The Hyers–Ulam stability constants of first order linear differential operators

Sin-Ei Takahasia, Hiroyuki Takagib, Takeshi Miuraa,∗, Shizuo Miyajimac

a Department of Basic Technology, Applied Mathematics and Physics, Yamagata University, Yonezawa 992-8510, Japan
b Department of Mathematical Sciences, Faculty of Science, Shinshu University, Matsumoto 390-8621, Japan
c Department of Mathematics, Faculty of Science, Science University of Tokyo, Shinjuku-ku Wakamiya 26, Tokyo 162-8601, Japan

Received 4 November 2003
Available online 2 July 2004
Submitted by L. Debnath

Abstract

Let X be a complex Banach space, h a complex-valued continuous function on the real line \mathbb{R} and $T_h : C^1(\mathbb{R}, X) \to C(\mathbb{R}, X)$ the linear differential operator defined by $T_h u = u' + hu$. We completely determine the Hyers–Ulam stability constant of T_h.

© 2004 Elsevier Inc. All rights reserved.

Keywords: Exponential functions; Hyers–Ulam stability

1. Introduction and result

In 1940, S.M. Ulam posed the well-known stability problem, and in the next year, D.H. Hyers gave an answer to this problem for linear mappings between two Banach spaces (cf. [2,8,9]). The stability problems of this type have been studied by many mathematicians. We are concerned with the Hyers–Ulam stability constants of linear differential operators.
Let X be a complex Banach space. We denote by $C(\mathbb{R}, X)$ the linear space of all X-valued continuous functions on the real line \mathbb{R}. Also, we denote by $C^1(\mathbb{R}, X)$ the linear space of all $u \in C(\mathbb{R}, X)$ which are strongly differentiable and whose derivatives u' are continuous on \mathbb{R}. For any $u \in C(\mathbb{R}, X)$, we define

$$
\|u\|_\infty = \sup_{t \in \mathbb{R}} \|u(t)\|,
$$

admitting the value ∞, where $\|\cdot\|$ denotes the norm of X.

Let h be a complex-valued continuous function on \mathbb{R}. We define the linear differential operator $T_h : C^1(\mathbb{R}, X) \to C(\mathbb{R}, X)$ by

$$(Tu)(t) = u'(t) + h(t)u(t)$$

for all $t \in \mathbb{R}$ and $u \in C^1(\mathbb{R}, X)$.

Definition. The operator T_h is said to have the Hyers–Ulam stability, if there exists a constant $K \geq 0$ with the following property:

For any $\varepsilon \geq 0$, $u \in C^1(\mathbb{R}, X)$ and $v \in C(\mathbb{R}, X)$ satisfying $\|Tu - v\|_\infty \leq \varepsilon$, there exists $u_0 \in C^1(\mathbb{R}, X)$ such that $Tu_0 = v$ and $\|u_0 - u\|_\infty \leq K\varepsilon$.

We call such constant K a HUS constant for T_h. We write K_{T_h} for the infimum of all HUS constants for T_h (if T_h does not have the Hyers–Ulam stability, we understand $K_{T_h} = \infty$). If K_{T_h} is finite and is a HUS constant, then we call K_{T_h} the HUS constant for T_h (cf. [5,6]).

The case that $X = \mathbb{R}$ and $h(t) = -1$ ($t \in \mathbb{R}$) was considered by C. Alsina and R. Ger [1]. More results of the Hyers–Ulam stability problem for linear differential operators can be found in [3–7].

The purpose of this paper is to determine the HUS constants for T_h. To do this, we introduce three constants: For any complex-valued continuous function h on \mathbb{R}, we define $\tilde{h}(t) = \exp\left\{\int_0^t h(s) \, ds\right\}$ for all $t \in \mathbb{R}$, and set

$$
Ch = \sup_{t \in \mathbb{R}} \frac{1}{|\tilde{h}(t)|} \int_t^\infty |\tilde{h}(s)| \, ds,
$$

$$
Dh = \sup_{t \in \mathbb{R}} \frac{1}{|\tilde{h}(t)|} \int_{-\infty}^t |\tilde{h}(s)| \, ds,
$$

and

$$
Eh = \sup_{t \in \mathbb{R}} \frac{1}{|\tilde{h}(t)|} \left| \int_0^t |\tilde{h}(s)| \, ds \right|.
$$

In [6, Remark 2.1], it is shown that only one of Ch, Dh and Eh can be finite. In other words, the possible cases are precisely the following four:

(a) $Ch < \infty$ and $Dh = Eh = \infty$;
(b) $Dh < \infty$ and $Ch = Eh = \infty$;
(c) $Eh < \infty$ and $Ch = Dh = \infty$;
(d) $Ch = Dh = Eh = \infty$.

