
(1) IfI=& then, for every tE O(C), #t= 1.
(2) if #C = 1, then, for every t E O(C’), #t = 1.
(3) IfD = id(C), then, for every x, y E Z*, [x] = [y] ifand only if for every a E Z,

#a(x) = #a(Y) t i.e., if and only if@(x) = e(y)).

Furthermore, one has the following more involved results concerning traces.
The first one provides a characterization of the C-equivalence relation. It is easy

to see that, for a given reliance alphabet C and for x, y E (alph(C))*, if x = y, then,
for each a E alph(C), #,(x) = #,(y). Ikowever, in general, two strings x and y over
alph(C) having the same number of occurrences of each letter in alph(C) do not
have to be C-equivalent. Thus, in order to characterize the C-equivalence relation,
one has to add an additional condition.

2.6. Theorem. Let C = (2, I, D) be a reliance alphabet. For every x, y E Z*, x = y if
and only if [for every a E 2, #,(x) = #,(y), and, for every (a, b}E D, &,&x) =

&.b)(Y)I*

Tfme next result is useful in ‘trace calculus’ and can be seen as a generalization
of the celebrated Levi Lemma for strings (see [29]).

.?. eoretn. Let C = (Z, I, D) be a reliance alphabet. For every x, y, z, w E x*,

[xy] = [zw] if and only if there exist u, v, r, ,c E C* s that 1x3 = MJI,
[z] = Cur], [w] = [vs], and, for every a E alph(v) and a&W), (a, bk

18 IJ.J. Aalbersberg, G. Rosenberg

In general, a trace can be obtained as a trace composition of other traces, but
trace decompositions of the given trace do not have to be unique. This feature ofte;r
complicates proofs of various properties of traces (and trace languages). Hence it
is desirable to have ‘normal form’ decompositions of traces. One of such normal
forms will be discussed now.

2.8. Theorenr. Let C = (Z, I, D) be a reliance alphabet. Every t E O(C), t # 1, has a
unique decomposition t = tt 0 l l l 0 tm, m 2 1, such that:

(i) for al2 lsism, t&l;
(ii) for all 1 s i s m, ti can be written as [Ui], where ui E Z*, #a (ui) = 1 for each

a E alph(ui), and {a, b} E d for all a, b E alph(ui) such that a # b; and
(iii) for all 1 G i t=, m - 1, if ti = [Ui] and tit-1 = [ui+;], then, for each a E alph(ui+l),

there exists b E alph(ui) such that (a, b} E D.

Hence, by the above result, every trace can be uniquely decomposed into a minimal
number of ‘maximal independent’ parts. This decomposition yields a unique rep-
resentation for each trace t and we will refer to it as the normalform oft. Furthermore,
since the string u1 = . . u, is a reprtisentative of t, ul. . . u,,, will be referred to as a
normat resentat& of t. Finally, if we also order the alphabet C involved and,
for all 1 G i =G m, write the symbols in ui in that order, then the normal form of t

yields the unique string ul.. . u, over 2, called the minimal normal representative of
t; in other words, the minimal normal representative of t is the string min({x E C* : x

is a normal representative of t}).

2.9. Example. Let C be the reliance alphabet given in Example 1.4. consider
t = [adcbbed]. We note that t = tl 0 t2 0 t3 0 t4, where tt = [ab], tz = [db], t3 = [c] and
t4 = [ed]. Since t, tl, tZ, t3, and t4 satisfy the conditions (i), (ii) and (iii) from the
statement of Theorem 2.8, tl 0 t2 0 t3 0 t4 is the (unique) normal form of t and abdbced
is a normal representative of t.

If we asume now the order of C to be (a, b, c, d, e), then the string abbdcde is
the minimal normal representative of t (for the given ordering of C).

The following (deterministic) algorithm yields a normal representative of a trace
for a given representative of the trace.

First we give an intuitive description of the algorithm.
Let C = (2, I, D) be a reliance alphabet, let t be a trace over C of which we want

to find a normal representative, and assume that t is given through a representative
w E C+; C and w are the inputs of the algorithm. Let, for some n 2 1, C = {Q~, . . . , an}

and let r=lwl.
The algorithm will construct the decomposition t = tl 0 l l l 0 t,,, for some m s I by

constructing strings ul, . . . , U, E 2” such that ti = [ui] for all 1~ i s m. The algorithm
usesvariables u(I), . . . , u(l), where, for all 1 G i G m, u(i) stores the so-far computed
prefix of Ui* Initially, u(l), . . . , u(I) are set to h.

For all 1 ~j S n, there is a pointer p(j) which “ndicates that the next scanned
occurrence of aj will be appended to the current value of u(p(j)). Initially,

Pm ,...,p(n) areset to 1.
To construct the decomposition of t, the alf;odtk,, aeads w from left to right,

symbol by symbol in one pass. The values of prefixes u(l), . . . , u(m) and the
positions of pointers p(l), . . . , p(n) are updated as follows. Assume that currently
the algorithm reads the kth element of w, 1 4 6 k s Q, which is an ccurrence Of Uj for
some 1 SjS 01. Then,

(i) aj is appended to the current value of u(p(j));
(ii) for all 1 s i s n such that i Zj, vi and uj are dependent, and p(i) <p(j), the

value of p(i) is set to p(j) + 1; and
(iii) the value of p(j) is increased by 1.

((ii) and (iii) have to be performed because the next occurrence of each such Oi in
w as well as the next occurrence of Uj in w will have to occur in the decomposition
of t in a later ‘block’.)

After (i) and (ii) are performed (in this order) upon the reading of the kth element
of w, 1 G k s I - 1, the algorithm moves to scan the (k + 1)st element of w.

After the Ith element of w has been scanned, the algorithm sets m equal to the
largest i such that u(i) #)i and the algorithm outputs rhe string u(1). . . . u(m).

More ibrmally, the algorithm is as follows.

2.10. Algorithm.
Input: A reliance alphabet C = (2, I, D) and a string w E Cf.
Declaration: Let I = 1 w I, n = #C and C = {a,, . . . , 0,); let k be a variable over

IO , . . . , I} and let p be an array of length n over { 1, . . . , I+ 1); let i and j be variables
over (1,. . . , n); let u be an array of length I over (2 u {A})“; let m be a variable
over (1,. . . , I}.

Computation:
(I) for all lSiSn,p(i):=l.
(2) for all 1 s ks 1, u(k) := A.
(3) k:=O.
(4) k:=- k+l.
(5) set j such that w(k) = q.

(6) u(p(j)):= u(p(j)) l qk

(7) for all lci<n such that izj, p(i)<p(j) and (ai,a;-)E 0, p(i):=p(j)+l.

(8) p(j) := p(j) + 1.
(9) if kc I then goto (4).
(10) set m such that u(m)#h and either m-d and u(m+l)=h, or m=b.
(11) stop.

Output: The string u(1). . . u(m).

le. Let C be the reliance alphabet given in Example 1.4 and let w =
a&b& Then the corn ation of Algorithm 2.10, starting with C and w, can be
illustrated as in Fig. 6. ce, the output of the algorithm is abdbced.

UJ. Aalbersberg, G. Rozenberg

Fig. 6

Formalizing the above we get the following result.

.12. eorem. Let C = (2, I, D) be a reliance alphabet and let w E Z+. Let x be the
output of Algorithm 2.10 for the input (C, w). Then x is a normal representative of [w].

The computation of a normal representative of a trace by Algorithm 2.10 is done
quite efficiently.

. (1) For a reliance alphabet C = (S, I, D) with n = #C and a string
al representative of [w] is constructed by

tative of [w] is cons?

. Theory of traces 21

roof. Consider Algorithm 2.10. The theorem follows directly from the following
observations:

(i) the steps (l), (2), (3), and (10) are executed once;
(ii) the steps (4) through (9) are executed I times;

(iii) the steps (3), (4), (6), (8), and (9) have a constant time complexity;
(iv) the steps (l), (5), and (7) have a time complexity which is linear in n; and
(v) the steps (2) and (10) hav- a time complexity which is linear in 1. Cl

We now move to basic properties of trace languages.

2.14. Theorem. Let C = (Z, I, D) be a reliance alphabet and let K, L c C*.
(1) K =0 ifand only if[I#=fl.
(2) K G L implies that [K13 c [L]?
(3) [K13 0 [L13 = [KL]?
(4) [K *I3 = ([K13)*.
(5) [K]3u[L]3=[K~ L13.
(6) [K n L]3~[K]3n[L]3.
(7) K = C* implies that [K13 = O(C).

2.15. Theorem. Let C = (2, I, D) be a reliance alphabet and let K, L c C*.
(1) K =0 implies that [K]“=fl.
(2) K c L implies that [K]“G CL]“.
(3) [K]‘u[L]‘r [K v L]‘.
(4) [K]‘n[L]‘=[K n L]‘.
(5) K =C* if and only if [K]“= O(C).

2.16. Theorem. Let C = (2, I, D) be a reliance alphabet and let K, L E C*.
(1) [K]“E[K]~.
(2) [K]3=O(C)-[E*-K]V.
(3) [K]v=6(C)-[X*-K]3.
(4) [K-L]3~[K]3-[L]V.
(5) [K -L]v=[K]v-[L]3.

The following ‘collective’ example provides a ramification of the last three
theorems. It provides examples needed to prove that inclusions (implications) from
the above three results can be strict (cannot be turned into ‘if-and-only-if’ st
respectively). A0 er each example we provide (in brackets) a ointer to the inclusion

(implication) that can be proved to be strict (can own to be not convertible
into an ‘if-and-only-if statement respectively) usi

) ,w
does not state analogies of the points (3) and

22 1J.J. Aalbersberg, G. Rozenberg

2.17. Example. Let C = (2, I, D) be the reliance alphabet such that C = {a, b} and

I = ((a, b1).
0)

(2)

(3)

(4)
(5)
(6) i

(7)

(fo

(9)

WV

(11)

(12)

[{ab}]3 = ((ab, ba}) c ({ab, ba)) = [{ba}13, while (ab) G (ba} (Theorem
2.14(2)).
[{ab}13 n [(ba)]3 = ((ab, ba}) n {{ab, ball = {{ab, ba)} G 0 = [013
= [{ab} n {ba}13 (Theorem 2.14(6)).
Since ab = ba and ab E C* -{ba}, [8*-{ba}]3= O(C), while X*-{ab}#
C* (Theorem 2.14(7)).
[{ab}]’ = 0, while {ab} # 0 (Theorem 2.15(1)).

[{ab}]’ = 0 s 0 = [Ml”, while {ab} szi {ba} (Theorem 2.15(2)).
[{ab}u{ba}]‘=[(ab, ba}]‘={{ab, ba}}~O=[{ab}]vu[{ba}]v (Theorem
2.15(3)).

[WV 0 WI” = WI 0 WI = W4 WI g 0 = W41” = H4Wl’.
[{A, ab)(h, ball’= [{l, ab, ba, abba}]‘= (1, [ab]}G (1) = [{A}]“0 [{A}]’
= [{h, ab}]’ 0 [{A, ba}]“.
If K = {ab, aabb, abba, baab, baba, bbaa}, then abab E K* and consequently,
[aabb]E [K*]‘. Hence, since [K]‘=@, [aabb]E [K*]“g {l}=(b” = ([#I”)*.
If K = {ab, ba}, then ([K]‘)* = {{ab, ba}}* and consequently, [abab] =
[ab] 0 [ab] = {ab, ba} 0 (ab, ba) E ([K]‘)*. Hence, since [K*]” = {{ab, ba}, I},
[abab]ti[K*]‘and thus, ([K]‘)*@[K*]‘.
[{ab}13 = {{ab, ba}} G 0 = [{ab)]” (Theorem 2.16(l)).
[{ab}]3-[{ab}]v={{ab, ba}}-0$0=[0]3=[{ab}-{ab}]3 (Theorem
2.16(4)).

Given a reliance alphabet C and a K c (alph(C))*, it is important (for defining
[K13 and [K]“) to understand the way in which the partition of C* induced by s
partitions K. To this aim we It -reduce now a number of technical notions and state
some of their basic propertk (

2.1 efinition. Let C = (2: I, D) be a reliance alphabet and let K c C*.
(1) The C-exterior ofG denoted by I’&, is the string language U {t E O(C) : t E

CKI’L
(2) The C-interior of K, denoted by JJK, is the string language U {t E e(C) : t E

WIVh
(3) K is C-consistent if and only if [K13 = [K]“.

Note that thus, for a reliance alphabet C and a K G (alph(C))*, the
C-exterior of l K is based on the existential trace language of K, while the C-interior
of K is based on the universal trace language of

Again, to simplify our notation, we write $ and J, K rather than j’& and &irc,
respectively, whenever C is understood from

asic relationships between the above notlJns and ey ‘-tentially and universally
trace languages are given by the following resul &.

Theory of traces 23

2.20. Theorem. Let C = (2, I, D) be a reliance alphabet and Tet K E C*.
(1) $KEKE~K.
(2) pK=z*-J(P-K).
(3) JK=Z*-t(S*-K).

2.21. Theorem. Let C = (2, I, D) be a reliance alphabet, let T c O(C) and let K =
U{tc O(C): tc T}. Then T=[K]‘=[K]‘.

2.22. Theorem. Let C = (2, I, D) be a reliance alphabet and let K E C*.
(1) t K and 4 K are C-consistent.
(2) ~K=~{K’EL:*:KGK’ and K’ is C-consistent) and JK=

U {K’s C*: K’S K and K’ is C-consistent).

2.23. Theorem. Let C = (2, I, D) be a reliance alphabet and let K c C*. The following
four statements are equivalent.

(1) K is C-consistent.
(2) K=JK.
(3) K=fK.
(4) For all x, y E 2?, [x] = [y] implies [x E K if and only ify E K].

The above notions are closely related to our basic classification (see Definition
1.18) of trace languages.

2.24. Theorem. Let C = (2, I, D) be a reliance alphabet and let K c C* be regular
(con text-free, context-sensitive).

(1) f K is a regular (context-free, context-sensitive respectively) string language over
C if and only if [K I3 is a consistently regular (context-free, context-sensitive respec-
tively) trace language over C.

(2) 4 K is a regular (context-free, context-sensitive respectively) string language over
C if and only if [K Iv is a consistently regular (context-frci?, context-sensitive respec-
tively) trace language over C.

2.2. Dep-graphs and dep-graph languages

In this subsection we will give basic properties of dep-graphs. First we provide
some general results concerning dep-graphs, then we take a more detailed look into
the different types of dep-graphs and the different types of graph compositions.

We start by formulating the second part of the correspondence between traces
and dep-graphs (implied by Theorem 2.1)-the first part of this correspondence
was already expressed through Definition 2.2.

2.2 ition. Let C = (2, I, D) be a reliance alphabet, where C is ordered.
(1) For a t E O(C), the canonical (reduced, transitive) dependence graph oft (over

C), denoted by 4Mc N~))‘c, 40) &, respectively), is the canonical (reduced, transitive,
respectively) dependence graph (x)~ ((x):, (x)‘,, res
minimal normal representative of t.

24 IJJ. Aalbersbwg, G. Rozenberg

(2) For a t E O(C), a (reduced, transitive) dependence graph of t (over C) is a
node-labeled acyclic graph d over C such that d z ((t))c (d s ((t));, d =((t))fc,
respectively).

Again, in the notation as above, we write it)), ((t))‘, and ((t))” rather than ((t))c,

((t));, and ((t&, respectively, whenever C is understood from the context.

2.26. Remark. Note that the canonical (reduced, transitive) dep-graph of a trace
can only be defined when the alphabet considered is ordered. However, since we
always deal with finite alphabets, we may assume that, whenever we deal with the
canonical (reduced, transitive) dep-graph of a trace, the alphabet considered is
ordered.

We continue by giving a characterization of dep-graphs.

2.27. Theorem. Let C = (2, I, D) be a reliance alphabet and let g = (V, E, 2, 1) be a
directed node-labeled graph. g is a dep-graph over C if and only if [g is acyclic and,
for evev v’, v” E V with v’ ts v”, { I(v’), I(v”)} E D if and only if either (v’, v”) E E or
(v”, v’) E E].

Proof. If g is a dep-graph over C, then, by definition, we may assume that, for
some na0, V=(q,..., v~} is such that, for all 16 i, j G n, (Vi, vi) E E if and only
if [i <j and {I(vi), I(vj)} E D]. Consequently, g is acyclic and, for every v’, V’E V
with v’ # v”, {I(v’), I(v”)} E D if and only if either (v’, v’) E E or (v”, v’) E E.

If g is acyclic, then we may assume that, for some n 2 0, V = { vl, . . . , vn} is such
that, for all 1 s i, j 6 n, (4, vj) E E implies that i <j. Hence, if additionally g is such
that, for all I s i, j s n with i #j, {l(vi), I(vi)} E D if and only if either (vi, vj) E E or
(Vj, vi) E E, then, for all 1 s i, j s n, (vi, 9) e E if and only if [i <j and { I(Vi), l(~j)} E
D]. Consequently, g is a dep-graph of the string l(q). . . I(v”). 0

The following nondeterministic algorithm yields a representative of the trace of
a dep-graph. The method used by the algorithm is often referred to as topological
sorting (see, e.g., [35]).

Intuitively, given a dep-graph d over a reliance alphabet C, the algorithm iterates
the following steps:

(i) choose a minimal node of d;
(ii) concatenate its label to the so far obtained sequence of labels; and

(iii) remove the chosen node (together with its outgoing edges).
This is done until no nodes are left.

reliance alphabet C = (E, $,) and a dep-graph d = (V, E, 2T, 1) # A over

v”}; let x be a variable over (2 v {h})“;
let i, j and k be variables over (0, l . . , n) and let W be a variable over 9({1,. l l , n}).

Theory of traces

Computation:

(1) x:=h; Al:=@ W:=+,...,n).

(2) r”:= i+i.
(3) set j such that j E W and, for all k E w (ok, 9) L E.

(4) X:=X’ l(Vj); W:= W-(j).
(5) if i C n then got0 (2).
(6) stop.
Output: TlI&e string x.

25

2.29. Example. For C being the reliance alphabet given in Example 1.4 and d being

the dep-graph over C depicted in Fig. 2, a computation of the above algorithm is
depicted in Fig. 7; in this case x = dbcee. Note that another computation would give
a different result, e.g., x = bdcee.

Formalizing the above we get the following result, the obvious proof of which is
left to the reader.

2.30. Thewem. Let C = (2, I, D) be a reliance alphabet and let d # A be a dep-graph
over C. Let X be the set of all outputs of Algorithm 2.28 for the input (C, d). 7%~ 1,
for every x E Z*t acs X v and only if [x] =I[dl (i.e., [x] is the trace of d).

