On the Perturbation of Unbounded Linear Operators with Topologically Complemented Ranges

R. W. Cross

University of Cape Town, Rondebosch 7700, Republic of South Africa

Communicated by the Editors

Received November 15, 1988

Let X and Y be normed spaces and let $T: D(T) \subseteq X \to Y$ be a linear transformation having a finite codimensional restriction with a continuous inverse (equivalently, let T' be a ϕ_--operator; for example, if T is bounded below). Suppose that $\mathcal{R}(T)$ (or $\mathcal{R}(T)$) is topologically complemented in Y. Conditions are obtained under which $\mathcal{R}(T + S)$ (resp. $\mathcal{R}(T + S)$) is topologically complemented whenever S belongs to the class of precompact operators, or to some wider class.

1. INTRODUCTION

Let $T: X \to Y$ be a linear transformation with domain $D(T)$, where X and Y are normed spaces. We denote the class of such operators T by $L(X, Y)$. It is known that if X and Y are Banach spaces and T a ϕ_--operator then for any bounded strictly singular operator S, the range of $T + S$ is complemented whenever the range of T is complemented ([12]; see also [2, Theorem 4.8(a)]). In the present note we investigate similar stability properties for the wider class of F_+-operators: The operator T is called an F_+-operator [4, 5]) if it has a finite codimensional restriction having a continuous inverse. The complementation problem for the range $\mathcal{R}(T)$ of T (and more generally for $\overline{\mathcal{R}(T)}$) is related in an obvious way to the existence of algebraic generalised inverses of T satisfying certain continuity requirements. Generalised inverses have applications in approximation theory, optimization theory, systems theory, operator algebras, and other branches of mathematics. The recent paper of Nashed [13] provides a useful list of references. Inner inverses are also treated in the recent book of Harte [9] in the case when T is bounded; then T will have a bounded inner inverse if and only if T is proper, and both $\overline{\mathcal{R}(T)}$ and the null space $\mathcal{N}(T)$ of T are topologically complemented [9, Theorem 3.8.2]. Stability of
complementation under perturbation by finite rank operators (bounded or unbounded) was investigated in [1].

2. PRELIMINARIES

The symbols X, Y, Z, \ldots will denote normed linear spaces and T will always denote an element of $L(X, Y)$. We denote the domain, range and null space of T by $D(T), R(T),$ and $N(T)$, respectively. We call T bounded if T is continuous and $D(T) = X$. If X is a linear subspace of Y then J_X^Y denotes the operator in $L(X, Y)$ that is the natural injection of X into Y. The adjoint T', of T is the conjugate of $TJ_{D(T)}^X$ in the sense of [8, II.2.2]. If X and Y are Banach spaces and T is a closed operator then T is called a $\phi_+ (\phi_-)$-operator if $\dim N(T) < \infty$ and $R(T)$ is closed (resp., $\operatorname{codim} R(T) < \infty$). The F_+-operators generalise the $\phi_+ $-operators in the following sense: If X and Y are complete and T is closed then $T \in F_+ \iff T' \in \phi_-.$

We have the theorem:

2.1. Theorem [4]. $T \in F_+ \iff T' \in \phi_-.$

The operator T is said to be strictly singular if there is no infinite dimensional subspace M of $D(T)$ for which the restriction T/M has a continuous inverse. This is a generalisation of Kato's definition [11]. A linear subspace E of X is called complemented if there exists a closed subspace G such that $E \cap G = 0$ and $E + G = X$. E is called topologically complemented if there exists a bounded projection on X with range E. If E is a subspace of X which is the range of a bounded operator defined on a Banach space and if X is complete then E is complemented if and only if E is topologically complemented, if and only if E is closed and complemented [2, Corollary 2.5].

Let Ω be a subset of $L(X, Y)$. We denote by $P(\Omega)$ the class of operators in $L(X, Y)$ such that if $T \in \Omega$ and $A \in P(\Omega)$ then $T + A \in \Omega$. $P(\Omega)$ is known as the perturbation class of Ω.

We note the following theorem:

2.2. Theorem [5]. $P(F_+) \text{ coincides with the class of strictly singular operators.}$

3. COMPLEMENTED RANGES

3.1. Lemma. Let $T \in F_+$ and let $R(T)$ be topologically complemented in Y. Let A be a continuous operator with $D(A) \supset D(T)$ and $R(A)$ contained in
a subspace topologically complementary to $\overline{R(T)}$. Then $\overline{R(T + A)}$ is topologically complemented in Y. Furthermore (i) if T has a continuous inverse then $R(T + A)$ is closed whenever $R(T)$ is closed, and (ii) if X is complete and T is closed then $R(T)$ and $R(T + A)$ are closed.