For example, if \(h \) is a polynomial \(a_0 t^n + a_1 t^{n-1} + \cdots + a_{n-1} t + a_n \) with real coefficient, then each case occurs as follows: If \(n \) is even and \(a_0 < 0 \), then (a) holds; if \(n \) is even and \(a_0 > 0 \), then (b) holds; if \(n \) is odd and \(a_0 > 0 \), then (c) holds; if \(n \) is odd and \(a_0 < 0 \), then (d) holds (see [6, Corollary 2.4 and Example 2.1]).

Now, we state the main theorem of this paper.

Theorem. Let \(h \) be a complex-valued continuous function on \(\mathbb{R} \). Then \(Th \) has the Hyers–Ulam stability if and only if one of \(C_h \), \(D_h \) and \(E_h \) is finite. Moreover, the HUS constant for \(Th \) is determined as follows:

(i) If \(C_h \) is finite, then \(C_h \) is the HUS constant for \(Th \).
(ii) If \(D_h \) is finite, then \(D_h \) is the HUS constant for \(Th \).
(iii) If \(E_h \) is finite, then \(E_h \) is the HUS constant for \(Th \).

This theorem says that \(Th \) does not have the Hyers–Ulam stability if and only if \(C_h = D_h = E_h = \infty \). Also, it answers the question in [6, Remark 2.5].

2. **Proof of Theorem**

All but (iii) have been already proved in [6, Theorem 2.2, Corollary 2.3 and Remark 2.4]. We here show (iii). For its proof, we need the following two lemmas.

Lemma 1. Let \(C \) be a symmetric set, that is \(C = -C \), in a Banach space \(B \). For each \(y \in B \), we have

\[
\sup_{x \in C} \| y + x \| \geq \sup_{x \in C} \| x \|.
\]

Lemma 2. For a complex-valued continuous function \(h \) on \(\mathbb{R} \), we have

\[
K_{Th} = \inf_{x \in X} \sup_{w \in C(\mathbb{R}, X), \| w \|_{\infty} \leq 1} \left\| \frac{1}{h(t)} \left(x + \int_0^t h(s) w(s) \, ds \right) \right\|.
\]

Proof of Lemma 1. Put \(R = \sup_{x \in C} \| x \| \leq \infty \), and pick \(y \in B \) arbitrarily. If \(R = \infty \), then \(\sup_{x \in C} \| y + x \| = \infty \) is clearly true. Thus we consider the case that \(R < \infty \). Pick \(\varepsilon > 0 \) arbitrarily. There is \(x_0 \in C \) such that \(\| x_0 \| > R - \varepsilon \). Then we get

\[
2 \max \left\{ \| y + x_0 \|, \| y - x_0 \| \right\} \geq \| y + x_0 \| + \| y - x_0 \| \geq 2\| x_0 \| > 2(R - \varepsilon).
\]

Since \(C \) is symmetric, \(-x_0 \) is in \(C \). We thus obtain

\[
\sup_{x \in C} \| y + x \| \geq \max \left\{ \| y + x_0 \|, \| y - x_0 \| \right\} \geq R - \varepsilon.
\]

Since \(\varepsilon > 0 \) was arbitrary, it follows that \(\sup_{x \in C} \| y + x \| \geq R \).
The key of the proof of Lemma 2 is the following fact: For any \(v \in C(\mathbb{R}, X) \), the general solution of the equation \(T_h u = v \) is of the form

\[
 u(t) = \frac{1}{h(t)} \left(x_0 + \int_0^t \hat{h}(s)v(s)\,ds \right) \quad (t \in \mathbb{R}),
\]

where \(x_0 \) is an arbitrary element of \(X \) (cf. [6, p. 137]). This fact implies that \(T_h : C^1(\mathbb{R}, X) \rightarrow C(\mathbb{R}, X) \) is surjective.

Proof of Lemma 2. For each \(x \in X \), we define

\[
 K_0(x) = \sup_{w \in C(\mathbb{R}, X)} \sup_{\|w\|_{\infty} \leq 1} \left\| \frac{1}{h(t)} \left(x + \int_0^t \hat{h}(s)w(s)\,ds \right) \right\|,
\]

admitting the value \(\infty \). We must show that \(K = \inf_{x \in X} K_0(x) \).