Although the following deterministic algorithm (Algorithm 2.31) yielding a dep-
graph of (a representative of) a trace is an obvious implementation of Definition
1.8, for the sake of completeness we provide it here; Algorithm 2.28 and Algorithm
2.3 1 together form a complete picture of translations (both ways) between dep-graphs
and (representatives of) traces.

Intuitively, given a trace d over a reliance alphabet C via a representative x, the
algorithm iterates the “allowing steps:

(i) to the so-far obtained graph a node labeled by the first symbol of x (say b)
is added;

(ii) this (occurrence of) b is erased from x; and
(iii) the new node gets incoming edges from all other nodes which are iabeled

by a symbol dependent of 6.
This is done until no symbols of x are left.

2.31. Algorithm.
Input: A reliance alphabet C = (2, I, D) and a stfing x E X
Declaration: Let n = 1x1; let V={Q, . . . , v,,}, let E be a variable over 8(V x

and let 1 be a variable over {f: f is a partial function from V into X}; let i and j
be variables over (0,. . . , n}.

26 I.H. Aalbersberg G. Rozenberg

to process dep-graph: obtained string:

initial situation:

e

b
after first iteration:

e

b
after second iteration :

e

db

after third iteration:

e e dbc

after fourth iteration:

e dbce

after fifth iteration
(final situation):

dbcee

Fig. 7

(3) 1(Vi) := X(i).

(4) E:=Eu{(Vj, Vi)E VX V:lsjsi-1 and {l(Vj), Z(Vi)}E D}.
(5) if i < n then goto (2).
(6) stop.
Output: The directed node-labeled graph (K E, & b

or C being the reliance alph
ation of the above algorithm

Theory of traces 27

to process string: obtained dep-graph:

initial situation:

dbcee

after first iteration:

bcee d

after second iteration

tee

d

after third iteration:

ee

after fourth iteration:

e

b

d C

after fifth iteration
(final situation): b

d

e

Fig. 8

b

Formalizing the above we get the following result, whose obvious proof is left to
the reader.

3. Let C = (2, I, D) be a reliance alphabet and let x E Cf. Let g be the
output of Algorithm 2.31 for the input (C, x). Then g =((t)) (i.e., g is a dep-graph of
t), where t is the trace of x.

Now we consider in more detail the different types of
ositions.

UJ. Aalbersberg, G. Rozenberg

As we have seen in Definition 1.19, for a reliance alphabet C and a string x over
alph(C), the canonical reduced (transitive) dep-graph of x can be directly construc-
ted from the canonical dep-graph of .x. The following theorem presents a reverse
construction.

2.34. eorem. Let C = (2, I, D) be a reliance alphabet and let x E C*.
(1) Let (x)‘= (V, E, Z, I), let El = {(vl, v2) E V x V: (x)’ contains a path of length

at least 2 from v1 to vz} and let E2 = ((vl, v2) E El : (I(vl), 1(v&} E D}. Then (x) =
(VEuE,,&l) and (x)‘=(V,EuEl,Z,l).

(2) Let (x)‘= (V, E, Z, 1), let E, = {(vl, vz) E VX V:(x)’ contains a path of length
at least 2 from v1 to vz} and let E2 = {(vl, v2) E El : {l(vl), l(v*)} E I}. Then (x) =
(VE-E,,JC,l) and (x)‘=(V,E-E&l).

Proof. The theorem follows directly from the graph-theoretical observation that,
for a directed node-labeled graph g = (V, E, 2, 1) and for vl, v2 E V, g contains a
path of length at least 2 from vl to v2 if and only if red(g) contains a path of length
at least 2 from vl to v2 if and only if trans(g) contains a path of length at least 2
from vl to v2. Cl

The above theorem directly implies the following extension of Theorem 2.1.

2.35. Theorem. Let C = (Z, I, D) be a reliance alphabet and let x, y E C*. Then the
following four statements are equivalent. .

(0 [xl = CYI
(2) (x) S(Y)=
(3) W’=(y)‘.
(4) w’=(Y)‘*

The different types of dep-graphs are closely related to the operation
composition and to the different types of ’ graph compositions as follows.

of trace

2. eoreur. Let C = (2, I, D) be a reliance alphabet and let x, yl , y2 E C *. alien
the following four statements are equivalent.

(1) 1x3 = [VII O CY21=
(2) (x) is a graph composition of (y,) and (y2).
(3) (x)’ is a reduced graph composition of (yl)’ and (y2)r.

nsitive graph composition of (yl)’ and (y2)‘.

The theorem directly follows from Definition 1.23, Theorem 2.35, and the
observation that, for every z 1, z2 E Z*, (z1 z2) is a graph composition of (2,) and

(zt)- IJ

‘gluers in compositions’.
is

7heof-y of traces 29

.37. Let C = (2, I, D) be (a reliance alphabet.
(1) Let d’ = (V’, I?, 2, 1’) and d” = (V”, E”, &I”) be (reduced, transitive) dep-

graphs over C such that V’ n V” = 0; let d = (V, E, 1E; 1) be the (reduced, transitive,
respectively) graph composition of d’ and d”. If E - (E’ v E”) # 0, then E - (E’ v Et’)
is an edge cut :

(2) Let d = (V, E, 2, 1) be a (reduced, transitive) dep-graph over C and let F be an
edge cut of d. Let g’ = (V’, E’, 2, 1’) and g” = (V”, E”, 2, 1”) be the directed node-labeled
graphs such that V’n V” =0, V’U V”= V E = E’v E”v F, Fs V’X V”, I’= ljv’ and
1” = 11 “I#. Then g’ and g” are (reduced, transitive, respectively) dep-graphs over C and
d is the (reduced, transitive, respectively) graph compcpsitioa of g’ 0 rd 8”.

Proof. (1) directly follows from the fact that in the (reduced, transitive, respectively)
graph composition of two graphs, new edges are only edges from the first graph to
the second graph.

(2) directly follows from Theorem 2.27, Theorem 2.36 and (1) above. Cl

We end this subsection with a basic observation concerning node cuts of dep-
graphs.

2.38. Theorem. Let C = (2, I, D) be a reliance alphabet, let d = (V, E, Z, 1) be a
(transitive, reduced) dep-graph over C, let S be a node cut of d and let a be the size
of the greatest clique of I.

(1) If v, w E S and v # w, then {l(v), l(w)}~ I.
(2) #%a!.

Proof. (1) directly follows from the fact that in the (reduced, transitive, respectively)
graph composition of two graphs, new edges are only edges from the first graph to
the second graph.

(2) directly follows from Theorem 2.27, ?heorem 2.36 and (1) above. El

Bibliographical comments
The correspondence between traces and dependence graphs (Theorem 2.1) is

observed in many different papers, e.g., in [31,33,46]. However, with the exception
of [33], none of these papers elaborates on this correspondence.

Since many of the results stated in Subsection 2.1 are basic, they can be found
in different papers, e.g., in [34,39,46], or, in a different terminology, in [38] (it is
interesting to notice the similarity of the basic methodologies of the theory of traces
and the theory of rough sets). The characterization of the C-equivalence relation
(Theorem 2.6) is proved in [39] and the generalization of Levi’s Lemma for strings
(Theorem 2.7) is proved in [33]. The ideas behind the decomposition of traces into
normal forms (Theorem 2.8 and Algorithm 2.10) are from [12], although th
Qf eorem 2.1) can be found in [27]; also [irk Section

be mentioned in this context. The notion of the C-exterior of a string language and

30 LI.9. Aalbersberg, G. Rozenberg

the mtion af a C-consistent string language can be found in various papers, e.g.,
in [Xl, 46,471; in [38] one also finds the notion of the C-interior of a string language.

The graph composition of dependence graphs discussed in Subsection 2‘2 is
ered for the first time in [45].

3.1. Equations on trace languages

As we have seen in the previous sections, we use string languages to define trace
languages. One of the important methods of specifying string languages is to use
fixed points of equations (see, e.g., 6433). In this subsection we will investigate how
fixed points of equations on string languages carry over to fixed points of equations
on trace languages. This allows one to use equations on trace languages, where in
solving these equations techniques for solvin equations on string languages may
be used,

3.1. Definition. Let A be a set and let f be a nction from B(A) into P(A).

(1) f is monotone, if, for every X’, X” G A, X’ E X” implies that f (X’) s f (X”).
(2) XC A is called a fzxed point off if f(X) =X

3.2. Example. Let C be an alphabet and let f and g be the functions from 9(x*)
into 9(Z*)definedasfollows: foreveryXEZ*,f(X)=X*andg(X)=C*-f(X).

(1) Since, for every X’, X”c Z*, X’ E X” implies that f (X’) = (X’)* c (X”)* =
f(X”), f is monotone. However, since 0 c C while g(g) = Z+g 0 = g(Z), g is not
monotone.

(2) Since, for every X 5 Z*, X*=(X*)* = f(X*), every X* with X G Z* is a
fixed point of J However, since, for every X G C* and XE Z*, XE X implies
XI&P -X* = g(X), and since 0 # 6* -@*, g has no fixed points.

The following fundamental result concerning fixed points of monotone functions
is due to Tarski and I&aster (see, e.g., [48]).

3.3. Theorem. Let A be a set and let f be a monotone function from g(A) into B(A).
Let P be the set of all $xed points off:

(1) P#ZQ).
(2) n{x~A:XEP}=n{x~A:f(X)c,X}.
(3) U{X~A:XEP}=U{XcA:Xcf(X)}.

The above theorem justifies calling the set n {X s A: X E P} the minimal Jixed
point off and the set U (X E A :X E P} the maximaljixed pain of$

. Let C and f be as in Example 3.2. Since f is monotone, f has a
minimal fixed point, which is {A), and a m;ximal fixed point, which is 2”. This is
seen as follows.

lleory of traces 31

Assume that X G Z* is a fixed point of J; i.e., f(X) = X* = Consequently,
h E X. Thus, A is an element of every fixed point of$ Moreover, since f({A}) = {A}* =
{A}, {A} is also a fixed point off; thus, {h} is the minimal fixed point off: Furthermore,
since every fixed point off is a subset of Z* and since f(Z*) = (Z*)* = C* implies
that C* is also a fixed point off; C* is the maximal fixed point off:

In order to establish the link between functions on string languages and functions
on trace languages, we need the following definition.

3.9. Definition. Let C = (2, I, D) be a reliance alphabet.
(1) Let f be a function from 9(x*) into P(Z*).
(1.1) f is called C-existential (C-universal) if, for evetv X’, X”G Z*, [X’13 = [Xa13

implies that [f(X’)13=[f(X’)13 ([X’]“=[X’]’ implies that [f(X)]“=
[f (X”)]” respectively).

(1.2) f is called C-consistent if, for every X G C *, X is C-consisteilt implies that
f(X) is C-consistent.

(2) Let f be a C-existential (C-universal) function from P(2”) into 9(x*). The
C-existential (C-universal respectively) trace function of J denoted by [f]‘, ([f 1°C
respectively), is the function from 8(8(C)) into 8(8(C)) defined as follows: for
every Xc P, [f]?([X13) = If(([f]Z([X]‘) = [f(X)]’ respectively).

Again, in the terminology as above, we write [f I3 and [f Iv rather than [f j$ and
[f]“,, respectively, whenever C is understood from the context.

3.6. Remark. (1) Note that, for a given reliance alphabet C, the assumption that f
is C-existential (C-universal) used for the definition of the C-existential (C-
universal respectively) trace function off is needed to guarantee that [f13 ([f]”
respectively) is well-defined. Furthermore, note that Theorem 2.21 implies that for
every trace language T there exists a string language K such that T = [KJ3 = [K]“;
thus the C-existential and C-universal trace functions are realZy functions on
arbitrary trace languages.

(2) Note that in general it may happen that, for a reliance alphabet C and a
function f as described above, both [f I3 and [f 1’ are defined, while [f I3 Z [f Iv
(see Example 3.7(2)).

xample. Let C = (2, I, D) be the reliance alphabet such that 2 = {a, b} and

I = Ha, W.
(1) Let f be the function from 9(Z *) into 8(*) defined as fokm: for every

X I=, Z*, f(X) = {A, a}X.
(1.1) Since, by Theorem 2.14(3), for every ‘I3 implies that

[f(X’)]3 = [{A, a}X’13 = [{A, a)33 0 [X’]’ = [{A, a}13 0 IX”]’

=[{A, a}X”]3=[f(X”)]3,

32 1J.J. Aalbersberg, G. Rozenberg

f is C-existential. Furthermore, since [{b, ba}]’ = {[b]} = [{b}]“, while

[f({b, WI’ = [{A, aHb, WI” = W, k 4 aba?l’ = {PI, IMII
W4 = W, M’ = [(h, aWH” = If W)l’,

f is not C-universal- Finally, since {b} is C-consistent, while [f({b})]” = {A, a}{ b} =
{b, ab} is not C-consistent, f is not C-consistent.

(1.2) Since f is C-existential, [f13 is the function defined as follows: for every

Tc, WC), If 13(T) = (1, Cal) o T.
(2) Let f be the function from 9(x*) into 9(x*) defined as follows: for every

X G Z*, f(X) = {x E C* : [x] E [Xl3 and x is the minimal normal representative of

im
(2.1) f is C-existential which can be seen as follows. Assume that X’, X” c C*

are such that [X’13 = [X”13. Furthermore, assume that TV [f(X’)13. Hence, there
exists an x ef(X’) such that [x] = t. Consequently, by the definition off, t = [x] E
[X’13 = [X”13. Thus, x E f (X”) and t = [x] E [f (X”)‘J3, which implies that [f(X’)13 G
[f(X”)13. The reverse inclusion is proven analogously.

(2.2) f is C-universal, which can be seen as follows. Assume that X’, X’c C*
are such that [X’]‘= IX’]“. Furthermore, assume that TV [f(X’)]“. Hence, there
exists an X cf(X’) such that X = t. Consequently, by the definition off, #t = 1.
Thus, t E IX’]’ = [X’]‘, and hence, by using arguments similar to the ones above,
we get t E [six”)]“. Consequently, [f(X’)lv c_ [f(X’)]“. The reverse inclusion is
proven analogously.

(2.3) Reasoning as under (2.1) and (2.2) above we can easily show that [f13 and
[f3” are defined as follows: for every T c 8(C), [f13(T) = T and [f]“(T) =
(tET:#t=l}.

The following result ‘transfers’ the basic properties of a function f, from 9(Z*)
into 9(Z*), into the basic properties of the functions [f13 and [f 1’ (for a given
reliance alphabet C = (2. I. D)).

3.8. -rem. Let C = (2, I, D) be a reliance alphabet and let f be a function from
P(Z*) into 8(x*).

(1) If f is C-existential and monotone, then [f I3 is monotone.
(2) If f is C-universal and monotone, then [f 1” is monotone.
(3) If f is C-existential and C-universal, then f is C-consistent if and only if

1s I3 =Ilf I”*

f. (2): Assume that f is C-universal and monotone and let T’, T’S O(C) be
that T’s T’. If we set X’ = {x E C* : [x] E T’) and X’= {x E C* : [x] E T’), then

T’ = [X’]“, T” = [X’]’ and X’ c X’. Since $ is monotone, f (X’) c f(X’), and hence,
by Theorem 2.15(2), [f(X’)]” c [f(X’)]“. Thus,

7%eory of traces 33

(3): Assume that f is C-existential and C-universal.
(i) Assume that f is C-consistent. Let TG @(6). If we set X = (x E C* : [x] E T},

then, clearly, X is C-consistent and T = [Xl3 = [Xl”. Since f is C-existential and
C-universal,

If S3(T) = If 13W13) = If (WI3 and

If I"(T) = If 1"uw') = If wr.

oreover, since X is C-consistent and f is C-consistent, f(X) is C-consistent and
so [f(X)]3=[f(X)]v. ?hus [f13(T)=[f]“(T) and, consequently, [f13=[f]‘.

(ii) Assume that [f”J3 = [f 1’. Let X G A’* be C-consistent. ‘I’hus, [Xl3 = [Xl’,
and, consequently,

If (X)1” = If 13UX13) = If l”~~~l’~ = If WI”.

Hence, f(X) is C-consistent.
Now (3) follows from (i) and (ii) above. Cl

3.9. Example. Let C be as in Example 3.7.
(1) Let f be as in Example 3.7(1). Clearly, f and [f I3 are monotone.
(2) Let f be as in Example 3.7(2). Clearly, f is not C-consistent.

The next result provides, for a given reliance alphabet C = (& I, D), the basic
relationships between the minimal (maximal) fixed points of a function X from
P(Z *) into P(Z*), and the minimal (maximal respectively) fixed points of the
functions [f13 and [f]“.

3.10. Theorem. Let C = (2, I, D) be 42 re~~~~~~ ~~~~~g~, let f be i2 mun~t~ne function
from 8(Z*) into 9)(x*) and let Xmin (Xmax) be the mjnjmul (maximal respectively)
jiked point off:

(1) rff is C-existential, then [XmiJ3 is the minimalj.xed point of [f13.
(2) Iff is C-universal, ther= [X-J’ is the maximaljxed point of [f]‘.
(3) Iff is C-consistent, C-existential and C-universal, then [XmiJ3 is the mjnjmal

fixed point of [f13 (=[f]“) and [XmaJV is the rn~jmaZ~~ed p~jnt of [f]”
(=lf 13)-

Proof. (2): Assume that f is C-universal. Then, since f (Xmax) = X,,, ,

hence [Xma,Jv is a fixed point of [f]‘.
To prove that [

point of [f]". If we Yet
axima~, assure that TG (C) is an a~bitra~ fixed

X = {x E C*: [x] 65 T}, then
if an ly if [x] E ut [X]E

34 IJ. J. Aalbersberg, G. Rozenberg

if and only if [x] E [f]“([X]“) if and only if [x] E [f(X)]“. Hence, x ef(X) and so
X rf(X). Thus, by Theorem 3.3, X c X,,,,, and, consequently, by Theorem 2.1 s(2),

T = [Xl” c_ [X,,,J’. Since T was assumed to be an arbitrary fixed point of [flV,
[Xmax]v is the maximal fixed point of if]“.

(3) directly follows from (1) and (2) above and from Theorem 3.8(3). 0

3.11 Example. Let C = (2, I, D) be the reliance alphabet such that C = {a, 6, c} and
1 ={{a, b}, (6, c}}. Let g be the function from 9(8(C)) into 9(@(C)) defined as
follows: for every T c O(C), g(T) = ({[ab]} 0 T 0 {[cl}) v {[abc]}.

