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Note

Some formulae for partitions into squares
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Abstract

We consider the new problem of determining the number of partitions of a number into a
�xed number k of squares, and �nd explicit formulae in the cases k = 2; 3; 4. c© 2000 Elsevier
Science B.V. All rights reserved.
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1. Introduction and statement of results

We consider the problem of determining the number of partitions of a number into
a �xed number of squares. This problem is distinct from, but not unrelated to, the
corresponding classical problem of determining the number of representations of a
number as the sum of a �xed number of squares. Whereas the classical problem has
received an enormous amount of attention over the years, see Dickson [3, Vol. II,
Chapters VI–IX], it appears that this (restricted) partition problem has not previously
been investigated. Hardy and Ramanujan [4, p. 305] and Baxter [1] have looked at
the problem of determining the number of partitions of a number into (an unrestricted
number of) squares, Hardy and Ramanujan in the context of number theory, where
they give a transformation for the generating function and the dominant term in the
asymptotic expansion, and Baxter in the context of statistical mechanics, where he gives
the same transformation formula and uses it to prove three identities found earlier by
D. Kim.
To see why one might want to examine the partition problem, consider the following.
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Jacobi’s four square theorem states that the number of representations of n¿ 1 as
the sum of four squares is given by

r4(n) = 8
∑
d|n;4-d

d:

This is in fact the number of representations of n¿ 1 as the sum of four squares of
integers positive, negative or zero, with order relevant. Thus, for example, r4(30) =
8(1 + 2 + 3 + 5 + 6 + 10 + 15 + 30) = 576. The expression

30 = 42 + 32 + 22 + 12

accounts for 4!×24=384 of the representations (permute the four numbers in 4! ways,
place a ± sign in front of each of the four numbers independently in 24 ways), while
the expression

30 = 52 + 22 + 12 + 02

accounts for 4!×23 =192 of the representations. But 30 has only 2 partitions into four
squares of non-negative integers, the two representations given above.
Thus, we see that counting the number of partitions avoids an enormous amount of

‘undesirable’ duplication.
In this note we shall �nd expressions for p2 (n); p3 (n) and p4 (n), the numbers

of partitions of n into two, three and four squares of non-negative integers, in terms
of divisors of n and of numbers less than n.
In order to state our results, we need to de�ne a few terms.
Let �(n) be given for n¿1 by

�(n) =
{
1 if n is a square;
0 otherwise;

and let

�(q) =
∞∑
−∞

qn
2
=
(−q; q2)∞(q2; q2)∞
(q; q2)∞(−q2; q2)∞ = 1 + 2

∑
n¿1

�(n)qn:

Let dr;m(n) denote the number of divisors d of n with d ≡ r (modm), and let
er; s;m(n) = dr;m(n)− ds;m(n);

be the excess of divisors d of n with d ≡ r (modm) over those with d ≡ s (modm).
We shall show that∑

n¿0

p2 (n)qn =
∑
i¿j¿0

qi
2+j2 =

1
8
(�(q)2 + 2�(q) + 2�(q2) + 3); (1)

∑
n¿0

p3 (n)qn =
∑

i¿j¿k¿0

qi
2+j2+k2

=
1
48
(�(q)3 + 3�(q)2 + 6�(q)�(q2) + 9�(q)

+6�(q2) + 8�(q3) + 15) (2)
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and ∑
n¿0

p4 (n)qn =
∑

i¿j¿k¿l¿0

qi
2+j2+k2+l2

=
1
384

(�(q)4 + 4�(q)3 + 12�(q)2�(q2) + 18�(q)2

+24�(q)�(q2) + 12�(q2)2 + 32�(q)�(q3) + 60�(q)

+36�(q2) + 32�(q3) + 48�(q4) + 105): (3)

If we now use the facts [2, (3.2.23), (9.1.9)]; [5, Theorems 312, 385]; [6] that

�(q) = 1 + 2
∑
n¿1

�(n)qn;

�(q)2 = 1 + 4
∑
n¿1

e1;3;4(n)qn (Jacobi; 1828);

�(q)�(q2) = 1 + 2
∑
n¿1

(e1;7;8(n) + e3;5;8(n))qn (Dirichlet; 1840);

�(q)�(q3) = 1 +
∑
n¿1

(2e1;2;3(n) + 4e1;2;3(n=4))qn (Lorenz; 1871);

�(q)3 =

(
1 + 4

∑
n¿1

e1;3;4(n)qn
)(

1 + 2
∑
n¿1

�(n)qn
)

= 1 +
∑
n¿1

(4e1;3;4(n) + 8
∑

16k2¡n

e1;3;4(n− k2) + 2�(n))qn;

�(q)2�(q2) =

(
1 + 4

∑
n¿1

e1;3;4(n)qn
)(

1 + 2
∑
n¿1

�(n)q2n
)

= 1 +
∑
n¿1

(4e1;3;4(n) + 8
∑

162k2¡n

e1;3;4(n− 2k2) + 2�(n=2))qn

and

�(q)4 = 1 + 8
∑
n¿1

(�(n)− 4�(n=4))qn (Jacobi; 1829)

we �nd that for n¿1

p2 (n) = 1
2 (e1;3;4(n) + �(n) + �(n=2)); (4)

p3 (n) =
1
12
(4e1;3;4(n) + 2

∑
16k2¡n

e1;3;4(n− k2) + 3e1;7;8(n) + 3e3;5;8(n)

+5�(n) + 3�(n=2) + 4�(n=3)) (5)
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and

p4 (n) =
1
48
(�(n)− 4�(n=4) + 17e1;3;4(n) + 4

∑
16k2¡n

e1;3;4(n− k2)

+12
∑

162k2¡n

e1;3;4(n− 2k2) + 6e1;7;8(n) + 6e3;5;8(n) + 6e1;3;4(n=2)

+8e1;2;3(n)+16e1;2;3(n=4)+16�(n)+12�(n=2)+8�(n=3)+12�(n=4)):

(6)

2. Proofs

Let xi; i = 0; : : : ; N be arbitrary.
It is easy to verify that

2
∑
i¿j

xixj =

(
N∑
i=0

xi

)2
+

N∑
i=0

x2i ; (7)

6
∑
i¿j¿k

xixjxk =

(
N∑
i=0

xi

)3
+ 3

N∑
i=0

xi
N∑
i=0

x2i + 2
N∑
i=0

x3i (8)

and

24
∑

i¿j¿k¿l

xixjxkxl

=

(
N∑
i=0

xi

)4
+ 6

(
N∑
i=0

xi

)2 N∑
i=0

x2i + 3

(
N∑
i=0

x2i

)2

+8
N∑
i=0

xi
N∑
i=0

x3i + 6
N∑
i=0

x4i : (9)

If in (7)–(9) we set xi = qi
2
, let N → ∞ and use the fact that∑

i¿0

qi
2
=
1
2
(�(q) + 1);

we obtain (1)–(3).
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