We first show that \(K \geq \inf_{x \in X} K_0(x) \). If \(K = \infty \), then there is nothing to prove, and so we assume that \(K < \infty \). Let \(K \) be an arbitrary HUS constant for \(T_h \). Then, for any \(w \in C(\mathbb{R}, X) \) with \(\|w\|_{\infty} \leq 1 \), there exists \(u_0 \in C^1(\mathbb{R}, X) \) such that \(T_h u_0 = w \) and \(\|u_0\|_{\infty} \leq K \). By the above key fact, \(u_0 \) has the form

\[
 u_0(t) = \frac{1}{h(t)} \left(x_0 + \int_0^t \hat{h}(s)w(s)\,ds \right) \quad (t \in \mathbb{R})
\]

for some \(x_0 \in X \), and hence

\[
 K \geq \|u_0\|_{\infty} = \sup_{t \in \mathbb{R}} \left\| \frac{1}{h(t)} \left(x + \int_0^t \hat{h}(s)w(s)\,ds \right) \right\|.
\]

This holds for any \(w \in C(\mathbb{R}, X) \) with \(\|w\|_{\infty} \leq 1 \) and we get

\[
 K \geq K_0(x_0) \geq \inf_{x \in X} K_0(x).
\]

Since \(K \) was an arbitrary HUS constant for \(T_h \), it follows that \(K = \inf_{x \in X} K_0(x) \).

We next show the inequality \(K \leq \inf_{x \in X} K_0(x) \). We may assume that \(\inf_{x \in X} K_0(x) < \infty \). Take an arbitrary element \(x \) of \(X \) so that \(K_0(x) < \infty \). Let us show that \(K_0(x) \) is a HUS constant for \(T_h \). For this end, it suffices to show that for any \(\varepsilon > 0 \), \(u \in C^1(\mathbb{R}, X) \) and \(v \in C(\mathbb{R}, X) \) with \(\|T_h u - v\|_{\infty} \leq \varepsilon \), there exists \(u_0 \in C^1(\mathbb{R}, X) \) such that \(T_h u_0 = v \) and \(\|u_0 - u\|_{\infty} \leq K_0(x) \varepsilon \). Let \(u \) and \(v \) be such functions and put \(\varepsilon w = T_h u - v \). Then \(\|w\|_{\infty} \leq 1 \) and \(T_h u = v + \varepsilon w \). Hence our key fact gives \(x_1 \in X \) such that

\[
 u(t) = \frac{1}{h(t)} \left(x_1 + \int_0^t \hat{h}(s)v(s)\,ds + \varepsilon \int_0^t \hat{h}(s)w(s)\,ds \right) \quad (t \in \mathbb{R}).
\]
Now define a function u_0 on \mathbb{R} by

$$u_0(t) = \frac{1}{h(t)} \left(x_1 - \varepsilon x + \int_0^t \tilde{h}(s) v(s) \, ds \right) \quad (t \in \mathbb{R}).$$

Then $u_0 \in C^1(\mathbb{R}, X)$ and $T_h u_0 = v$. Moreover, we have

$$\|u_0 - u\|_\infty = \sup_{t \in \mathbb{R}} \left| \frac{1}{h(t)} \left(x_1 - \varepsilon x + \int_0^t \tilde{h}(s) w(s) \, ds \right) \right| \leq K_0(x) \varepsilon,$$

where the last inequality deduces from $\|w\|_\infty \leq 1$ and the definition of $K_0(x)$. Thus $K_0(x)$ is a HUS constant for T_h. Hence we have $K_{T_h} \leq K_0(x)$. Since x was arbitrary, we conclude that $K_{T_h} \leq \inf_{x \in X} K_0(x)$. Thus the lemma is proved.

We are now in a position to prove the theorem. In the proof, we deal with the space

$$C^b(\mathbb{R}, X) = \{ f \in C(\mathbb{R}, X) : \|f\|_\infty < \infty \},$$

which is a Banach space with norm $\| \cdot \|_\infty$.

Proof of Theorem (iii). Suppose that E_h is finite. Then we see from [6, Theorem 2.1] that T_h has the Hyers–Ulam stability and that E_h is a HUS constant for it. Hence $K_{T_h} \leq E_h$.

Once we show $K_{T_h} \geq E_h$, we get $K_{T_h} = E_h$ and E_h becomes the HUS constant. Thus it suffices to show that $K_{T_h} \geq E_h$.