In order to compute the minimal fixed point of g, we consider the function $ from
!P(Z*) into P(Z*) defined by: for every X s Z*, f(X) = ({ab}X{c})v {abc}.
Clearly, f is monotone and C-existential and thus the C-existential trace function
off is deened as follows: for every X c Z*,

ef l’(cx13) = KWW{c)) u W413.

Hence, by Theorem 2.14(3) and (5), for every XC_ Z*,

[f 13W13) = N41 O WI’ O {[CIH u Wcl)

and thus, by Theorem 2.21, g = [f 13. Consequently, since {(&)“c” : n 3 1) is the
minimal fixed point of f, Theorem 3.10(1) implies that [{(ab)“c” : n 3 l}]’ is the
minimal fixed point of g.

sZ_ 2. Relations between various classes of trace languages

In this subsection we will investigate the relationship between various classes of
trace languages.

First, the relationship between classes of trace languages defined by
. (i) dierent types (classes) of string languages (from the Chomsky hierarchy), but
{ii) the same way of claiming (existential, universal or consistent) is considered.
en the relationship between classes of trace languages defined by
(i) the same type (class) of string languages (from the Chomsky hierarchy), but

(ii) different w of claiming (existential, universal or consistent) is investigated.
The following ma is useful in the sequel of this section.

3.1 Let C = (25, I, D) be a reliance alphabet.
(1) Ts(RiG) = TF(REG) if and only if I is transitive.
(2) T&W is closed under union and trace composition.

now turn to the first result on the relationship between classes of trace
languages, defined by different types of string languages but using the same way of
claiming.

et C=(e a reliance alphabet.

nteory of traces 3s

(1) T:(REG) c T:(CF) c T:(CS), w h ere Tz(REG) = Tg(CF) if and only if I is
complete.

(2) TE(REG) c Tg(CF) c TF(CS), where Tz(REG) = TF(CF) if and only if
#C=l.

(3) T,(REG)r Tc(CF)c Tc(CS), where T,(REG)= T&F) if and only if
#C=l.

Proof. The above relationships T$(REG)c Tz(CF)c Tz(CS), TE(REG)s
Tz(CFj c Tg(CS), and T,(REG) s T,(CF) c Tc(CS) follow from the inclusions
REG c CFc, CS, from the fact that over a one-letter alphabet CFc CS, and from
Theorem 2.5(2).

The rest of the theorem is proved as follows.
(1): (i) Assume that I is complete. Then, from Theorc .n 2.5(3) and from the fact

that for every context-free string language there exists a regular string language with
the same Parikh image (set, e.g., [44]), it follows that T$(REG) = Tz(CF).

(ii) Assume that I is nok complete. Then C contains two different symbols a and
6 such that {a, 6) L I. Since

[{wE(Q, b}*:#,(~)=#~(w)}]~c Ts(CF)- Tz(REG),

T:(REG) # T:(CF).
(2): (i) Assume that #C = 1. Then, because L veer a one-letter alphabet REG = CF,

Theorem 2.5(2) implies that TF(REG) = Tz(CF).
(ii) Assume that #C > 1. If I is not complete, then, by arguments analogous to

those under (l)(ii) above, TF(REG) # Tz(CF). If I is complete, then [L]‘E
Ts(CF) - TF(REG), where L = L1 u L2u L3, with

L1={a, b}*{b}{a’d:i, jai, j#i+l)(a)(a,b}*
u{aib6 i, ja 1, j# i+l}((A}u(a)(a, b}“)
u({h}u{a, b}*(b}){aiW~:i, ja 1, jZ i+l};

&={a, b}*{a}{b’aj:i, j>l, j#i+l}{b}{a, b}“, and

where a and 6 are two different symbols in C. This can be seen as follows.
(a) First we observe that L is a finite union of context-free string languages, and

thus, [L]” E T;(CF).
(b) Next we note that every string of {a, b}* - L is of the form ab2a3b4. . . a2”-‘b2”,

where n 3 1, and thus, if we order the strings of { bl” - L according to tkk wish9

then the length of the kth string, k 3 I, of {a, 6)” - L is k(2k+ I). Consequently,
@({a, 6)” - L) and @(Z* - L) inear sets.

(c) We now claim that [L] , which can be seen as follows.

to the contrary that [L]“E n, since I is co lete, it

Lemma 3.12(l) that [rice, there exists a regular

36 IJ.J. Aalbersberg, G. Rozenberg

that [Llv = [I#. From Theorem 2.16(3) it now follows that O(C) -[Z* - L13 =
[K]? Hence, from Theorem 2.5(3) it follows that #(Z* - L) is the complement of
$(K). Furthermore, because the Par&h image of a regular string language is a
semilinear set and the complement of a semilinear set is again a semilinear set (see,

e.g., PI), tW) and VW* -L) are semilinear sets. This however contradicts the

conclusion from (b) above and, consequently, [L]” I?! TE(REG).
From (a) and (c) above it now follows that TE(REG) # TE(CF).
(3): (i) Assume that #c = 1. Then, because over a one-letter alphabet REG = CF,

Theorem 2.5(2) implies that T,(REG) = T,(CF).
(ii) Assume that #C > 1. Then, using the trace language given in (l)(C) above,

one shows that T,(REG)# T,(CF). Cl

We now proceed to study classes of trace languages defined by using regular
string languages.

First of all it can be shown that the class of consistently regular trace languages
is the class of those languages for which the set of minimal representatives (for a
given ordering on the alphabet involved) is regular.

3.14. Theorem. Let C = (2, I, D) be a reliance alphabet, where C is ordered. 7hen,
for every T c O(C), T E Tc(REG) if and only if {min(t) : t E T} E REG.

Secondly, it can be shown that one can use finite automata to define the class of
consistently regular trace languages.

3.15. Definition. (1) Let M be a monoid. A Jinite M-automaton is a quintuple

A= (OS M S, 4in9 J% where

(i) Q is a finite set of states;
(ii) 6 : Q x M + Q is a transition mapping such that, for every q E Q, 6(q, e) = q,

where e is the identity of M, and, for every q E Q and for every ml, m2E M,
b(q, ml l m,) = S(6(q, m,), m2), where 0 is the operation of M;

(iii) qin is the initial state of A; and
(iv) F s Q is the set of final states of A.
(2) Let be a monoid and let A = (Q, M, 6, qin, F) be a finite M-automaton.

The language of A, denoted by L(A), is the set {m E M : S(qin, m) E F}.
(3) Let C be a reliance alphabet and let T G O(C). T is recognizable if there

exists a finite (O(C), 0, I)-automaton A such that T = L(A).

Given a reliance alphabet C, Tc(FA) denotes the class of all recognizable trace
languages over C

. Let C = (2, I, D) be a reliance alphabet. Then Tc(FA) = Tc(REG).

irdiy, it can be shown that the class of consistently regular trace languages can
be built up recursively, using three ele entary trace language operations (union,

7heory of traces 37

trace composition, and concurrent trace iteration) and starting with elementary trace
languages. The operation of concurrent trace iteration is defined as follows.

efinition. Let C = (2, I, D) be a reliance alphabet.
(1) Let t E O(C). The concurrent decomposition of t, denoted by cd(t), is (1) if

t = 1 and for t # 1 it is the set { tl , . . . , tn} c O(C), where n 2 1 and:
(i) t=tp-•t,;

(ii) for every 1 6 i 6 n, ((tJ) is connected; and
(iii) ((t)) consists of n maximal connected components.
(2) Let T E 8(C). The concurrent decomposition of T, denoted by cd(T), is the

trace language U {cd(t) : t E T}.
(3) Let T c O(C). The concurrent trace iteration of T, denoted by Tt, is the trace

language (cd(T))*.

Thus, in the terminology as above, the concurrent decomposition of the trace t

is obtained as follows: one considers ((tJ) and for each maximal connected com-
ponent d of ((ti)) one talces I[dl; the set of all such I[dg forms the concurrent
decomposition of t. Consequently, the difference between the trace iteration of a
trace language T and the concurrent trace iteration of T is that, in the former, one
considers arbitrary compositions of whole traces in T, while, in the latter, one
considers only compositions of those parts of traces t in T which correspond to
maximal connected components of the dep-graphs of t.

3.18. Example. Let C = (2, I, D) be the reliance alphabet such that

C = (a, b, c, d} and I =((a, b}, {b, c}, (b, d)}.

Let t = [adbcb] and T = {[adbcb]}. From Fig. 9 which represents a dep-graph of t,

it directly follows that cd(t) = { [adc], [bb]} and thus that cd(T) = { [adc], [bb]}.
Hence,

Tt = (cd(T))* = {[adc], [bb]}* = [{adc, bb}*13,

while T* = {[adbcb])* = [{adbcb}*]!

d C

Fig. 9

We now turn to a characterization of consistently regular trace languages.

Let C = (2, I, D) be a reliance alphabet.) is the least

class of trace languages containing 0, {I}, and {[a]} for all a E and closed under

union, trace composition, and concurrent trace iteration.

38 IJ. J. Aalbersberg, G. Rozenberg

The above characterization is quite analogous to the famous Kleene characteri-
zation of regular string languages (see, e.g., [44]). The basic difference is that we
now use the concurrent trace iteration rather than the trace iteration. That this is
necessary is illustrated by the following example.

3.20. Example. Let C = (2, I, D) be the reliance alphabet such that Z = (a, b} and
I = {{a, b}}. Let T = {[a6]}; then, clearly, T is a consistently regular trace language
over C. Furthermore, it is not difficult to see that T = [K13, where K =
{XEP:#,(X)=#b(X)} is such that K = j’ K. Consequently, since K is not a regular
string language over 2, it follows from Theorem 2.24(1) that T* is not a consistently
regular trace language over C

We now show an interesting application of Theorem 3.19.

3.21. Lemma. Let C = (2, I, D) be a reliance alphabet and let X c C* be regular. If,
forallx, y, z E Z*, {x}(y)*(z) G Ximplies that (y) is connected, then [Xl% T,(REG).

Proof. Let us recall (see, e.g., 1241) that the class of regular string languages over
C is the least class of languages E over C satisfying the following two properties:

(i) 0 E S and, for all a E Z, {a) E =; and
(ii) if K;Ld’, then KvLEE, KLES, and K*&‘.

We need the following two notions.
A regular string language Y over C has degree n, where n a 0, if and only if n

is the minimal number m such that Y can be obtained from the languages stated
under (i) above, by applying the operations stated under (ii) above m times.

A string language Y over C satisfies property P if and only if, for all x, y, z E Z*,
{x}{y}*{z}c Y implies that (y) is connected. Thus, in order to prove the theorem,
we have to prove that if X satisfies property P, then [Xl3 E T,(REG).

The proof now goes by induction on n, the degree of X
Induction basis: Assume that n = 0. Hence, either X = 0 or X = {a} for some a E 2,

and thus, clearly, X satisfies P and [Xl” E Tc (REG).
Induction hypothesis: Let k 2 0 be such that, for all 0 s m G k and for all regular

string languages Y over C satisfying P, Y has a degree smaller than or equal to m
implies that [Y13 E Tc(REG).

Induction step: Assume that n = k + 1 and that X satisfies property I? Now we
can distinguish the following three cases.

Case 1: X = K u L, where K and L are string regular languages over 2 of .tegree

smaller than or equal to n - 1. Then, since X satisfies property P and, for all

x9 Y, 2 E *, {x)(y)“{ 2) G

plies that

‘Iheofy of traces 39

K and L satisfy property P. Hence, by the induction hypothesis, [K13 c T,(REG)
and CL]% Tc(G), and thus, by Lemma 3.12(2), [K]3u[L]3~ T,(REG). Con-
sequently, since it follows from Theorem 2.14(5) that [KJ3 u [L13 = [K u L13,
[Xl3 = [K u L13~ Tc(REG).

Case 2: X = KL, where K and L are regular string languages over C of degree
smaller than or equal to F - 1. If either K =0 or L=@, then X =0 and thus the
degree of X would be 0; hence, neither K =0 nor L =0. Then, since X satisfies
property P and, for all x, y, z E Z*, {x}(y)*(z) s K implies that

{x}{y}*{zv} s X for some v E L

and {x}(y)*(z) c L implies that

{ wx}{y}*{z} s X for some w E K

K and L satisfy property P. Hence, by the induction hypothesis, [K13 E Tc(REG)
and [L13 E T,(REG), and thus, by Lemma 3.12(2), [K13 0 [L13 E T,(REG), Con-
sequently, since it follows from Theorem 2.14(3) that [K13 0 [L13 = [KL13, [Xl3 =
[KL13e T,(REG).

Case 3: X = K *, where K is a regular string language over C of degree smaller
than or equal to n - 1. V.%en, since X satisfies property P and, for all x, y, z E Z*,
{x}(y)*{ z} G K implies that

{x}(y)*(~) c K* = X,

K satisfies property P. Hence, by the induction hypothesis, [K13 E Tc(REG).
Furthermore, for every x E K, {x)” s K * c X and thus, since X satisfies property
P, for every xcK, (x) is connected and cd([x])={[x]}. Hence, cd([K13)=[K13
and thus, ([K13)’ = ([K13)*. Since it follows from Theorem 2.14(4) that

W13)* = CK*13,

and, consequently, since [K13 E TY(REG) and since, by Theorem 3.19, T=(REG)
is closed under concurrent trace iteration, [XJ3~ T,(REG). Cl

Returning to our study of classes of trace languages defined by using regular
string languages, we can prove, assuming certain restrictions on the reliance alphabet
C, that T=(REG) c Ts(REG). Actually, one gets an infinite hierarchy of classes of
trace languages between Tc(REG) and Ts(EG). ‘Ihe classes of languages from
this hierarchy are obtained by considering in more detail the way that a trace is
‘claimed’ in the existential way by a string language.

be such that #
ntial trace language (over 6).

40 IJJ Aalbersberg, G. Rozenberg

(2) Let Ts O(C). We say that T is n-existentially
existential trace language for some regular K C C”.

regular if T is the (n,

For a reliance alphabet C = (2, I, D), K s C* and n 2 0, we use the notation

T?“(REG) to denote the class of all n-existentially regular trace languages over C,

3.23. eorem. Let C = (Z, I, D) be a nce alphabet. Then

TC(REG) E T$‘(REG) s T2*(REG) c l l 8

G 5 T3”(REG)c T;(REG);
?I=1

moreover,

T,(REG) c T3d’(REG) c T2*(REG) c l . l

c fi T3”(REG)c T:(REG)
n=l

if I is not transitive.

By Theorem 3.19 the smallest class from the above hierarchy (Tc (REG)) is
characterized by a Kleene-like theorem, using the operation of concurrent trace
iteration. Replacing this operation of concurrent trace iteration by the operation of
trace iteration changes the class of trace languages characterized (see the comment
after Theorem 3.19). Namely, it turns out that such a replacement yields the
characterization of the largest class from the above hierarchy (Tz(REG)).

3. eorem. Let C = (2, I, D) be a reliance alphabet. 7hen Tz(REG) is the least
class of trace languages containing 0, {l}, and ([al) for all a E 2, and closed under
union, trace composition, and trace iteration.

roof. This directly follows from the definition of REG, Theorem 2.14(3), (4) and

(5). cl

The last result concerning the relationship between different types of regular trace
languages is the following one.

) be a reliance alphabet.
G) if and only if

G)n

Theory of traces 41

of. (2): (i) Obviously the inclusion holds.
(ii) Assume that I = 8. Then, from Theorem 2.5(1) it follows that T,(REG) =

Tz(REG) = TE(REG). Consequently, T,(REG) = Tz(REG)n TF(REG).
(iii) Assume that 1 # 8. Hence, C contains two different symbols a and b such

that {a, 6) E I. Let K = (ab)” and let

L = {a, 6)” - ({a}{a}*{ab}* u {b}{b}*{ab}*).

Then K and L are regular string languages and [K13 = [L]‘ti Tc(REG). Con-
sequently, Tc(REG) Z: Tz(REG) n TF(REG).

NOW (2) follows from (i), (ii) and (iii) above. Cl

We will now consider classes of trace languages defined by using context-free
string languages.

3.26. Theorem. Let C = (2, I, D) be a reliance alphabet.
(1) Tz(CF) c Tz(CF) ifand only if TF(CF) = Tz(CF) if and only ifI =0.
(2) If I = 4) or I is complete, then Tz(CF) s Tg(CF).
(3) Tc(CF) c Tz(CF) n Tg(CF); moreover, T&CF) = Tz(CF) n Tz(CF) ifand

only if either #C s 2 or I = 0.

Finally, we consider classes of trace languages defined by using context-sensitive
string languages. In this case the following result turns out to be useful.

3.27. Theorem. Let C = (2, I, D) be a reliance alphabet. Let K E 27 be context-
sensitive.

(1) & K is context-sensitive.
(2) t K is context-sensitive.

Proof. We will sketch the main idea of the proof, leaving the obvious but tedious
technical details to the reader.

(1) Since K is context-sensitive, K is accepted by a linear bounded automaton
A. We construct a linear bounded automaton A’, based on A, as follows. Given a
string x E X*, A’ starts by simulating A on X. If x is not accepted by A, then x is
also not accepted by A’. If x is accepted by A, then A’ switches to the following
mode. It generates, one by one, all strings y E C* such that 1 y I= 1 x I, and, for each
such y, A’ checks whether or not y E [x] implies that y is accepted by
by Theorem 2.8, to check whether or not y E [x], it suffices to check whether or not
the minimal normal representatives of [y] and [x] are equal). Then x is accepted
by A’ if and only if for all y’s as above all these tests turn out to be positive.

Clearly, such a linear bounded automaton A’ exists and
sequently, J K is context-sensitive.

(2) Since K is context-sensitive, is accepted by a linear bounded automaton
.A. Let A’ b linear bounded au
and only if accepts a string yE
2.8, to check Elhether or not [y] = [x], it suffices to check whether or not the minimal
normal representative of [y] and [x] are equal).

42 IJ.J. Aalbersberg, G. Rozenberg

Clearly, such an A’ exists and A’ accepts f K; consequently, t is context-

sensitive. 0

From the above result, the following theorem easily follows.

3.28. Theorem. Let C be a reliance alphabet. I;hen Tz(CS) = Tz(CS) = Tc(CS).

3.3. Closure properties of, decision problems for, and the complexity of various classes
of- trace languages

In this subsection we will first briefly consider closure properties of the different
types of regular, context-free and context-sensitive trace languages and then we
discuss (the complexity of) some decision problems concerning these classes of
trace languages.

We start with the closure properties of the different types of regular trace languages.

3.29. Theorem. Let C = (2, I, D) be a reliance alphabet.
(1) T$(REG) is closed under union, trace composition and trace iteration.
(2) Ts(REG) is closed under intersection if and only if Tg(REG) is closed under

complement if and only if I is transitive.