Proof. Consider first the case when T has a continuous inverse. We assume without loss of generality that $D(T) = X$. Let P be any bounded projection from Y onto $\overline{R(T)}$ with complementary projection Q, where $R(Q) \supseteq R(A)$. We shall verify that

$$R(T + A) \subseteq N(Q - AT^{-1}P) \subseteq \overline{R(T + A)}. \quad (*)$$

Let $x \in D(T)$. Then $(Q - AT^{-1}P)(T + A)x = Ax - Ax = 0$, so $R(T + A) \subseteq N(Q - AT^{-1}P)$. Now let $y \in N(Q - AT^{-1}P)$. Then $y = Py + Qy = Py + AT^{-1}Py$. Hence for $y' \in N(T' + A')$ we have $y'y = (Py + AT^{-1}Py)'y'$ (since $y' \in D(A')$ and $T^{-1}P$ is continuous) = $P'y'y - (T^{-1}P)'y'y$. But $(T^{-1}P)'y'y = (T^{-1}P)'y'(Py + Qy) = y'(T^{-1}P)Py + (T'y')(T^{-1}P)Qy = y'Py = P'y'y$. Consequently $y'y = 0$. But A is continuous and hence $(T + A)' = T' + A'$. Therefore $y \in N(T' + A') = \overline{R(T + A)}$ and $(*)$ is established. The bounded projection $P + AT^{-1}P$ has range $N(Q - AT^{-1}P)$. Hence $N(Q - AT^{-1}P) = \overline{R(T + A)}$ is topologically complemented.

We now consider the general case where $T \in F_+$. Again we assume without loss of generality that $D(T) = X$.

There exist closed subspaces (see [5, Theorem 2.2]) M and W with W finite dimensional such that $M \oplus W \oplus N(T) = X$ for which T/M has a continuous inverse. Since $\overline{R(T)} = \overline{R(T/M)} + R(T/W)$, where $R(T/W)$ is finite dimensional, it is clear that $\overline{R(T/M)}$ is topologically complemented and, furthermore, that $R(A)$ is contained in a closed subspace complementary to $\overline{R(T/M)}$. Hence by the first part, $\overline{R(T/M + A)} = \overline{R(T/M + A/M)}$ is topologically complemented. Since W and $N(T)$ are finite dimensional, it follows that $\overline{R(T + A)} = \overline{R(T/M + A/M) + R(T/W + N(T) + A/W + N(T))} = \overline{R(T/M + A/M) + R(T/W) + R(A/W + N(T))}$ is topologically complemented in Y.

(i) Suppose T has a continuous inverse and let $R(T)$ be closed. Let P, Q be as above, let $y \in \overline{R(T + A)}$ and let (x_n) be a sequence in $D(T)$ such that $(T + A)x_n \to y$. Then $PTx_n + PAx_n \to Py$, i.e., $Tx_n \to Py$ and $QTx_n + QAx_n \to Qy$, i.e., $Ax_n \to Qy$. Since $R(T)$ is closed, the continuity of T^{-1} now gives $x_n \to T^{-1}Py$ whence $Ax_n \to AT^{-1}Py = Qy$. Hence $y = Py + Qy = Py + AT^{-1}Py = (T + A)(T^{-1}Py)$. Therefore $R(T + A)$ is closed.

(ii) Suppose T is closed and X is complete. Then $T \in \phi_+$, [4], so $R(T)$ is closed. Let M and W be defined as before and let P and Q be com-
complementary continuous projections of $M \oplus W$ onto M and W, respectively (see, e.g., [6]). Then $T \overline{P}$ is a closed F_+-operator in $L(X, Y)$ and since X is complete and $T \overline{P} = T - TQ$ we have $R(T)$ closed $\Rightarrow R(T \overline{P})$ closed [4, Theorem 16]. Since $(T/M)^{-1}$ is continuous, $R(T/M + A/M)$ is closed by part (i). Since $R(T + A) = R(T/M + A/M) + R((T + A)/W + N(T))$, we have $R(T/M + A/M) \subset R(T + A) \subset R(T/M + A/M) + F$, where $\dim F < \infty$ and where the two subspaces on the left and right are closed. Therefore $R(T + A)$ is closed.

Lemma 3.1 and Corollary 3.2 below are generalisations of Holub [10, Proposition 2].

3.2. Corollary. Let X and Y be Banach spaces and let T be a (closed) ϕ_+-operator with complemented range. If $A \in L(X, Y)$ is a bounded operator with range contained in a subspace complementary to $R(T)$ then $R(T + A)$ is closed and complemented.