Define a linear operator $S : C^b(\mathbb{R}, X) \to C(\mathbb{R}, X)$ by

$$(Su)(t) = \frac{1}{h(t)} \int_0^t \tilde{h}(s) u(s) \, ds$$

for all $t \in \mathbb{R}$ and $u \in C^b(\mathbb{R}, X)$. Then we have

$$\|Su\|_\infty = \sup_{t \in \mathbb{R}} \left| \frac{1}{h(t)} \int_0^t \tilde{h}(s) u(s) \, ds \right| \leq \sup_{t \in \mathbb{R}} \frac{1}{|h(t)|} \|u\|_\infty \left| \int_0^t |\tilde{h}(s)| \, ds \right| = E_h \|u\|_\infty < \infty$$

for all $u \in C^b(\mathbb{R}, X)$. Hence S is a bounded linear operator of $C^b(\mathbb{R}, X)$ into itself and $\|S\| \leq E_h$. Moreover, if x_0 is a unit element of X and $u_0(t) = (|h(t)|/\tilde{h}(t))x_0$ for $t \in \mathbb{R}$, then $u_0 \in C^b(\mathbb{R}, X)$, $\|u_0\|_\infty = 1$ and $\|Su_0\|_\infty = E_h$. Thus we obtain

$$\|S\| = E_h.$$ \(1\)
We next observe that \(1/\tilde{h}\) is a bounded function on \(\mathbb{R}\). Since \(\tilde{h}\) is continuous on \(\mathbb{R}\) and \(\tilde{h}(0) = 1\), there is \(\delta > 0\) such that \(|\tilde{h}(t)| \geq 1/2\) for \(|t| \leq \delta\). Hence if \(|t| \leq \delta\), then \(1/|\tilde{h}(t)| \leq 2\). While, if \(|t| > \delta\), then

\[
E_h \geq \frac{1}{|\tilde{h}(t)|} \left| \int_0^t |\tilde{h}(s)| \, ds \right| \geq \frac{1}{|\tilde{h}(t)|} \left| \int_0^\delta |\tilde{h}(s)| \, ds \right| \geq \frac{1}{|\tilde{h}(t)|} \frac{\delta}{2},
\]

or \(1/|\tilde{h}(t)| \leq 2E_h/\delta\). Thus \(1/\tilde{h}\) is bounded.

Now, pick \(x \in X\) arbitrarily. Then the observation above implies that \((1/\tilde{h})x \in \text{Cb}(\mathbb{R}, X)\). Noting that the range \(S(\{w \in \text{Cb}(\mathbb{R}, X): \|w\|_\infty \leq 1\})\) is a symmetric set of \(\text{Cb}(\mathbb{R}, X)\), we apply Lemma 1 to obtain

\[
\sup_{w \in \text{Cb}(\mathbb{R}, X)} \sup_{\|w\|_\infty \leq 1} \left\| \frac{1}{\tilde{h}(t)} \left(x + \int_0^t \tilde{h}(s)w(s) \, ds \right) \right\| = \sup_{w \in \text{Cb}(\mathbb{R}, X)} \sup_{\|w\|_\infty \leq 1} \left\| \frac{1}{\tilde{h}(t)} x + (Sw)(t) \right\|
\]

\[
= \sup_{\|w\|_\infty \leq 1} \left\| \frac{1}{\tilde{h}(t)} x + Sw \right\| \geq \sup_{\|w\|_\infty \leq 1} \|Sw\|_\infty = \|S\|.
\]

Since this holds for all \(x \in X\), we have

\[
\inf_{x \in X} \sup_{w \in \text{Cb}(\mathbb{R}, X)} \sup_{\|w\|_\infty \leq 1} \left\| \frac{1}{\tilde{h}(t)} \left(x + \int_0^t \tilde{h}(s)w(s) \, ds \right) \right\| \geq \|S\|.
\]

By Lemma 2 and (1), we obtain \(K_{Th} \geq E_h\), which is to be proved.

Finally we pose some questions. Let \(C(\mathbb{R}, \mathbb{C})\) be the linear space of all complex-valued functions on \(\mathbb{R}\), and write \(C_{\text{HUS}}(\mathbb{R}, \mathbb{C})\) for those \(h \in C(\mathbb{R}, \mathbb{C})\) such that \(T_h\) has the Hyers–Ulam stability. Then it is natural to ask what properties the set \(C_{\text{HUS}}(\mathbb{R}, \mathbb{C})\) possesses as a subset of \(C(\mathbb{R}, \mathbb{C})\). For example, is it closed under some algebraic operations or in some topology? It would be also interesting to investigate the properties of the mapping \(h \mapsto K_{Th}\) on \(C_{\text{HUS}}(\mathbb{R}, \mathbb{C})\).

Acknowledgment

The first and third authors are partially supported by the Grant-in-Aid for Scientific Research, Japan Society for the Promotion of Science.

References