3.30. Theorem. Let C = (2, I, D) be a reliance alphabet.
(1) Tz(REG) is closed under intersection.
(2) T:(REG) is closed under union if and only if Tz(REG) is closed under

complement if and only if Tz (REG) is closed under trace composition if and only if
Tg (REG) is closed under trace iteration if and only if I is transitive.

3.31. Theorem. Let C = (2, I, D) be a reliance alphabet.
(1) Tc (REG) is closed under union, intersection, complement and trace composition.

(2) T,(RW is closed under trace iteration if and only if I = 0.

Next we consider the closure properties of two different types of context-free
trace languages.

3.32. eorem. Let C = (2, I, D) be a reliance alphabet.
(1) Tz(CF) is closed under union, trace composition and trace iteration.
(2) T$(CF) is closed under intersection if and only if Tz(CF) is closed under

complement if and only tf I is complete.

) be a reliance alphabet.
is closed under union.
is closed under intersection if and only if (CF) is closed under

ent if and only if #C s 2 and I is complete.
is closed under trace iteration if and only if either #C s 2 or I = 0.

Theory of traces 43

(4) Tc (CF) is closed under trace composition if and only if either #C 6 2 or I = pj

or [#C G 3 and I is complete].

Finally, we consider the closure properties of the different types of context-sensitive

trace languages.

6.34. Theorem. Let C = (2, I, D) be a reliance alphabet. Tg(CS), TE(CS) and
T,(CS) are closed under union, intersection, trace composition and trace iteration.

Proof. We first note that, by Theorem 3.28, Tz(CS) = Tz(CS) = T=(CS). Next,
because CS is closed under union, intersection, string concatenation and Kleene
star, we observe that Theorem 2.14 implies that T:(CS) is closed under union, trace
composition and trace iteration. Finally, we observe that Theorem 2.15 implies that
TE(CS) is closed under intersection. Consequently, the theorem holds. El

We now turn to (the complexity of) some deciskn problems concerning different
types of regular and context-free trace ?znguages (from now on, whenever we deal
with a regular string language L, we assume that L is given by a right-linear string
grammar, and whenever we deal with a context-free string language L, we assume
that L is given by a context-free string grammar).

Given a string language, we can use it to define the (‘associated’) trace language
by either the existential or the universal method of claiming. Actually, both methods
coincide if the string language we consider is C-consistent (where C is the given
reliance alphabet). Hence, the question of deciding whether or not a given string
language is C-consistent is quite important.

3.35. Theorem. (1) It is decidable whether or not, for a reliance alphabet C = (2, I, D)
and a regular LG Z?, L is C-consistent.

(2) It is undecidable whether or Ea.‘. for a reliance alphabet C = (2, I, D) and a
context-ftee L E C *, L is C-consistent.

Proof. (1): Let C = (2, I, D) be a reliance aipnabet and let L c C* be regular. Let
A = (Z, Q, 8, qin, F) be the minimal deterministic finite automaton such that L =
L(A) (it can be effectively constructed from the right-linear grammar which generates
L; see, e.g., [24]).

Clearly, L is C-consistent if and only if, for every {a, 6) E I and for every p, q E Q,
[S(p, ab) = q if and only if S(p, ba) = q], owever, this can be checked in a finite
number of steps and, consequently, it is decidable whether or not L is C-consistent.

(2): Let C = (2, I, D) be the reliance alphabet such that C = {a, b} and I = {{a, b}}.
Let K s {a, b}* be context-free and let L = {ab} v (aa, ba, bb}{a, b}*. Clearly, L

d can be effectively constructed from K. recover, L is C-consistent

{a, b}*. Since it is undecidable for a itrary context-free stri

whether or not K = {a, b}* (see, e.g., [44]), it is undecidable for an
arbitrary context-free string language L whether or not L is C-consistent. Cl

44 I’J. Aalbersberg, G. Rozenberg

We now turn to the membership problem. However, first we observe the following.
Let C = (2, I, c) be a reliance alphabet, let x E C * and let L G C *. Then,

(i) [x] is a jinite subset of 8”;
(ii) [x] E [L13 if and only if [x] n L # 0;

(iii) [x] E [L]” if and only.if [x] s L; and
(iv) (if L is C-consistent) [x] E [L] if and only if x E L.

Thus, if the membership problem is decidable for L, then it is also decidable for
CL]“, for [L]‘, and (if L is C-consistent) for [L]. Consequently, we have the foI:owing
result.

3.36. Theorem. Let C = (Z, I, D) be a reliance alphabet. Then the membership problem
for T:(REG), T:(REG), &(REG), T:(CF), T:(CF), Tc(CF), T:(CS), Tz(CS),
and Tc (CS) is decidable.

As far as the complexity of the membership problem for various classes of trace
languages is concerned, we have the following results.

We start by discussing classes of trace languages defined by using regular string
languages.

3.37. Theorem. Let C = (2, I, D) be a reliance alphabet and let a! be the size of the
greatest clique of I. Let L c C* be regular.

(0

(2)

(3)

There is an algorith.rr which, given an arbitrary string x E 2*, decides whether
or not [x] E [L13 in O(Ix I”, time.
There is an algorithm which, given an arbitrary string x E Z*, decides whether
or ncf [x]E[L]’ in 0(1x1”) time.
If L is C-consistent, then there is an algorithm which, given an arbitrary string
x E P, decides whether or not [x] E [L] in O(Ix I) time.

Proof. (2) directly follows from (l), because, for every x E 2’*, [x] E [L]” if and
only if [x] ti [2* - L13 and C* - L is a regular string language.

(3): Obvious, because the membership problem for regular string languages is
decidable in linear time. 0

For the case when trace languages are specified using context-free string languages,
we have the following result.

Let C = (Z, I, D) be a reliance alphabet and let Q! be the size of the
I. Let L G C* be context-free.

ere is an algorithm which, given an arbitrary string x E 2P, decides whether
in 0((~x~3*)/(loglxI)) time.

m which, given an traty string x E .E*, decides whether
ornot [x] E [L13 in Ix I”>> time, where (n) is the time needed for multiplying
two boolean n x n matrices.

77teoty of traces 4s

(3) If L is C-consistent, then there is an algorithm which, given an arbitrary string
x E C *, decides whether or not [x] E [L] in f (1 x I) time, where f is the time complexity
of the membership problem for context-free string languages.

of. (3): Obvious. Cl

Concerning the general membership problem for existentially regular and context-
free trace languages, one has the following result.

Theorem. The problem whether or not given an arbitrary reliance alphabet
2, I, D), an arbitrary regular or context-free L 5 C *, and an arbitrary x E S*,

[x] E [L13 is NP-complete.

Imposing various restrictions on the (in)dependence relation leads to the following
resalts.

.4O. Theorem. Let C = (Z, I, D) be a reliance alphabet, where I is transitive. 7he
following problems are decidable for arbitrary regular L, , L2 c_ C*.

(I)(a) “[A$ =$?’ and “[LJ = 0(C) ?‘, and
(b) “EL,jW z”, 0 ?,’ and “‘[L,]’ c 0(C.) ?“,

(12) $1 “[I~$ G [LJ3 ?,’ and
?$) “e’LJ”r [L# ?“.

<3)(a) “[L$ = [L# ?’ and
(b) “[L,]’ = [L# ?“.

@J)(a) “[L$ n [LJ3 = 0 ?” and
(b) “[L,]vn[L2]V=fl?“.

3.41. Theorem. Let C = (2, I, D) be a reliance alphabet, where I is complete. The
following problems are decidable for arbitrary context-free L1, L2 s 2”.

(1) “[LJ3=0 ?” and “[L$= 0(C) ?“.
(2) ‘,[LJ3 G [LJ3 T’.
(3) ‘6[LJ3 = [L$?“.
(4) “[LJ3 n [L213 = 0 ?“.

Proof. This result follows from Theorem 3.40, Theorem 3.13(1) and the following
two w&-known (see, e.g., [44]) facts:

(i) the Parikh image of a context-free string language can be eff ective!y computed,
and

(ii) given a semilinear set S, a regular string language with S as its Parikh image
e effectively computed. Cl

e conclude this subsection by discussi
turn out to be undecidable already on the level of trace languages defined by regular
string languages.

46 I.t.J. Aalbersbetg, G. Rozenberg

Let C = (2, I, D) be a reliance a @habet where, for some a, b. c, PM
d in 2, I(6) has an induced dep-?oqh of the ‘brm depicted in Fig. 10.
following problems are recursioeb t v:Jecidable f& czrbitrary regular L1, L2 s C*.

(l)(a) “[LJ3 = [LJ3 ?” and
(b) “[L,]’ = [L2]’ ?‘.

(2)(a) “[LJ3 c [L$?’ and
(b) “[LJv G [L2]’ ?‘.

Fig. 10

(l)(b): From Theorem 2.16(3) it follows that, for L1, L2 s X*, [LJ3 = [L$
if and only if [X* - LJv = [S* - LJ’. Hence, (l)(b) directly follows from (l)(a).

(2)(a) and (b) directly follow from (l)(a) and (l)(b) respectively. Cl

Bibliographical comments
Subsection 3.1 is more or less an overview and an extension of the investigation

of equations on trace languages initiated in [32]. There the notion of a C-existential
(trace) function is introduced and proofs of Theorem 3.8(1) and Theorem 3.10(l)
can be found.

Basic papers on the subject of Subst;ction 3.2 are [2,3,5,46]. Theorem 3.13(l) is
proved in [46]. Both the first and the third characterization of consistently regular
trace languages (Theorem 3.14 and Theorem 3.19, respectively) are proved in [37],
where also the notions of concurrent decomposition and concurrent trace iteration
are introduced. Lemma 3.21 is proved in [36], although the proof provided there
is completely different from the one we have given. Both the second characterization
of consistently regular trace languages (Theorem 3.16) and the infinite hierarchy of
existentially regular trace languages (Theorem 3.19) are proved in [5], where also
the notion of an (n, K)-existential trace language is introduced. Theorem 3.25(1)
(also stated as Lemma 3.12) is proved in [3] and Theorem 3.26 is proved in [2].

Basic papers on the subject of closure propertics of trace languages (first part of
Subsection 3.3) are [2, 3, 461. Theorem 3.29(l) is proved in [3] and in [47], while
Theorem 3.29(2) is proved in [3] and in [42]; Theorem 3.29(2) is also stated in [8].
Theorem 3.30 and Theorem 3.3 1 (except for the closure of consistently regular trace
languages under trace composition) are proved in [3]. The fact that consistently
regular trace languages are closed under trace composition is proved in both [13]

eorem 3.32 and orem 3.33 are proved in [2].
aper on the su f decidability problems of trace languages (secon

part of Subsection 3.3) is [6], where s 3.37(l), 3.38(l), 3.39,3.40(3)(a), and
eorem 3.42(l)(a) are roved. Finally, Theorem 3.38(2) is proved in [9] and
eorem 3.40 is proved i

Theory of traces

ep-graphs an visi

4.1. Using dep-graphs to reason about traces

In this subsection YX will demonstrate the use of dep-graphs in the analysis of
various properties of traces. We will reconsider Algorithm 2.1~t%s time in terms
of dep-graphs-and provide some other basic results on traces using the theory of
dep.graphs. We hope that in this way we can demonstrate the usefulness of dep-
graphs in both getting a good understanding of (an intuitive feeling for) various
properties of traces and getting elegant proofs.

We begin by translating Algorithm 2.10 into the framework of dep-graphs. fie
result of this translation is Algorithm 4.1, which works as follows.

Let C = (2, I, D) be a reliance alphabet and let t # 1 be a trace over C, of which
we want to find a normal representative; let d be a dep-graph of t. The algorithm
will construct the decomposition t = tl 0 l l l 0 tk for some k 2 1, by constructing
strings u(l), . . . , u(k) E C* such that ti = [u(i)] for all 1 s is k The construction of
these u(Q’s is by iterating the following steps (starting with the graph g = d and i = 1):

(i) u(i) is a string built up by concatenating the labels of the minimal elements
of the current graph g;

(ii) the set of minimal elements and their adjacent edges are removed from g

(and so a new current graph results); and
(iii) i is increased by 1.

This iteration stops when g becomes the empty graph.
Formally, the algorithm is as follows.

4.1. Algorithm.
Input: A reliance alphabet C = (2, I, D) and a dep-graph d = (V, E, X,1) # A

over C
Declaration: Let p = # V and n = #X; let k be a variable over (0, . . . , p}; let u

be an array of length p over (Z u {A})“.
Computation:
(1) for all l<kSp, u(k):=h.
(2) k:= 0.
(3) k:=k+l; g:=(v,EJ,l).
(4) u(k):=q...q, where r>l and a,,...,o,~Z: are such that (q,...,q}=

{I(v): vEmin(g)}.
(5) V:= V-min(g).
(6) E:=En(VxV): I:=&.
(7) if V# 0 then goto (3).
(8) stop.
Output: The string u(1). . . u(k).

e. Let C be the reliance alphabet given in xample I.4 and let d =

(adcbbed). Then the computation of Algorithm 4.1 starting with C and d, can be
illustrated as in Fig. 11. Hence, the output of the algorithm is abdbced.

48 IJJ. Aalbersberg, G. Rozenberg

to process dep-graph: the v&e of u Ii):

initial situation:

d

e

u (I) = ab

after first iteration:

u (2) = db

b after second iteration

d

e

u (3) = c

afkr third iteration: -

d

u (41 = ed

Fig. 11

Formalizing the above we get the following result.

.3. Let C = (2, I, D) be a reliance alphabet and let d = (V, E, Z, 1) Z A be
a dep-graph iver 6; let t = l[dj. Let X be the set of outputs of Algorithm 4.1 for the
input (C, d). Then, for every x E Z*, x E X if and only if x is a normal representative
of t.

there exist a ka 1 and
rove that x is a

‘Iheory of traces 49

normal representative of t, we have to show that
(i) for all 1 GiSS u(i)#h;

(ii) for all 1 s is S #,(u(i)) = 1 for each a E alph(u(i)), and (a, b} E I for each
a, b E alph(u(i)), a # b; and

(iii) for all lsisk-1, for each aEalph(u(i+l)), there exists a bEalph(u(i))
such that {a, b} E D.

Clearly, (i) holds. Furthermore, since, at every moment in the computation of X,
min(g) is a subset of a node cut of 4 Theorem 2.38(l) implies that (ii) holds.
Finally, since, for every 2 i s s k and for every symbol b occurring in u(i), b
corresponds, at some moment in the computation of X, to a minimal node in g
which was not a minimal node in g one iteration before, d contains an edge from
a node corresponding to a symbol occurring in u(i - 1) to the node corresponding
to b; thus, for every 2- i < G k and for every b E alph(u(i)), there exists an a E
alph(u(i - 1)) such that {a, b} E D, and, hence, (iii) holds. Consequently, x is a
normal representative of t.

Let x E C* be a normal representative of t. Hence, there exist k 3 1 and

u(I) 9*--9 u(k) E Z*, satisfying (i), (ii), and (iii) above, such that x = u(1). . . u(k).
Then, by the construction of a dep-graph and by requirements (ii) and (iii) above,
a symbol b occurs in u(l) if and only if the node corresponding to b in d has no
incoming edges in d; thus, alph(u(1)) = {I() t) : o E min(d)}. Hence, u(1) can be
obtained in the first iteration of Algorithm 4.1. Moreover, it is now easily seen that,
repeating the above considerations, u(l), . . . , u(k) can be successively obtained by
Algorithm4.1.Consequently,x=u(l)...u(k)~X. Cl

For a reliance alphabet C, the following result provides means for counting the
number of C-equivalent strings with a given string x E (alph(C))*.

4.4. Theorem. Let C = (2, I, D) be a reliance alphabet and let Q! be the size of the
greatest clique of I; let t E O(C). Then #t s min((1 t I)!, atri).

Proof. If 1 t I= 0, then the theorem obviously holds.
Assume that I t I # 0.
On the one hand, if X, y E t, then x is a permutation of y. Since a string of length

n has at most n ! different permutations, we get # t G (I t I> ! .
On the other hand, if x E t, then #:(1 j is the label of a minimal node of ((t)). Since

the set of minimal nodes of ((t)) is a node cut of ((t)) and since, by Theorem 2.38(2),
every node cut of ((t)) has at most cy elements, there are at most a! candidates for
being x(1). Moreover, making a choice of a minimal node of ((t)) and reducing ((t))
by this node, there exist, for every 1 - < i s I t I, after iterating this choice and reducing

i - 1 times, at most a candidates for being x(i). In this way we get # t s a”!
ence, I t I z 0 implies that both # t < (I t 1) ! and # t G air ! Consequently, # t 6

min((l il)!, a+. q

50 IL.!. Aalbersberg G. Rozenberg

The last result in this subsection is a result on splitting up traces in prefixes and
suffixes. Although a proof of it is already given in [6], we give here a different
proof based on the analysis of dep-graphs. e believe that our proof provides a

better intuitive insight in&o the nature of the result.

.5. Theorem. Let C = (S, I, D) be a reliance alphabet and let cy be the size of the
greatest clique of I. Let t E O(C) and let P, = { t’E e(C) : there exists a t” E O(C) such
that t= t’o t”}. Tihen #P,s(l+lt)/a)“.

Proof. From Theorems 2.36 and 2.37 it follows that the number of preExes of t

equals the number of possibilities to split up ((t)) in two dep-graphs d, and dz, such
that d = dI o d2. Thus, # P(equals the number of edge cuts of the directed node-
labeled acyclic graph g, which is obtained from ((t)) by adding the new (arbitrarily
labeled) nodes Vmin and urnax and the sets of new edges {(Vmin, u) : v E min(((t)))} and

((0, u,,,) : v E max(((t)))}.
The proof now continues by counting the number of edge cuts in the graph g

described above. In order to do this, we need the following fact, which can be
proved by standard methods from the theory of partial orders (see, e.g., [113). If
g’ = (V’, E’) is a directed acyclic graph and n a 1 is such that, for every node cut
S of g’, #S 6 n, then there exist n lines gi = (V& Ei) of g’, 1~ is n, such that
V’=&* v;:.

Let us assume that ((t)) = (V, E, Z, I) and tha.t g = (V’, E’, Z’, I’). From Theorem
2.38(2) it follows that, for every node cut S of ((t)) and thus clearly also for every
node cut S of g, #S s cy. Hence, by the above fact and by the construction of g,
we can find at lines gi = (Vi u (vmi,, u,,,}, Ei) of g, 1 G i s CY, such that V = Uy=l Vi.
Since the intersection of an arbitrary line and an arbitrary edge cut of a directed
acyclic graph consists of at most, in the case of g even exactly, one element, in
order to ‘edge cut’ g, we have # VI + 1 possibilities to ‘edge cut’ g, . Moreover,
whenever a choice for an edge cut of g, is made, in order to ‘edge cut’ g2 consistently
with this edge cut, we have at most #(V2 - VJ + 1 possibilities to do so. In general,
whenever, for some 1 s is a, consistent choices of edge cuts of g,, . _ . , gi-1 are
made, in order to ‘edge cut’ gi consistently with these edge cuts, we have at most
#(vl_ -l_&: Vi) + 1 possibilities to do so.