3.3. Proposition. T' is Fredholm if and only if $T \in F_+$ and $\text{codim } R(T) < \infty$.

Proof. Let $T \in F_+$ and $\text{codim } \overline{R(T)} < \infty$. By Theorem 2.1, $T' \in \phi_-$. Also $\dim N(T') = \dim \overline{R(T)} = \dim \{Y/\overline{R(T)}\} < \infty$. Hence T' is Fredholm. The converse follows from earlier remarks (see Section 1).

3.4. Theorem. Let $T \in F_+$ with $\text{codim } \overline{R(T)} < \infty$ and let S be a continuous operator with $D(S) \supset D(T)$ having a strictly singular adjoint. Then $\text{codim } \overline{R(T + S)} < \infty$. If in addition $T + S$ is closed and X is complete, then $R(T + S)$ is closed.

Proof. Without loss of generality assume that $D(T) = X$. We have $T' \in F_+$ by Proposition 3.3. Hence $T' + S' \in F_+$ by Theorem 2.2 and since S is continuous we have $(T + S)' = T' + S'$. Then $\text{codim } \overline{R(T + S)} = \dim Y/\overline{R(T + S)} = \dim \overline{R(T + S)} = \dim \overline{R(T + S)} = \dim N((T + S)') = \dim N(T' + S') < \infty$.

Now suppose that $T + S$ is closed and X is complete. Let A be the operator $T + S$ regarded as an element of $L(X, \overline{R(T + S)})$. Then A is closed and $\overline{R(A')} = \overline{R((T + S)')}$.

Moreover, A' is injective. Since $T' + S' \in \phi_+$ (see Section 2), $R(A')$ is closed. Consequently A' has a continuous inverse by the closed graph theorem. Hence A is surjective [8, II.4.11], or equivalently, $R(T + S)$ is closed.

Various special cases of Theorem 3.4 are known. Examples can be found in [11; 8, Chap. V].

3.5. Theorem. Let $T \in F_+$ with $\overline{R(T)}$ topologically complemented in Y.

580/92/2-11
Let S be a continuous strictly singular operator having a strictly singular adjoint, and let $D(S) \supset D(T)$. Then $R(T + S)$ is topologically complemented.

Proof. We shall assume without loss of generality that $D(S) = D(T)$. Let P be a bounded projection with domain Y and range $R(T)$. Since $(PS)' = S'P'$ is strictly singular, $R(T + PS)$ has finite codimension in $R(T)$ by Theorem 3.4. Therefore, $R(T + PS)$ is topologically complemented in Y. But $T + S = (T + PS) + (I - P)S$, where $(I - P)S$ is a continuous operator with range contained in $R(I - P)$ which is complementary to $R(T)$. Hence by Lemma 3.1, $R(T + S)$ is topologically complemented.

If Y is complete the continuity of S can be dropped. We have

3.6. **COROLLARY.** Let Y be complete, let $T \in F_+$ and let $R(T)$ be complemented. Let S be a strictly singular operator having a strictly singular adjoint and let $D(S) \supset D(T)$. Then $R(T + S)$ is complemented.

Proof: Again we assume $D(S) = D(T)$. Write $S = A + F$, where A is continuous and F has finite rank [3]. Then $T + F \in F_+$ by Theorem 2.2 and $R(T + F)$ is complemented (see [1, Proposition 20]). Since A and A' are both strictly singular the corollary follows from Theorem 3.5.

Suppose $D(S) = X$. Examples where both S and S' are strictly singular are:

(i) S closed and S' precompact.

(ii) S partially continuous [5] and S' both strictly singular and strictly cosingular (see [3]). For example, if S is a (bounded or unbounded) finite rank operator.

(iii) X and Y Banach spaces with Y subprojective, S bounded and S' strictly singular. Further examples of this type are found in [14].

(iv) S weakly compact and X and Y' both Dunford Pettis spaces.

(v) X a Dunford Pettis space, Y a reflexive space, and S any bounded operator (see, e.g., [8, III.3]).

(vi) S bounded and the pairs X, Y and X', Y' both totally incomparable. For example, if X is reflexive and Y has no infinite dimensional reflexive subspace or quotient.

3.7. **THEOREM.** Let T be a closed F_+-operator with topologically complemented range and let X be complete. Let S be a bounded strictly singular operator having a strictly singular adjoint. Then $R(T + S)$ is topologically complemented.

Proof. Since $R(T + S)$ is topologically complemented by Theorem 3.5,
it is sufficient to show that \(R(T + S) \) is closed. But \(T + S \in F_+ \) (Theorem 2.2) and \(T + S \) is closed since \(S \) is bounded. Therefore, \(R(T + S) \) is closed by Theorem 3.4.

REFERENCES