Hence, the number of edge cuts of g is smaller than or equal to

Now we observe that
(i) for every lI=-p,qsar, pZq,

=0; an

7Reory of traces 51

(ii) g(&-j+)=K

Thus, the number of edge cuts of g is smaller than or equal to <fly=1 (ni + l)), where

n1, n, 3 0 are such that Cr= 1 ni = # V = 1 t I. I-Ience, since the geometric mean of
a set of numbers is smaller than or equal to its arithmetic mean, the number of
edge cuts of g is smaller than or equal to (+ 1 t I/a)“. Consequently, the cardinality
of Pt is bounded by (I+ltl/a)“. Cl

4.2. Dep-graph languages and graph grammars

In this subsection we will introduce classes of graph grammars that generate
dep-graph languages. Moreover, we demonstrate the correspondence between gen-
erating dep-graph languages by graph grammars and defining dep-graph languages
by string languages in the usual way. The classes of graph grammars are natural-they
fit well in the existing framework in the theory of graph grammars.

We start by recalling the notion of a directed node-label controlled graph grammar.

4.6. Definition. A directed node-label controlled graph grammar, abbreviated a DNLC
grammar, is a system G = (0, S, P, J, e), where

(i) a is an alphabet, called the total alphabet of G;
(ii) = s J2 is the terminal alphabet of G;

(iii) Pz (fi - E’) x r(n) is the set of productions of G;
(iv) 9 6 J2 x l2 is the connection relation of G; and
(v) 5, called the axiom of G, is a graph over 0 - E consisting of one node only.

Informally speaking, a DNLC grammar G = (0, ZS’, P, J, 6) generates a sea: of
graphs as follows.

Given a graph y to be rewritten and a production of the form (X, /3), where
XEO- Z and p E r(O), one chooses a node v of y labeled by X and replaces it
by p (actually, by an isomorphic copy of /3 such that its set of nodes is disjoint
with the set of nodes of y). Then, in order to embed p in “the relmainder of y”
(i.e., the graph resulting from y by removing v), one uses the relation J as follows.
For every pair (6, c) E J one establishes an edge from each node w in “the remainder
of y” labeled by c to each node of p labeled by 6, provided that there was an edge
from w to v in ‘y. Analogously, fcr every pair (6, c) E J one establishes an edge from
each node of p labeled by b to c*ach node w in “the remainder of y” labeled by C,
provided that there was an edga from v to w in ‘y. Every graph y’ isomorphic to
the resulting graph is said to be directly derived from y in G; we write then
y=(G)*r’. Iterating the direct derivation step (starting with the axiom e of G)
and choosing only those derived gra hs that are labele by labels from the terminal
alphabet =,-one gets the (graph) language L(6) of 6.

52 IJJ. Aalbersberg, G. Rozenberg

4.7. mark. The notion of a DNLC grammar discussed above differs somewhat
from the standard notion of a DNLC grammar formally defined in [25]. First of
all, we allow also erasing productions. Secondly, rather than to use separate incoming
and outgoing connection relations, we use one common connection relation.

We now define two subclasses of the class of DNLC grammars (the reader will
notice the obvious analogy with two basic classes of string grammars).

efinition. Let G = (a, E’, P, J, 5) be a DNLC grammar.
(1) G is called 3 regular DNLC grammar if every production of G is

- either of the form
- or of the form (X,
- or of the form (X,
where UEE and X, Yea-E’.

(2) G is called a context-free DNLC grammar if every production of G is
- either of the form (X, y
- or of the form (X,
- or of the form (X, A),
where UEE and X, Y,ZEO-E.

4.9. Example. Let S={a,b,c}, n=Ev(A,B,D,E,F,S), S=@“, J=

(0 x 0) -{(a, b), (b, a), (b, c), (c, b)), and

p = w,), (A, 61, (4 h, (FI

Then G = (0, E, P, J, 5) is a context-free DNLC grammar.
Furthermore, Fig. 12 depicts an example of a derivation (in G) of a graph from

L(G).

The following notion is crucial in considering a DNLC grammar as a generator
of dep-graphs.

Let C = (2, I, D) be a reliance alphabet and let G = (In, E’, P, J, f)
be a DNLC grammar. G is called C-uniform if C = % and J = (a x a) - I.

C is a reliande
Note that in a derivation by a C-uniform DNLC grammar, where
alphabet, breaking of edges between nodes happens only between

nodes labeled by terminal symbols and, moreover, this breaking up of edges happens
according to ind(C) (labels independent of each other in C get disconnected).

Theory of traces

_GW =tGW

A b a B C C a b a 6 C C

=fGW

a b a b C C

Fig. 12

We now demonstrate that regular C-uniform NLC grammars, where C is a
reliance alphabet, generate precisely the class of regular dep-graph languages over c.

e Q reliance alphabet Q

= L(G) for some reg

54 IJ. J. Aalbersberg, G. Rozenberg

roof. The proof goes in two steps, each proving the implication in one direction.
(i) Let W E DC (REG). Hence there exists a right-linear string grammar G, =

(0, Z, PI, S) such that W = (L(G)).
Consider the regular C-uniform DNLC grammar G2 = (a,& Pa, .I, [), where

:acZ, X, YEO-Z, and (X,~Y)E P,}

):o~& XEO-Z, and (X,a)eP,}

u{(X,A):XES~-Z, and (X,A)E PI}, and

It is easily seen that W = L(G2).
(ii) Let G, = (J2, Z, PI, J, [) be a regular C-uniform DNLC grammar.
Consider the right-linear string grammar G2 = (0, Z, P2, S), where

P2={(X,oY):a~Z, X, Y&-Z, and (X&&E PI}

u{(X,a):a~Z, XE~-2, and (X,&P,}

u{(X,h):X~n-2, and (X,A)E PI},

and S is such that 5s
It is easily seen that L(G,) = (L(G2)). l

The theorem follows from (i) and (ii) above. q

Now we move to the context-free dep-graph languages over a reliance alphabet
C. It turns out that this class of dep-graph languages is precisely the class of graph
languages generated by context-free C-uniform DNLC grammars.

The proof of the following result can be made completely analogous (using the
Chomsky Normal Form for context-free string languages) to the proof of Theorem
4. I3 and so it is left to the reader.

Let C = (Z, I, D) be a reliance alphabet and let WC, r(Z). Then
WED,(CF) ifandonlyifW=L(G)f or some context-free C-uniform DNLC gram-
mar 6.

ext-free DNLC grammar has productions of the form
and (X, A), where a is a terminal and X, Y, and 2 are

is form of productions (except for the erasing productions
context-free string grammars in Chomsky

defined context- C grammars by also allow-

*-**) are

nteory of traces

. . .

Fig. 13

nonterminals (now the right-hand side of a production does not have to be at most
binary as long as all the ‘transitive closure edges’ are also present). In this way, one
gets a closer analogy to (the form of) arbitrary context-free string grammars (except
that in all productions with more than one node’at the right-hand side all the labels
are nonterminals).

In manipulating DNLC grammars the first form (the form that we use in this
paper) is more convenient. However, it turns out that the above characterization
result (Theorem 4.14) holds for both variants of the definition.

Bibliographical comments
Using graph grammars to generate regular dependence graph languages was

initiated in [11, where also a proof of a theorem closely related to Theorem 4.13 is
given.

5. Trace languages, dep-graph languages, and Petri nets

5.1. C/E structures, C/E systems, jiring sequences and processes

The theory of Petri nets deals with distributed systems and processes. Within this
theory many important concepts and tools have been developed which aid in the
design and analysis of distributed systems.

The basic system model underlying the theory of Petri nets is a condition/event
system, abbreviated a C/E system. In this section we are going to relate the theory
of traces and dep-graphs to the theory of C/E systems. We start by recalling in this
subsection the notion of a C/E system which we will base on the notion of a C/E
structure introduced here. Then we discuss the firing sequence approach to represent
the behavior of C/E structures and of C/E systems and the process representation
of the behavior of C/E systems. Our exposition in this section is very ‘dense’ (and
rather ‘dry’) in the sense that it gives all the basic notions (and terminology) only
to the extent we will need them.

The basic construct underlying the whole area of Petri nets is that of a (directed)
net.

. (I) A net is a 3-tuple N = (S, T, F), where
(i) S and T are finite sets such that S n T =

(ii) %(SxT)u(TxS) is such that Tcdom(F)uran(F).

56 I’J Aalbersberg, G. Rozenberg

(2) Let N = (S, T, F) be a net. The elements of S are called S-elements and the
elements of T are tailed T-elements. For every x E S u T, the input set of x, denoted
by ‘x, is the set {y E S u T : (y, x) E F}; the output set of x, denoted by x0, is the set
{y E S u T: (x, y) E F}; and the neighborhood of x, denoted by g~‘, is the set l x u x0.
For every X c_ S u T, the input set of X, denoted by l X, is the set U {‘x : x E X}; the
output set of X, denoted by X’, is the set U {x’ : x E X}; and the neighborhood of
X, denoted by *X0, is the set ‘X u X’.

5.2. Remark. In the above definition of a net we require that T G dam(F) u
ran(F)-this differs from the standard definition of a net in the literature. However,
nets as used in condition/event structures, condition/event systems, and occurrence
nets (to be defined later on in this subsection) satisfy this property and thus
introducing nets in this way facilitates our considerations later on.

In order to talk about dynamic behavior of nets we need the following notion,

5.3. Definition. Let N = (S, T, F) be a net.
(1) Let t E T and let p E S. t is enabled in p, denoted by p[t), if l t c p and

t’s s-p.

(2) Let t E T and let pc, p’c_ S. tjires from p to p’, denoted by p[t)p’, if p[t) and
p’=(&kt)u t’.

(3) Let p c 5. The p-reachability set, denoted by GP 3, is the smallest subset of
9 (S), satisfying

(i) p E sps, and
(ii) if either p’[t)p” or p”[t)p’, for a t e T, a P’E <pa, and a $‘c S, then

&‘E 6@.

A net N = (S, T, F) has a convenient representation as a bipartite graph, where
the S-elements and the T-elements form the bipartition of the set of nodes, and F
corresponds to the set of edges. Usually, S-elements are represented by circles and
T-elements are represented by boxes.

5. xample. Consider the net N = (S, T, F), where S = {sl, s2, s3, s4}, T =
{tlg t2 9 t3h and

F = {(s* 9 tJ, b2, t2), b3, t*), h t3L 019 sz), 029 s3),

02, sJ,(t39 SJh

The graphical representation of N is depicted in Fig. 14.
Furthermore, tl is enabled in (sl, s3} and tl fires from {st , s3} to {s2}. Finally,

G{Sl, s3)a = Hs19 s319 Is219 b3 9 s4w

e are now ready to define the notion of a condition/event structure and to recall
the notion of a condition/event system.

t structure, C/ structure for short, is a net

Theory of traces 57

Fig. 14

(2) A C/E structure N = (P, Q, R) is s&@e if, for all X, y E P v Q, l x = l y and
x*=y’ imply that x=y.

(3) Let N = (P, Q, R) be a C/E structure.

(W

(3.2)

(3.3)

(3.4)

Let a!~ Q*, pOs P, and DIXIE spoH >. cy is called a firing sequence (of N)
from po to pla 1, denoted by po[a)~~, I if there exist pl, . . . , pla I+ E spoa

such that, for all 1 s is 1 Q! I, pi_l[a(i))pi.

Let ~1 E Q* and /1, c P cy is called a jiring sequence (of IV) from p, denoted
by ~[a) if there exists a p’ E G p 2 such that &u)$.
Let cy E Q*. Q! is called a firing sequence (of IV) if there exists a p c P such
that JU[CY).
LetIcE Pand&E<p 2. The (p, p’)-languageof N, denoted by L(p, $, N),
is the set of all firing sequences of N from p to $. The (&-language of
N, denoted by L(p, N), is the set of all firing sequences of N from ~1. The
(jring sequence) language of N, denoted by L(N), is the set of all firing
sequences of N.

(4) A condition/event system, C/E system for short, is a system M = (P, Q, R, %),
where

(i) (P, Q, R) is a simple C/E structure; and
(ii) % s 9(P) is such that

(a) %= SF~ for some p G P, and
(b) for every q E Q, there exist p ‘, &’ E % such that $[q)p”.

(8) be a C/E system.

(5.1)

cw

(5.3)

is contact-free if, for every q E Q and for every p E %, ‘q E k im
4% P-p and q’sp implies that ‘qt P-p.

firing sequences of

IJ.J. Aalbersberg, G. Rozenhy

In the above definition, each element of P is q lied a condition (of N or of M),
each element of Q is called an event (of N or of M), and each element of % is
called a case (of M).

mark. (1) In Definition 5.5 and in the sequel i& is assumed that notions and
terminology concerning nets carry over in the obvious way to C/E structures and
C/E systems (and other systems based on nets that w-3 till consider).

(2) Note that one can consider a C/E system (pI Q, R, U) to consist of two
components: the first one specifying the underlying static structure of the system
and the second one specifying the dynamic behavior of the system. The first
component is given by the simple C/E structure (P, Q, R) and the second one by
the distributed state space %‘.

(3) In the set-up as above the notion of contact-freeness of a C/E system is
crucial for the investigation of the behavior of C/E systems. We do not have enough
room here to elaborate on this issue, but it turns out that defining processes of C/E
systems (later on in this subsection) is possible for wntact-free C/E systems only.

In order to represent a C/E system M = (P, Q, R, Ce) graphically, we use the graph
representation of the net (P, Q, R) and additionally, in order to represent %, we
choose a p c P such that Ce = GP a and then represent this p by putting a token
in each circle representing an element of p.

mple. Consider the net N = (S, T, F) of Exah:ple 5.4. Let p’ = {sl, s3, s4},

pn=(s2} and M = (S, T, F, +“a). Then N is a C/E structure, L(p’, N) =
{x E T* : there exists a z E T* such that xz E (tl t3t2}*}, M is a contact-free C/E system
and L(M) = {x E T* : there exist y, z E T* such that yxz E { tl tt t3}*}.

The following is a fundamental result concerning the languages of C/E structures
and C/E systems.

. (1) Let N be a C/E structure. Then L(N) is regular.
be a C/E system. Then L(M) is regular.

way of defining the behavior of a C/E system M is to consider L(M)-this
corresponds to the so called ‘interleaved’ point of view, where the behavior of the
concurrent system is given through a set of its linear histories. An alternative (and
perhaps more appropriate for concurrent systems) point of view is to consider
partially ordered sets of events which may take place in the system. In particular,
recording such sets of events together with appropriate condition holdings leads
one to the notion of a process in a C/E system.

In order to formalize this, one needs a special subclass of nets.

occurrence net is a net
(x, y) E F+ implie

nleoiy of traces _ 59

(ii) for every SE S, #(‘s) s 1 and #(z’) s 1.
(2) Let K = (S, T, F) be an occurrence net. A slice of K is a subset S’ of S such

every sl, s2 E S’, (sl, s2) e F+ and for every s3 E S - S’, there exists an s4 E S’
either (s3, s4) E F+ or (s4, s3) E F+.

mple. The graph depicted in Fig. 15 represents an occurrence net K. The
set of slices of K consists of {s,}, (~2, sj), {s4}, and {ss).

Fig. 15

Labeling occurrence nets will be a convenient way to use them for expressing the
(concurrent) behavior of C/E systems.

efinition. (1) A labeled occurrence net is a system K = (S, T, F, 2, t#, where
(i) (S, T, F) is an occurrence net;

(ii) C is an alphabet; and
(iii) &:Su T+C is a function such that +(S)m#j(T)=Q).
(2) Let M = (P, Q, R, U) be a contact-free C/E system. A process of M is a labeled

occurrence net K = (S, T, F, P u Q, &, such that
(i) #(S)c P and ME Q;

(ii) for every t E T, #(‘t) = ‘4(t) and +(t’) = 4(t)‘; and
(iii) for every slice S’ of K, # is injective on S’ and +(S’) E %.

5.12. Remark In the above definition it is assumed that the notion of a slice of an
occurrence net carries over to a labeled occurrence net in the obvious way.

5.13. Example. Con. GPer the contact-free C/E system depicted in Fig. 16(a).
Then the labeled occurrence net K depicted in Fig. 16(b) is a process of M.

e following rest& OK. processes is fundamental in the L,cnse that it carries
‘dependences’ in C/E systems to ‘depchdences in their processes.

%) be a C / E system and let =(S, T,F,P@,&)
be such that q1 # q2 and *ql’ n *q?* # @, and jet

60 IJ.J. Aalbersberg, G. Rozenbea

Fig. S(a)

f. Assume that neither (tl , tJ E F” nor (t2 9 I+) E F” Bnd assume that p E ‘ql* n

‘q2’. Then there are sI , s2 E S such that s1 E ‘tI l , s2 E ’ t;*, &(sJ = p, and (b(s2) = pw If
either sp = s2 or (sl, s2) E F+ or (s2, ss 5 E F+, then, since, for every s E S, # (l s) s 1
and # (8.) s 1, (tI , t2) E F+ or (t2 9 tl 1 L FC, whdc5 conxradicts our assumption. Hence
s1 and s2 are differeat elements of 8 slice: and thus, since 4 is injective on slices,
fp(s,) 9 444. facts that #(sl)=p and +(sz)=p.
Consequently,

llreory of traces 61

= (P, Q, R, U) be a contact-free C f E s~~ern. A node-labeled
ted, transitive) contracted process of if there exists a

process K = (S, q F, C, 4) of M such that y is the (reduced, transitive, respectively)
S-contracted version of K.

For a contact-free C/G syste ts set of processes and
CP(M) (RCP(M), TCP(M)) will denote its set of (reduced, transitive, respectively)
contracted processes.

!5.16* Example. Consider the contact-free C/E system EM depicted in Fig. 16(a).
Then the graph depicted in Fig. 17(a) is both a contracted process and transitive
contracted process of M, while the raph depicted in Fig. 17(b) is a reduced
contracted process of A4

q2

q3

(a)

%

(b)
Fig. 17

We now turn to a basic result, which relates the (firing sequence) language of a
C/E system to the ‘firing sequence languages’ of all its processes.

First we need the definition of the language of a labeled occurrence net, followed
by an observation on the defined notion.

5.17. Definition. Let K = (S, T, F, 2, 4) be a labeled occurrence net with n = # T.
The (firing sequence) language of K, denoted by L(K), is the set

{a E C * : there exist sets SO, . . . , Sn of S-elements of sequence

t1, . . . , tn without repetitions of all T-elements o such that

SO={~~S:o~=~}, &={s~S:s”=@}, and, for every lsisn,
Si-I[ti)Si and 4(ti) = x(i)}.

The following result expresses the basic property of the sets SO, . . . , Sn of S-
elements from the above definition.

= (S, T, F) be an occurre
and lef tl,...$tn be

n, &-I[ti)Si. llaen, fir every 0s is n, Si is a slice OfK

62 I.M. Aalbersberg, G. Rozenberg

f. Observe first that, for every 0~ is n - 1 and ~1, ~2 E S, ~1 E Si - Si+l and

S2 E Si+* - Si imply that (~1, ti+l) E F and (li+l, 2 s) E F. This fact will be extensively

used in the proof.
Clearly, So is a slice of K. We will now show that, for every 0 G i G n - 1, Si is a

slice of K implies that S ,+1 is also a slice of K From this the theorem follows.
Assume that, for some 0 G i s n - 1, Si is a slice of K

Let S1, S2E &+I- If sl, ~2 E $9 then, since Si is a slice of K, (~1, ~2) e F+. If ~1 E Si
and s2 E Si, then (sl, s2) E F+ implies that there exists an ~3 E l ti+l A Si such that
(sl, s3) E F+; this contradicts the fact that Si is a slice of K and hence, (sl, s2) ti F+.
If s1 e Si and s2 E Si, then (So, ~2) E F+ implies that there exists an s3 E ‘ti+l n Si such
that (s3, s2) E F+; this again contradicts the fact that Si is a slice of K and hence,
(sl, s2) ti F+. Finally, if sl, s2 ti Si, then (sl, s2) E F+ implies that either (sl, sl) E F+
or # (l s2) 2 2; both contradict the fact that K is an occurrence net and hence
(sl, s2) L F+. Consequently, for every sl, s2 E &+I, (sl, s2) g F+.

Let S3E S-&+1. If ~3 E Si, then, clearly, there exists an s4 E (ti+l)' r+ Si+, such that
(~3, s4) E F+. If ~3 E S - Si, then, since Si is a slice of K, there exists s5 E Si such that
either (s3, s5) E F+ or (s5, s3) E F+. In the case that ss E &+I, clearly, there exists an
s4 = ~5 E Si+l such that either (~3, s4) E F+ or (s4, s3) E F+. In the case that s5 g &+I,
(~3, ~5) E F+ implies that there exists an s4 E (ti+l)’ n Si+l such that (s3, s4) E F+ and
(~5, ~3) E F+ implies that there exists an s4 E (ti+l)’ n &+I such that (s4, s3) E F+.
Consequently, for every s3 E S - Si+* , there exists an s4 E &+I such that eit
F+ or (s4, s3) E F+.

From the above it follows that Si+l is also a slice of K, which concludes the proof

of the theorem. Cl

Now we are ready to relate the language of a C/E system to the languages of all
its processes.

5.19. eorem. For every contact-free C/E system M,

L(M)=U{L(K): K E P(M)}.

Analogous results for (reduced, transitive) contracted processes can also be
obtained. For this purpose, we first express the relationship between the languages
of the processes of a contact-free C/E system M and the languages of the different
types of contracted processes of

be a contact-free C/E system, let K be a process of M, and
contracted version of K. Tihen L(
e a contact-free C/E system, and let y be the

(transitive) S-contracted version of

occurrence net,

Theory of traces 63

(a) K is acyclic and
(b) for every SE S, #(OS)< 1 and #(s’)G 1;

these facts will be extensively used in the proof. Furthermore, note that T’= T,
F’ = {(t ‘, t”) E T’ : there exists an s E S such that (t’, s) E F and (s, P) E F}, Q’ = Q,

and 4’ = 4 IT@. The proof now continues in two steps, each of them proving one
part of the equality.

(i) Let x E L(K) and n = # T Then there exist sets S,,, . . . , S, of S-elements of
K and a sequence tt, . . . , tn without repetitions of all T-elements of K such that
S~={~~S:‘~=0},S,={s~S:s’=0),and,foreve~ldidn,Si_~[ti)S~and~(t~)=
x(i). We will now show that, for every 1

this it then follows that x E L(y).
s i, j e n, (ti, 5) E F’ implies that i <j. From

Let 1 s i, j s n be such that (ti, fi) E F’. Hence, there exists an s E S such that
(ti, S) E F and (s, 5) E F; thus, s E (ti)’ n ‘(5). If i > j, then, by (b) above, for every
0 s k s j - 1, s E Sk ; thus, i 3 j implies that l s = Ql, which yields a contradiction.
Consequently, since i = j contradicts (a) above, we have i <j.

(ii) Let x E L(y) and n = # T’. Then there exists a sequence tl , . . . ,tn without
repetitions of all elements of T’ such that, for every 1 G i G n, 4’(ti) = x(i) and, for
every 1 s i, j s n, (ti, 4) E F’ implies that i <j. Let SO = {s E S : ‘s = fd} and let, for
every lsisn, ‘Si=(Si-*- l (ti)) u (ti).. We will now show that, for every 1 s i G n,
Si-l[ti)Si and that S,, ={s E S: S’ = 0). From this it then follows that x E t(K).

Let 1 G i s n and let s E ‘(ti). If ‘s = 0, then s E So and thus, by (b) above, for every
0~ k G i - 1, s E Sk. If 3 # 0, then, by (a) and (b) above and by the given property
of the sequence tl , . . . , tn, there exists 1 s j s i - 1 such that l s = { 5) and thus, again
by (b) above, for every j s k G i - 1, s E Sk. Hence, for every 1 s i s n, s E ‘(ti) implies
that s E Si-1. Let 1 s i g n and let s E (ti)*. This implies that s e So and thus, by (b)
above, for every 0 < k G i - 1, s E! Sk. Hence, for every 1 =G i G n, s E (ti)’ implies that
SESi-1. Consequently, for every 1 4 I- e ‘< n, it follows from the construction of Si that
Si-I[ti)Si*

In order to prove that S, = {s E S: s* = 0}, first assume that there exist s E S, and
I < i G n such that (s, fi) E F. This then implies that s II! Si and thus there exists
ii- 1 <j G n such that (4, s) E F, which contradicts the given property of the sequence

t1, tn. Hence, S, c_ {s E S : s” = 0). To prove the inverse inclusion, assume that
there exist s E S - S,, such that s ’ = 0. If l s = 0, then s E So and thus, for every 0 s k s n,
s E Sk, which contradicts the fact that s E S - &. If ‘s f 8, then there exists 1 s i s r~

such that (tip s) E F and thus, by (b) above, for every is I& s n, s E Sk, which
contradicts the fact that s E S - S,,. Hence, (s E S : s’ = 0) G S,,.

(2) directly follows from (1) above and from the graph-theoretical observation
that, for a directed node-labeled graph g = (V, E, 2, C) and for 01, v2 E V, g contains

a path of length at least 2 from v1 to v2 if and only if red(g) (trans(g) respectively)
contains a path of length at least 2 from v1 to vzm 0

rovide the analogy o Theorem 5.19 in terms of (reduced,
transitive) contracted processes.

64 I.J.J. Aalbersberg, G. Rozenbetg

!Ll. eorem. (1) For every contact-free C/E system

L(M)=U{L(y):yECP(M)}.

(2) For every contact$ee C/E system M,

L(M)=U{L(y): ~ERCP(M)}=U{L(Y):

f. This directly follows from Theorems 5.19 and 5.20. Cl

We conclude this subsection bgr providing t e following notion, which is crucial
in our considerations concerning traces and nets.

finition. Let N = (S, T, F) be net. The reliance alphabet induced by N,
by C(N), equals (T, I, D), w

l={(t,, tz)E TX T:*t,*n’tz’=O} and

D={(t,, t&z TX T:‘tl’n’t,‘#O}.

5.23. Remark. As usual, the notion of a reliance alphabet induced by a net carries
over to a C/E structure and a C/E system (through their underlying nets).

5.24. Example. Consider the C/E system M = (P, Q, R, V’) depicted in Fig. 18. Then
C(M) = (Q, IG D), where

*={{¶l, q4L {q*9 qJ9 {419 %I, tq2, q3h {q*,q4), {q3,qJ,

91 P2 q3 P3

Fig. 18

‘Iheory of traces 65

5.2. Decomposing C/E structures using traces

In this subsection a method is presented for finding the trace language associated
to a C/E structure; this method makes a considerable use of the theory of traces.

‘Ihe following notions on traces and trace languages are needed in order to deal
with different reliance alphabets (induced by different C/E structures).

efinition. Let C’ = (X’, I’, D’) and C”= (Z”, I”, “) be two reliance
alphabets.

(1) The projection of C’ onto C”, denoted by C’l C”, is the reliance alphabet
C=(&I,D)suchthatZ=X’n;S”and D=D’nD”.

(2) The synchronization of C’ and C”, denoted by C’ 11 C’, is the reliance alphabet
C”’ = (z”‘, It”, D”‘) such that 2”’ = 2’ u C” and D”’ = D’ u D”.

Hence, the projection of a reliance alphabet onto another yields a reliance alphabet
with a smaller symbol alphabet (the intersection of both alphabets), where the
inherited dependence relation is the intersection of both dependence relations, while
the synchronization of two reliance alphabets yields a reliance alphabet with a bigger
symbol alphabet (the union of both alphabets), where the inherited dependence
relation is the union of both dependence relations.

5.26. Example. For the reliance alphabets C’ and C’, such that D(C’) and D(C)
are as depicted in Fig. 19(a) and Fig. 19(b), respectively; D(C’) C’) and D(C’ 11 C”)
are depicted in Fig. 19(c) and Fig. 19(d), respectively.

(W

e operations ‘projection’ and ‘synchronization’ are

‘I’ 1
e reliance alphabets such that 6” = C’ 11 C’. en C’ = 6”’ 1 C’ and C” = et” 1 C”.

66 IJ.J. Aalbemberg, G. Rozenberg

(2) kt C = (E, I, D), C’= (Z’, I’, D’), and C”= (F’, I”, D”) be reliance alphabets
such that C = C’l C’. men C’= C 11 C’ and C’= C 11 C”.

f. (1) Let & = ($2 8, be the reliance alphabet such that C = C”‘(C’. Then

$=X”nX=(X’uH”)nH’=Z’ and

S=D”‘nD’=(D’“D”)nD’=D’.

Thus 2 = C’ and fi = D’, and, consequently, C’ = C”‘l C’.
Analogously it can be be shown that C” = C”‘l C”.
(2) Let C = ($,t b) be the reliance alphabet such that C = C 11 C’. Then

e=Zu8’=(H’nZ”)uH’=8’ and

fi= Du D’=(D’n D”)u D’= D’.

Thus s = 2’ and fi = D’, and, consequently, C’ = C II C’.
Analogously it can be shown that C’= C II C”. [7

In order to extend the operation of projection to traces, we need the following
result.

5. rem. Let C = ($7, I, D), C’ = (2 ‘, I’, D’), and C” = (E”, I’, D”) be reliance
alphabets such that C = C’l C’. Let x’, yk (Z’)* be such that x’ scey’. Then

fP~4X’) = c ~~4Y’)-

The proof goes in two steps, each step proving one requirement of the
sufficient condition from the statement of Theorem 2.6.

Let a E 2. Thus, since C = C’n F’, a E 2”. Hence,

pa) = %(x’) and ez(db4Y')) = pa.

Furthermore, once again since C = C’n 27, a E 2’. Hence, by Theorem 2.6, #,(x’) =
#,(y’)= Consequently, #,(~~w(x’)) = #,(+&y’)).

Let {a, b} E D. Thus, since D = ‘n D’, {a, b) E D’ and moreover, {a, b} E C’.
ence,

#+‘*6~wdx’)) = 4{a,b}W) and 4{a,b}b#MY')) = dqo.b)(Y')-

urthermore, once again since
I. Conseque
ve, it now follo

’ n D”, {a, b} E D’. eorem 2.6,
W(x’)) = t#to.bl(&&y’)). From Theorem
t q5&x’) =c qbp(y’). cl

‘Ttreory of traces 67

nition. Let C’= (Z’, I’, D’) and C”= (X’, I”, D”) be two reliance
alphabets. Let t’ E O(C’). The projection oft’ onto C”, denoted by t’l C”, is the trace
[&&x’)]~, where X’E (Z’)* is such that t’= [x‘]~~ and C = C’l C”.

Intuitively speaking, the projection of a trace t’ (over a reliance alphabet C’=
(S’, I’, D’)) onto a reliance alphabet C” = (Z”, I”, D”), results by erasing all symbols
in t’ that are not in E” and then using only those dependences from D’ that are
also in D”.

Example. Let C’ and C” be as in Example 5.26. Let t’= [ac6cd]c. and let
C = C’ 1 C”. Then t’ E 6(C’) and a dep-graph of t’ is depicted in Fig. 20(a). Further-
more, (t’l C”) = [acl& and a dep-graph of t’l C” is depicted in Fig. 20(b).

b

(4

Fig. 20

(W

In order to extend the operation of synchronization to traces, we need the following
results.

5.31. Theorem. Let C’ = (C’, I’, D’) and C” = (X”, I”, D”) be two reliance alphabets.
(1) Let C” = C’II C” and let t”k @(C”‘). Then (PI C’) E O(C’) and (PI C”) E

9(C”).
(2) Let C = (2, I, D) = C’l C’ and let X’E (iY)* and XE C* be such that

([fJcPl C’) = [J&. 772en
(i) for every a EC, #,(x’) = #,(x); and

(ii) for every (a, bl E 0, dq~.~&‘) = 4~(~4=
(3) Let C”’ = (XI”, I”‘, D”‘) = C’ 11 C” and let ty, tr E (C”) be such that (t? 16’) =

(tr1C’) and (t~lC”)=(r;“(C’). men tr= tF.

roof. (1) directly follows from efinition 5.29 and
(2): From Definition 5.29 it follows that (

c 4bW)lc = rx3c.

orem 5.27.

“) = I4JYW)lC~ an

68 I.I.J. Aalbersberg, G. Rozenberg

Let {a, b} E D. Then, by Theorem 2.6, 4 (qb)(4z4X’)) = ~w)(x)- Consequently,
since D = B’n D” implies that {a, b} E C” , @tqb)(x’) = +iqb)(x).

(3): Let xr, XT E (Em)*, X’E (Z’)* and X”E (Z’)* be such that

t:‘= w%m, g= I 1 xr C”,

(t~lC’)=[x’]cp=(t~(C’), and (t~(C”)=[x”]C~=(t~lC”).

Now it follows from Theorem 2.6 that, in order to prove ty = ty, it suffices to prove
that, for every a E X”‘, #,(xy) = #Jxr), and, for every {CL, b}~ D”, #14b1(~r) =

d+z,b}(X?)*

Let Q c C”‘. = C’U a EC’ a
= #,(x’) = #,(xF),

= #,(x”) = #,(xT). = #,(xr).
E D”. = D’ v D”, E D’ E D’.

@{a,b}(x:N) = &,b)(x’) = &,b,(x,“),

and in the second case, (2) above implies that

&qb)(xy) = d+,b)(x”) = ‘&,b,(xr)*

consequently, f&qb)(xr) = #{&b)(xF)- 0

The above theorem enables us to define the operation of synchronization of two
traces as follows (Theorem X31(3) guarantees the uniqueness of the obtained trace).

efinition. Let C’= (Z’, I’, D’) and C”= (C’, I”, D’) be two reliance
alphabets.

(1) Let t’E O(C’), t’k @(C”), Cl’;= C’ 11 C”, and t”’ E O(C”) be such that
(t”‘l C’) = t’ and (t”‘l C’) = t”. Then t” is called the synchronization oft’ and t’, and
is denoted by t' 11 t”.

(2) Let T’S O(C’) and T”G O(C’). The synchronization of T’ and T”, denoted
by T’ 11 T’, is the trace language T”s O(C”), where C” = C’ 11 C’, such that

T”’ = {t”’ E @(c”) : th ere exist tk T’ and t’k T” with t”’ = t’ II 1”).

Intuitively speaking, the synchronization of a trace t’ (over a reliance alphabet
C’) and a trace t’ (over a reliance alphabet C”), is the trace t”’ (over the reliance
alphabet C’ II C’), which yields t’ when projected on C’ and which yields t’ when
projected on C”.

and C’ be as in Example 5.26. Let t’ = [abdclcf and t’ =

f t’ is depicted in Fig. 21(a) and a
ore, (t’ II t”) = [abecd]c.l and the

Theory of traces 69

d

a

0-d

Fig. 21

The following result provides a valuable insight into the nature of the operation
of synchronization.

5.34. Theorem. Let C’ = (Z’, I’, D’) and C” = (Z”, i’, D’) be two reliance alphabets
and let C”’ = C’II C”. Let x’ E (Z’)*, ak E’, and x’k (Z”)*.

(0 (NC II I&*) = C&~ l
(2) If ([x’]~l C’) = ([x’$~I C’), then ([x’]~, 11 [x”]& = ([x”lcptII [x’]&.
(3) Ifa’ie 2” and ([a’ C”) = ([x”lrMl C’), then ([&,I C”) = ([x’&I C’) and

([a’x’lct II [x”lclr) = [a’lclW 0 ([x& II [x”]&.

(4) rf a% C” and ([a’x’lcPl C”) = ([a’x”]cgPI C’), then ([x’],#l C’) = ([~“]~~~l C’)
and

([a’&# II [a’x’]cfJ = [a’lClll 0 ([x’lcr II [x”]&.

In order to obtain the main result of this subsection, we need the following notion
on decomposing C/E structures.

5.35. Definition. Let N = (P, Q, R), N’ = (P’, Q’, R’), and N” = (P’, Q”, R”) be C/E
structures. N is the composition of N’ and N” (N is decomposed into N’ and AT”),
denoted by N = N’ II N”, if P = P’ v P”, P’ n P” = 8, Q = Q’ v Q’, and R = R’ v R’.

5.36. Example. The C/E structures N’, N’, N”, and N, depicted in Figs. 22, 23,
24, and 25, respectively, are such that N = (N’ 11 N’) II N”.

The main result of this subsection is the following, which shows that the trace
languages associated to a C/E structure can be built up from the trace languages
associated with its parts.

R) be a C/E structure, let C(N) = IQ, I, D), and let

P~,P~c,P. Let N’=(P’,Q’, ‘) and N” = (P”, Q”, ‘) be two Cl Jz str2mures smh
that N = N’ II N” and let pi =p,n P’, &=pIn P’, &=pzn

(ccl9 P29 N&v) = CUP:, A N’Gv~) IICUPL P

(2) I?& 9 w13Cuv) = ruru:, ‘&W II i%d’,

70 IJJ. Aalbersberg, G. Rozenberg

p2

Fig. 22

b
cl-

d

Fig. 23

b

Fig. 24

Fig. 25

Theory of traces 71

In this way, a C/E structure can be decomposed into smaller ones, for which the
associated trace languages are either known or easy to find. Then one finds the trace
languages of the given C/E structure by synchronizing these smaller trace languages.
In particular, decomposing the given C/E structure into atoms (i.e., C/E structures
containing one condition only) yields simple trace languages.

Example. Let N’, N”, N”‘, and N as in Example 5.36

9 U0,0, N”) = WI*, and L({p,), { pd, IV”‘) = {bc, dc
above,

9 L({ PI), {PI), N’j =
ence, by the theorem

MP, 9 PA {PI, PA N&v)

= W~~*l&~~ II Wd~*l&w,) II IW, W*l:tm~,

= [{bacdc}*]&,,).

53,. Traces, dep-graphs, and processes of C/E systems

In this subsection we relate the theory of traces and the theory of dep-graphs to
the theory of (processes of) C/E systems. We start by observing that considering
C/E systems as generators of trace languages fits well in our framework.

5.39. Theorem. Let M be a C/E system.
(1) L(M) is C(A4)-consistent.

(2) Cuwc(A4~ E T,w,mf3.

Proof. (2) directly follows from (1) above and from Theorem 5.8(2). 0

Next we consider C/E systems as generators of directed node-labeled graphs.
This point of view brings (the behavior of) C/E systems and dep-graph languages
close together.

We begin with the following observation.

5.40. Theorem. There exists a contact$ee C/E system M such that CP(M) #

(UM))C(M).

roof. Consider the C/E system M which is depicted in Fig. 26(. ;hen every

contracted process of M is of the form which is depicted in Fig. 26(b) (where, for
the sake of convenience, the labels of the nodes are omitted), while every element
of (L(M))C(Mj is of the form depicted in Fig. 26(c) (where, again for the sake of
convenience, the labels of the nodes are omitted).

Clearly, M satisfies the statement of the theorem. 0

To the contrary, if we turn to reduced an transitive contracted processes an

reduced and transitive dep-graphs, then the two a

IU Aalbersberg, G. Rozenberg

Fig. 26(a)

(4

Fig. 26

eorem. (1) For every contact-free C/E system M, for every y E RCP(M)
(y E TCP(M)) and for every x E L(y), (x)&,,,) = y ((x)&) = y respectively).

(2) For every contact-free C/E system M, RCP(M) = (L(M))&,,,) and TCP(M) =
(L(M))f,,,,.

f. (1) Let M = (P, Q, I?, %) be a contact-free C/E system and let C(M) =

(0, I, D). Let y = (T, E, Q, I) E CP(M) with n = # T and let x E L(y)- Let K =
(S, T, F, P u Q, 4) E P(M) be such that y is the S-contracted version of K and let
(x&,) = (V’, E’, Q, I’) (note that, by definition, V’= (1,. . . , n}).

Observe now the following.
First, there exists a sequence without repetitions tl , . . . , t,, of all elements of T

such that, for every 1 di~n,I(ti)=x(i),and,foreveyl~i,j~n,(ti,+)E E implies
that i <j.

Second, for every 1 6 i G n, l’(i) = I(ti) = #(t;! z X(i).
Third, for every 1s i, js n, (ti, 5) E E+ if end only if (i, j) E (E’)+. This can be

seen as follows.
Assume that 1 s i, j s n are such that (ti, 4) E E+. Thus there exist, for some r 2 2,

1 s k(l), . . . , k(r) such that k(1) = i, k(r) = j, and, for every 2 sp G r,
(t k(p-l)r tk& E E.

(i) for every 2 G p sr, k(p-l)<k(p); and

(p-l))* n l (tk(p)). f 0, which,
, for every 2SpSr,

nteory of traces 73

and thus

Consequently, for every 26~ s r, (k(p - I), k(p)) E E’, and hence (i, j) =

(Ml), k(r)) E (E’)+.
Assume that 16 i, j s n are such that (i, j) E (E’)+. Thus i <j and there exist, for

some ~-32, i=k(l)+ l l < k(r) = j such that, for every 2 e p s r, (k(p - l), k(p)) E
E’. Hence, for every 2 s p s r,

and thus ‘(+(t k(p_lj))* n ‘(&(tklpl))* f 0. It now follows from Theorem 5.14 that, for
every 2 s p G r, either

&p-l), h(p)) E F+ or Ok(p), fk(p-l)) E F+,
and hence either

0 k(p-1)r h(p)) E E’ or be(p), fk(p-1)) E E+*

However, since k(p - 1) < k(p) for every 2 s p s r, the above implies that, fa: every
2 sp s r, (tk(p_l), tktp)) E E+. Consequently, (ti, 4) = (tktl), t& E E+.

From the observations above, it now follows that, for every 1 s i, j G n, I(ti) = l’(i)
and y contains a path from t, to 4 if and only if (J&~~) contains a path from i to
j. Hence, by standard graph-theoretical arguments, red(y) =(x)&,) and trans(y) =

() x fC(M)*
(2) directly follows from (1) above and from Theorems 5.21(2) and (3) respec-

tively. Cl

The above theorem yields a direct relationship between (the different types of)
dep-graphs of firing sequences of C/E systems and (the different types of) processes
of C/E systems. It turns out that this relationship can easily be extended to traces
of firing sequences of C/E systems.

5.42 m. (1) For every contact-free C/E system for every y E RCP(

(YE 1):. andfor evev x9 YE L(Y), x =C(M) Y*

(2) For every contact-free C / E system for every y E C
for every x9 y c L(y) (x, y E L(K) respectively) x =C(M) y.

roof. (1): Let be a contact-free C/E system, let y E RCP(
and let x, y E L(y). Then, by Theorem 541(l),

Consequently, by Theorem 2.35, x = C(M) y.
(2) directly follows from (1) above and fro

74 IJ.J. Aalbersberg, G. Rozenberg

5.43. Theorenr. (1) For every contact-free C/E system M and for every y E RCP(M)

, (y ET-(M)), L(y) E @(C(M)).
(2) For every contact-free C/E system M and for every y E CP(M) (K E P(M)),

L(Y)E @(C(M)) (L(K)E @(C(M)) respectively).

f. (1) Let M = (P, Q, R, %) be a contact-free C/E system and let y E RCP(M)
(y E TCP(M)). In order to prove that L(y) E @(C(M)), one has to show that, for

every -~YEUY), x =C(M) y, and that, for every XE L(y) and y E Q*, x sCtM) y
implies that y E L(y). Since the first requirement directly follows from Theorem
5.42(l), it suffices to prove the second requirement.

Let XE L(y) and let ye Q* such that x =C(M) y. From Theorem 5.21(2) it now
follows that x E L(M), and thus, by Theorem 5.39(l), y E L(M). Hence, again by
Theorem 5.21(2), there exists Y’E RCP(M) (yk TCP(M) respectively) such that
y E L(y’). However, since by Theorems 2.35 and 5.41(l),

Y =(x%(M) =(Y)CC(M) = Y' (y s (x)&j E(y)& E y’ respectively),

y= y’ and thus YE L(y).
(2) directly follows from (1) above and from Theorem 5.20. Cl

5.4. Appendix (proof of TOleorem 5.19)

In this appendix we give a proof of Theorem 5.19. For this purpose we need a
number of notions and results which are rather standard in the theory of C/E
systems and which can be found, e.g., in [41]. To avoid recalling all of these notions
and results, we simply refer to the appropriate places in the standard text book
[41]. Whenever we make such a reference to 1413, we indicate this by appending
the letter “R” to the reference index; thus, e.g., “Lemma R 3.4(b)” stands for
“Lemma 3.4(b) in 1411”.

The notions we need in the proof of the theorem are the following:
(i) for a process K of a C/E system, the set of minima2 elements of K, denoted

by OK, and the set of maximai: elements of K, denoted by K” (see Definition R 3.1 (i));
(ii) for two processes K1 = (S,, G,FJ,A*) and &=(sz, Tz&J*A) of

a C/E system such that +,((K,)“) = &(O(K2)), the composition of K, and K2, denoted
by K1 0 Kz (see Definition R 3.4(c));

(iii) the case graph of a C/E system M, denoted by @,,,, (see Defini
and

(iv) for an edge e in the case graph of a C/E system, the process of e (Definition
R 3.5(b)).

Now we are ready to prove Theorem 5.19.

. For every contact-jiee C/E system M,

nteory of Paces 75

Let M = (P, Q, R, %) be a contact-free C/E system.
x E L(M) with n = 1x1. Hence, there exist ql,. . . , qn E andpo,._.,p,E~

such that x = 41. . . q,, and, for eve:ry 1 s i G n, pi-l[qi)yi; t ‘h, Definition R 2.
for every 1 s is n, (&-I, qi, pi) is an edge in GM. Let, for every 1s is n,
(Si, &, 6, PU Q9 &) be the process of the edge (pi-l, qi, i&i) in #M; thus,

(i) for every 1 s i 6 n, Ki is a process of M such that the set of T-elements of
Ki consists Of only one T-element ti with &(1:) = qi ;

6) h(“UW = PO and #nWU”) = Pn; antf4

(iii) for every 1 s i s n - 1,

Hence, by Lemma R 3.4(b), there exists a pd;‘;rcess K = (S, T, F, P u Q, 4) of
isomorphic to K~o l l l 0 Kn and slices So, . m . , ,“a,,, of K such that

(i) T={t,,..., t”}, where, for every 1 s i, j s R, i #j implies that ti # 5;

(ii) So={sGS:‘s=@}= “K and Sn={sES:s*~O}=K”;

(iii) dJ(S0) = &(“(K,)) = PO and +(&)=4ntGKn)o)=Iln;

(iv) forevery lSiSn- 1, 4(S) = 4((K)“) = h+l(O(&+l)) = Pi; and
(v) for every 1 s i s n, &(ti) = +i(t:) = qi and &-I[ti)Si. Consequently, for this

process K of M, x=ql... qn = +(tJ . . l +(tn) E L(K), which proves the inclusion
L(M)EU{L(K):KE P(M)}.

Now,letK=(S,T,F,PuQ,~)beaprocessofMandletxEL(K)withn=Ixl.
Hence, there exist sets So, . . . , Sn of S-elements of K and a sequence tl, . . . , t,,

without repetitions of all T-elements of K, such that So = {s E S : l s = 0}, Sn =
{s&:s* =@}, and, for every 1 G i G n, Si-I[ti)Si and #(ti) = x(i). We will now show
that, for every 1 G is n, 4(Si-,)[#(ti))#(Si). From this it directly follows that
x=~(tl)...~(t,,)~L(M), which proves the inclusion U{L(K):KEP(M)}G

L(M).
Let 1 s i G n. Clearly, Si-l[ti)Si implies that ‘(ti) C_ Si-1 and thus, by the definition

of a process,

'(4th)) = 4(‘(G)) C #(Si-*);

hence, since M is contact-free, (+(ti))’ G P - +(Si-l). Consequently, &(Si-1)[4(ti)).
Also, Si-l[ti)Si implies that Si = (Si-l-* (ti)) u (ti)’ and tllus, by the definition of a
process and by Theorem 5.18,

#(&I = b((Si-1 -‘(ti)) U (ti)‘)

Bibliographical comments
The theory of petri nets was initiated by ask text book on

nets is [41], where many of the notions that we have recalled in Subsection 5.1 can

76 UJ. Aalbersberg, G. Rozenbetg

be found. The relationship between the theory of Petri nets and the theory of traces
was established already in [31]. In fact, the original motivation of [3 13 was to study
the concurrent behavior of Petri nets. The fact that the firing sequence languages
of C/E structures and C/E systems are regular (Theorem 5.8) is a well-known
‘folklore’ result-it can be traced to 1211. The notion of a reliance alphabet induced
by a net is introduced in 173 (although a oiff erent terminology is used there).

Subsection 5.2 is based essentially on [34]. The notion of projection was introduced
in 1201 and the notion of synchronization is close to the synchronization mechanism
discussed in [23] and [28]. The proof of Theorem 5.34 can be found in [34], where
also the notion of the composition of C/E structures is introduced. The proof of
the main theorem of Subsection 5.2 (Theorem 5.37) can also be found in [34].

As far as Subsection 5.3 is concerned, the proof of Theorem 5.39(1) can be found
in [7]. The idea of relating Petri nei languages to partial order languages is also
discussed in [lo], although the approach there is quite different from the approach
we have taken.

Acknowledgment

The authors are indebted to the following persons for valuable comments and
suggestions concerning the preliminary version of this paper: V. Diekert, J. Engel-
friet, A.M. Fishscale, M.P. Fl6, H. Goeman, P. Graubmann, H.J. Hoogeboom, R.
Janicki, N. Keesmaat, A. Kiehn, H. Kleijn, A. Mazurkiewicz, E. Ochmanski, D.
Perrin, N. Sabadini, R. Verraedt, H. Vogler, and E. Welzl. Moreover, the authors
are indebted to the referees for their constructive comments.

eferences

ill

ia

C3’

141

PI

[al

ITI

iSI

191

U.J. Aalbersberg and G. Rozenberg, Traces, dependency graphs and DNLC grammars, Discr. Appl.
Mafh. 11 (1985) 299-306.
1J.J. Aalbersberg and G. Rozenberg, Trace languages defined by context-free sting languages,
Manuscript, Dept. of Computer Science, Univ. of Leiden, 1985.
I&J. Aalbersberg and E. Welzl, Trace languages defined by regular string languages, R41RO Inform.
Tht!or. et Applic. 20 (1986) 103-119.
A. Bertoni, M. Brambilla, G. Mauri and N. Sabadini, An application of the theory of free partially
commutative monoids: asymptotic densities of trace languages, in: Lecture Notes in Computer
Science 118 (Springer, Berlin, 1981) 205-213.
A. Bertoni, G. Mauri and N. Sabadini, A hierarchy of regular trace languages and some combinatorial
applications, in: f%oc 2nd. World Conf: on Mathematics at the Service of Men, Las Palmas (1982)
146- 153.

A. Bertoni, G. Mauri and N. Sabadini, Equivalence and membership problems for regular and
context-free trace languages, Intern. Rept., Inst. Cibem., Univ. of Milan, 1982.
A. Bertoni, C. Mauri and N. Sabadini, Concurrency and commutativity, Intern. Rept., Inst. Cibem.,
Univ. of 54ilan, 1982 (presented at 3rd European Workshop on Applications and Theory of Petri Nets,
Varenna, 1982,. .
A. Bertani, G. Mauri and N. Sabadini, Unambiguous regular trace languages, in: Colloquia

athematica E ocietatis Jgnos Bolyai (North-Holland, Amsterdam, 1985) 113-123.
auri and N. Sabadini, Representations of prefixes of a trace and membership

problem for context-free trace languages, Intern. Rept., Inst. Cibem., Univ. of Milan, 1985.

7heory of traces 77

[lo] E. Best, C. Femandez and H. Pliinnecke, Concurrent systems and processes, GMD Studien I@%,
Gesellschaft fiir Mathematik und Datenverarbeitung, Sankt Augustin, 1985.

[1 l] K.P. Bogart, Decomposing partial orderings into chains, J. Combin. 7heor. 9 (1970) 97-99.
1121 P. Cartier and D. Foata, RobRmes Combinatoires de Commutation et Rearrangements, Lecture

Notes in Mathematics 85 (Springer, Berlin 1969).
[131 R. Cori and D. Perrin, Automates et commutations partielles, RAIRO Inform. 77tt?or. 19 (1985) 21-32.
[14] M.P. FH and G. Roucairol, On serializability of iterated transactions, in: Rot. ACM SIGACT-

SIGOPS Symp. on principles of Distributed Computing, Ottawa (1982) 194-200.
[lS] M.P. FIG and G. Roucairol, Multiserialization of iterated transactions, Inform. Ikxess. Left. 18

(1984) 243-247.
[161 M.P. FIi and G. Roucairol, Fair serializability of iterated transactions using FIFO-nets, in: Lecture

Notes in Computer Science 188 (Springer, Berlin, 5985) 154-168.
[17] M. Fliess, Matrices de Hankel, J. Mu&. fires et Appl. 53 (1974) 197-224.
[181 M.R. Garey and D.S. Johnson, Computers and Intractability (Freeman, San Francisco, CA, 1979).
1191 S. Ginsburg, Tlhe Mathematical theory of Context-Free Languages (McGraw-Hill, New York, 1966).
[201 G. Gyiir~, E. Knuth and L. Romai, Grammatical projections, Working paper of Comput. and

Autom. institute, Hungarian Academy of Sciences, 1979.
1211 M. Hack, Petri net languages, Comput. Struct. Group Memo 124, Project MAC, MIT, Cambridge,

MA, 1975.
[22] F. Harary, Graph 7heoty (Addison-Wesley, Reading, MA, 1969).
123 J C.A.R. Hoare, Communicating sequential processes, Comm. ACM 21 (1978) 666-677.
1241 J.E. Hopcroft and J.D. Ullman, Introduction to Automata theory, Languages, and Computation

(Addison-Wesley, Reading, MA, 1979).
[25] D. Janssens and G. Rozenberg, A characterization of context-free string languages by directed

node-label controlled graph grammars, Acta Inform. 16 (1981) 63-85.
[26] R.M. Keller, A solvable program-schema equivalence problem, in: Rot. 5th. Ann, Princeton Conf

on Information Sciences and Systems, Princeton, NJ (1971) 301-306.
[27] G. Lallement, Semigroups and Combinatorial Applications (Wiley, New York, 1979).
[28] P.E. Lauer, M.W. Shields and E. Best, Design and analysis of highly parallel and distributed

systems, in: Lecture Notes in Computer Science 86 (Springer, Berlin, 1979) ‘Q-503.
1291 F.W. Levi, On semigroups, Bull. Calcutta Math. Sot. 36 (1944) 141-146.
[30] M. Lothaire, Combinatorics on Words (Addison-Wesley, Reading, MA, 1983).
1311 A. Mazurkiewicz, Concurrent program schemes and their interpretations, DAIMI Rept. PB-78,

Aarhus Univ., Aarhus, 1977.
132) A. Mazurkiewicz, A calculus of execution traces for concurrent systems, Manuscript, Inst. of

Computer Science; Polish Acad of Science, Warsaw, 1983.
[33] A. Mazurkiewicz, Traces, histories, graphs: instances of a process monoid, in: Lecture Notes in

Computer Science 176 (Springer, Berlin, 1984) 115-133.
1343 A. Mazurkiewicz, Semantics of concurrent systems: a modular fixed-point trace approach, Lecture

Notes in Computer Science 188 (Springer, Berlin, 1985) 353-375.
1351 K. Mehlhom, Data Structures and Algorithms 2 (Springer, Berlin, 1984).
[36] Y. Metivier, On recognizable subsets of free partially commutative monoids, in: Lecture Notes in

Computer Science 226 (Springer, Berlin, 1986) 254-264.
[37] E. Ochmanski, Regullar trace languages, Ph.D. Thesis, Inst. of Computer Science, Polish Acad. of

Science, Warsaw, 1985.
[38] 2. Pawlak, Rough sets, Interolaf. .I. Comput. Inform. Sci. 11 (1982) 341-356.
1391 D. Perrin, Words over a partially commutative alphabet, NATO ASI Se&s ~2 (1985) 329-3~
[do] C.A. Pet& Kommunikation mit Automaten, Schrift Nr. 2, Institut fur Instrumentelle Mathematik,

1962.
1411 W. Reisig, Petti Nets, an Introduction (Springer, Berlin, 1985).
[42] J. Sakarovitch, On regular trace languages, 77teoret. Comput. Sci. 52 (1987) 59-75.
1431 A. Salomaa, 77reory of Automata (Pergamon, New York, 1969).
1441 A. Salomaa, Formal Languages (Academic Press, New York, 1973).
[45] M. Szijarto, Trace languages and closure operations, Tech. Rept., Dept. of Numerical and Computa-

tional Mathematics, L. Eijtvos Univ., Budapest, 1979.
[46] M. Szijarto, A classification and closure properties of languages for describing concumnt system

behaviours, Fund. Inform.

78 I.U. Aalbersberg, G. Rosenberg

[47] A. Tarlecki, Notes on the implementability of formal languages by concurrent systems, ICS PAS
pt. 481, Institute of Computer Science, Polish Academy of Sciences, Warsaw, 1982.

[48] A. Tarski, A lattice-theoretical fixpoint theorem and its applications, Pacific J. Math. 5 (1955)
285-309.

Annota

WI

WI

IA41

WI

CA61

CA71

WI

CA91

IAN

. Aalbersberg and G. Rozenberg, Traces, dependency graphs and DNLC grammars, Discr.
Appi. Math. 11 (1985) 299-306.

Using dep-graphs a relationship between trace theory and the theory of graph grammars is
established. In praticular, it is demonstrated how regular dep-graph languages can be generated
by regular DNLC grammars.
IJ.3. Aalbersberg and G. Rozenberg, Trace languages defined by context-free string languages,
Manuscript, Dept. of Computer Science, University of Leiden, 1985.

The classes of existentially, untversally and consistently context-free trace languages are investi-
gated.
JJ.J. Aalbersberg and E. Welzl, Trace languages defined by regular string languages, RAIRO
Inform. ‘I&&or. Applic 20 (1986) 103-l 19.

The relationship between existentially and universally regular trace languages is investigated
as well as decidability problems for and closure properties of existentially, universally and
consistently regular trace languages are considered.
A. Bertoni, M. Brambilla, G. Mauri and N. Sabadini, An application of the theory of free partially
commutative monoids: asymptotic densities of trace languages, in: Lect&e Notes in Computer
Sckrce 118 (1981) 205-215.

The connection between the theory of traces and the theory of partially commutative monoids
is established. Some basic properties of traces and trace languages implied by this connection are
given.
A. Bertoni and M. Goldwurm, Average analysis of an algorithm for a membership problem on
trace languages, Intern. Rept., Dept. of Information Science, Univ. of Milan, 1986.

The average behavior of an algorithm for deciding the membership problem of existentially
regular trace languages is investigated and the influence of different assumptions on the set of
inputs is considered.
A. Bertoni, G. Mauri and N. Sabadini, A hierarchy of regular trace languages and some com-
binatorial applications, in: Rot. 2nd. World Con! on Mathematics at the Service of Men, Las
Palmas (1982) 146-153.

Using regular string languages different classes of existentially regular trace languages are
defined via different methods of existential claiming. It is demonstrated that in this manner a
(possibly strict) hierarchy of existentially regular trace languages is obtained.
A. Bertoni, G. Mauri and N. Sabadini, Equivalence and membership problems for regular trace
languages, in: Lecture Notes in Computer Science 140 (1982) 61-71.

Various types of the equivalence and membership problems for existentially regular trace
languages are considered (this paper is extended in [A9]).
A. Bertoni, G. Mauri and N. Sabadini, Context-free trace languages, in: Sroc. 7th. CAAP, Lille
(1982) 32-42.

An algebraic characterization of existentially context-free trace languages is given and the
complexity of various types of membership problems for existentially context-free trace languages
is considered (this paper is extended in both [A91 and [A12]).
A. Bertoni, G. Mauri and N. Sabadini, Equivalence and membership problems for regular and
context-free trace languages, Intern. Rept., Institute Cibemetica, Univ. of Milan, 1982.

An overview and an extension of the results from [A73 and [A8]: various types of equivalence
and membership problems for existentially regular and context-free trace languages are considered
(this paper is partly extended in [A12]).
A. Bertoni, G. Mauri and N. Sabadini, Concurrency and commutativity, Intern. Rept., Institute
Cibernetica, Univ. of Milan, 1982 (presented at 3rd European Workshop on Applications and Theory
of Perri Nets, Varenna, 1982).

Theory of traces 79

Consistently regular trace languages are related to Petri net languages. In particular, it is
demonstrated that safe Petri nets generate only consistently regular trace languages, where the
independence relation in question is induced by the Petri net considered.

[Al 11 A. Bertoni, G. Mawi and N. Sabadini, Unambiguous regular trace languages, in: Colloquia
Mathematics Secietas Janos Bolyai 42 (North-Holland, Amsterdam, 1985) 113-123.

The class of the so-called unambiguous regular trace languages is investigated and its position
between the class of consistently regular trace languages and the class of existentially regular
trace languages is established.

[A121 A. Bert& G. Mauri and N. Sabadini, Representations of prefixes of a trace and membership
problem for context-free trace languages, Intern. Rept. Institute Cibemetica, Univ. of Milan, 1985.

The upper bound on the complexity of the membership problem for existentially context-free
trace languages, as given in [A8], is improved; a representation technique for prefixes of a trace
in terms of arrays is used (this paper is an extension of [A9]).

IA131 E. Best, C. Femandez and H. Pliinnecke, Concurrent systems and processes, GMD Studien 104,
Gesellschaft fiir Mathematik und Datenverarbeitung, Sankt Augustin, 1985.

A small part of this extensive book-like manuscript deals with the relationship between the
theory of behavior of various types of Petri nets and the theory of traces. ’

[A141 A. Carpi and A. De Luca, Square-free words on partially commutative free monoids, Inform.
Process. Lett. 22 (1986) 125-132.

A characterization of the partially commutative free monoids having an infinite number of
square-free elements is given. It is proved that it is decidable whether a given partially commutative
free monoid contains infinitely many square-free words.

[A151 P. Cartier and D. Foata, ProblGmes Combinatoires de Commutation et R&arrangements, Lecture
Notes in Mathematics 85 (1969).
This paper originates the theory of partially commutative monoids, introduced here as a framework
to consider rearrangements of words. The idea behind the decomposition of traces into normal
forms can also be found in this paper.

[Al61 M. Clerbout and M. Latteux, Partial commutations and faithful rational transductions, Theoret.
Comput. Sci. 34 (1984) 241-254.

The relationship between the operation of partial commutativity (i.e., taking the exterior) and
various well-known language-theoretic operations are considered. Using the obtained results, a
number of families of languages is characterized.

[A171 M. Clerbout and M. Latteux, Stmi-commutations, Tech. Rept. IT-63-84, i+quipe Lilloise d’Infor-
matique ThCorique, Univ. de Lille 1, Villeneuve d’Ascq, 1984.

The nonsymmetric version of the concurrency relation is considered; this leads to semicommuta-
tions rather than to commutations.

[A181 R. Cori and Y. Metivier, Recognizable subsets of some partially abelian monoids, 77teoret. Cornput.
Sci. 35 (1985) 179-189.

It is demonstrated that, for a finite set of strings L over an alphabet Z such that each string
of L contains at least one occurrence of any letter from 2, the exterior of L” is regular. It is
assumed that the dependence graph of the reliance alphabet involved is connected.

[A191 R. Cori and D. Perrin, Automates et commutations partielles, RAIRO Inform. 7h!or. 19 (1985)
21-32.

Besides some basics on traces, it is demonstrated that the class of consistently regular trace
languages is closed under trace-concatenation. Furthermore, it is proved that if L is a regular
string language such that no pair of independent symbols occurs in the same string of L, then
the crterior of L* is regular.

[A201 C. Duboc, Some properties of commutation in free partially commutative monoids, Inform. fiOCeSS-
L&t. 20 (1985) l-4.

The paper irtvestigates the equation t 0 u = u 0 t, where t and u are traces. Among other results,
it is demonstrated that powers of two traces t and u are equal if and on!y if 1 and u are powers
of a third trace.

[Ml] C. Duboc, Equations in free nartially commutative monoids, in: Lecture Notes in Computer
Science 210 (1986) 192-202.

A characterization of the solutions of all the equations in two unknowns in free Partially
commutative monoids is given: it is shown that the solutions are basically cyclic. The PaPer ends
with some results ofl the transposition and the conjugacy relation.

80 1J.J. Aalbersbetg, G. Rosenberg

1~221 M.P. ~6 and G. Roucairol, On serializability of iterated transactions, in: I%oc ACM SIGACT-
SIGClB Symp. on ptinciples of Distributed Computing, Ottawa (1982) 194-200.

The notion of serializability considered in database systems is formalized in the framework of
traces. A syn&onizahm algorithm is provided, which allows only those behaviors wkich are
correct and fair.

[~23] M.P. Hb and G. Roucairol, Multiserialization of iterated transactions, Inform hcess. ht. 18
(1984) 243-247.

The notion of’ serializability from [A221 is generalized to multiserialixability and the new notion
is used to investigate deadlock freedom for transaction systems.

[~24] M.P. Fh5 and G. Roucairol, Fair serializability of iterated transactions using FIFO-nets, in: Lecture
Notes in Computer Science l&8 (1985) 154-168.

This paper deals with infinite traces. An algorithm is given which controls the serializability
condition; the algorithm yields the maximal parallellism and guarantees fairness.

[A251 M.P. Fli and G. Roucairol, Maximal serializability of iterated transactions, ?7reoret. Comput. Sci.
38 (1985) l-16.

This paper deals with infinite traces. The behavior of a system of (synchronized) transactions
is investigated; a characterization of the prefixes of behaviors satisfying the serializability condition
is given and it is shown that the set of all these behaviors can be controlled by a finite automaton.

[A261 D. Foata, Rearrangements of words, in: M. Lothaire, ed., Combinatorics on Words (Addison-
Wesley, Reading, MA, 1983) Chapter 10.

This is an exposition of the theory of rearrangements of words, leading, among others, to
partially com;zu:ative monoids.

[A27] J. Grabowski, On partial languages, Fund Inform 4 (1981) 427-498.
Various closure properties of the so-called partial languages of (safe) Petri nets are investigated;

the theory of partial languages is related to the theory of traces.
[A281 R Janicki, Synthesis of concurrent schemes, in: Lecture Notes in Computer Science 64 (1978)

298-307.
A method is given, which yields for a fixed set of traces (of a special kind) an appropriate

concurrent scheme ‘realizing’ this set.
[A291 R. Janicki, On the design of concurrent systems, in: Aulc: 2nd Internat. Conf: on Distributed

Computing Systems, Paris (1981) 455-466.
A method based on both the theory of Petri nets and the theory of traces is presented in order

to construct concurrent systems out of sequential systems.
[A303 R. Janicki, Trace semantics for communicating sequential processes, Tech. Rept. R-85-12, Institute

for Elektr. Syst., Univ. Aaiborg, Aalborg, 1985.
A non-interleaving semantics for Hoare’s CSP is proposed. As a medium to describe the partial

orders of event occurrences defined by CSP systems, traces and generalizations of traces are
used.

[A311 RM. Keller, A solvable program-schema equivalence problem, in: Proc. 5th. Ann. hinceton Co&
on Information Sciences and Systems, Princeton (1971) 301-306.

An equivalence problem for a class of program schemas is considered. A symmetric binary
relation on a set of operations, expressing their independence, forms the basis of the definition
of the equivalence used.

[a321 E. Knuth, Petri nets and regular trace languages, Tech. Rept. ASM/47, Computing Laboratory,
Univ. Newcastle upon Tyne, 1978.

[A331 E. Knuth, Petri nets and trace languages, in: Proc. ht. Europ. Co@ on Parallel and Distributed
Recessing, Toulouse (1979) 5 1 - 56.

The relationship between path expressions and traces is investigated (this paper is closely
related to [A34]).

[A341 E. Knuth and G. Gyiiry, Paths and traces, Comput. Linguis. Comput. Languages 13 (1979) 31-42.
‘k relatimbip between path expressions and traces is investigated (this paper is closely

related to [A33]).
[A33] A. Mazurkiewicx, Concurrent program schemes and their interpretations, DAIMI Rept. PB-78,

Aarhus Univ., Aarhus, 1977.
The notions of a trace and a trace language are introduced and investigated. It is shown how

to solve trace equations by solving string equations. A relationship between the theory of traces

7%eory of traces 81

and Petri nets is established. This paper initiates the theory of traces in the way it is considered
in our paper.

[A361 A. Mazurkiewicz, A calculus of execution traces for concurrent systems, Manuscript, Institute of
Computer Science, Polish Academy of Sciences, Warsaw, 1983.

[A373 A. Mazurkiewicz, Traces, histories, graphs: instances of a process monoid, in: Lecture Notes in
Computer Science 176 (1984) 115-133.

It is demonstrated how various theories (among them the theory of traces) can be expressed
in the framework of process algebra introduced in this paper.

[A381 A. Mazurkiewicz, Semantics of concurrent systems: a modular fixed-point trace approach, in:
Lecture Notes in Computer Science lgll(l985) 353-375.

A method for describing the behavior (the language) of Petri nets using trace theory is given.
Operations on nets, such as composition and decomposition, are transfer,ned into operations on
traces, such as synchronization and projection.

[A391 Y. Metivier, Une condition suffisante de reconnaissabilite dans un mono’ide partiellement commu-
tatif, RAIRO Inform. l71t!or. et Applic. 20 (1986) 121-127.

It is shown that the trace iteration of a consistently regular trace language T is (again) a
consistently regular trace language, provided that the dep-graphs of the traces of T are connected.

[A401 Y. Metivier, On recognizable subsets of free partially commutative monoids, in: Lecture Notes
in Computer Science 226 (Springer, Berlin, 1986) 254-264.

It is shown that the exterior of R string language 1. is regular if 1. is regalar and ;f the dtp-graph
of each iterative factor of every string in L is connected.

[A411 E. Ochmanski, Regular trace languages, Ph.D. Thesis, lnstitute of Computer Science, Polish
Academy of Sciences, Warsaw, 1985.

The class of consistently regular trace languages are characterized in two different ways. First
a characterization is given using the operation of concurrent iteration and then a characterization
is given by means of the lexicographical minimal string in a trace.

[A423 D. P&n, Words over a partially commutative alphabet, NATO AS1 Series F12 (1985) 329-340.
The paper has the character of an introductory survey. Some basic results on traces and trace

languages are discussed. In particular, a section is dedicated to two different normal forms of
traces.

[A431 W. Rytter, Some properties of trace languages, Fund. Inform. 7 (1984) 117-127.
The membership problem for existentially context-free trace language is considered, 3s far as

time and space complexity are concerned. Furthermore, some results concerning the classes of
exteriors of regular and context-free string languages are given.

[A441 J. Sakarovitch, On regular trace languages, Theoret. Comput. Sci. 52 (1987) 59-35.
Using the theory of partially commutative monoids, it is proved that the existentially regular

trace languages form a boolean algebra if and only if the existentially regular trace languages are
(so-called) unambiguously regular (see also [All]) if and only if the considered concurrency
relation is transitive.

[A451 P.H. Starke, Traces and semiwords, in: Lecture Notes in Computer Science 208 (1985) 332-349.
The paper discusses the relationship between the theory of traces and the theory of semiwords.

[A461 M. Szijarto, Trace languages and closure operations, Tech. Rept., Dept. of Numerical and
Computational Mathematics, L. Eijtvos Univ., Budapest, 1979.

This is a preliminary version of [A47]. The paper investigates several closure properties of
various classes of trace languages defined existentially using string languages from the Chomsky
hierarchy. Also, the notion of a graph composition of dep-graphs can be found here.

[A471 M. Szijarto, A classification and closure properties of languages for describing concurrent system
behaviors, Fund. Inform. 4 (1981) 531-549.

One of the first serious language theoretic Investigations of the theory of traces (this paper is
the final version of [A46]).

[A481 A. Tarlecki, Notes on the implementability of formaJ languages by concurrent systems, KS PAS
Rept. 481, Institute of Computer Science, Polish Academy of Sciences, Warsawa, 1982.

Petri nets and functions on symbols (their extensions to sets of symbols and to sets of sets of
symbols) are used to investigate existentially and consistently regular trace languages.

[A491 G-X. Viennot, Heaps of pieces 1: basic definitions and combinatorial lemmas, Tech. Rept. I-8614,
U.E.R. de Mathematiques et d’lnformatique, Univ. de Bordeaux 1, Bordeaux, 1986.

82 I./J. Aalbersbetg, G. Rozenberg

The introduction of the combinatorial notion of heaps of pieces leads to a geometrical interpreta-
tion of the free partially commutative monoid. Several results based on the theory of these monoids
arc related to the theory of heaps.

[A501 W. Zielonka, Proving assertions about parallel programs by means of traces, ICS PAS Rept. 424,
Institute of Computer Science, Polish Academy of Sciences, Warsawa, 1980.

The paper uses the theory of Petri nets as well as the theory of traces in order to prove assertions
of a great and rather complex airline reservation system. Conclusions on the method used are
drawn and difficulties are indicated.

[ASl J W. Zielorika, Notes on finite asynchronous automata and trace languages, CAIRO Inform. m&r.
et Applic. 21 (1987) 99-135.

Finite-state asynchronous automata are defined and then it is claimed that they accept exactly
consistently regular trace languages.

