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Gluon shadowing in the Glauber–Gribov model at HERA
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Abstract

We calculate shadowing using new data on the gluon density of the pomeron recently measured with high precision at HERA. The calculations
are made in a Glauber–Gribov framework and pomeron tree-diagrams are summed up within a unitarity-conserving procedure. The total cross
section of γ ∗A interaction is then found in a parameter-free description, employing gluon diffractive and inclusive distribution functions as input.
A strong shadowing effect is obtained, in a good agreement with several other models. Impact parameter dependence of gluon shadowing is also
presented.
© 2007 Elsevier B.V.
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1. Introduction

Nuclear shadowing is a well-established phenomenon, which
attracts attention of both experimentalists and theoreticians. It
was found (see [1,2] and references therein) that the inclusive
nuclear structure function is smaller in nuclei than in a free nu-
cleon at small values of the Bjorken variable x � 0.01. The
nature of shadowing, emerging, e.g. in deep inelastic scatter-
ing (DIS), can be well understood in terms of multiparticle
scattering in the target rest frame. The incoming photon is rep-
resented as a superposition of gluons, quarks, anti-quarks and
their bound states. At high bombarding energies the photon
converts into qq̄-pair long before the target, and its hadronic
component interacts coherently with several nucleons of the
target nucleus. This process leads to absorption and, therefore,
to nucleon shadowing (for a review see e.g. [3]). Among the
important consequences of the phenomenon is, for instance, se-
vere reduction of particle multiplicity in heavy-ion collisions
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at LHC energies (
√

s = 5.5 TeV), since multiple scattering is
connected to diffraction [4–6]. The effect can be further decom-
posed onto the quark shadowing and the gluon shadowing; the
latter provides largest uncertainties in the theory and is a subject
of our present study.

In recent years a lot of interest has been generated about the
possibility of parton saturation in the nuclear wave function at
the smallest x accessible at HERA, and there is an ongoing dis-
cussion if the same effects can be observed for hadron–nucleus
and nucleus–nucleus collisions at RHIC. In this Letter, we will
focus mostly on the low-x effects mentioned above. Under-
standing the so-called cold nuclear effects in hadron–nucleus
collisions serves also as a baseline for the correct treatment of
possible final state effects in nucleus–nucleus collisions, e.g.
high-pT particle suppression and heavy-flavor production at
RHIC.

Our starting point is noticing that a significant change in the
underlying dynamics of a hadron–nucleus collision takes place
with growing energy of the incoming particles. At low energies,
the total cross section is well described within the probabilis-
tic Glauber model [7], which only takes into account elastic
rescatterings of the incident hadron on the various nucleons of
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the target nucleus. Elastic scattering is described by pomeron
exchange. At higher energies, E > Ecrit ∼ mNμRA (μ is a
characteristic hadronic scale, μ ∼ 1 GeV, and RA is the radius
of the nucleus) corresponding to a coherence length

(1)lC = 1

2mNx
,

the typical hadronic fluctuation length can become of the or-
der of, or even bigger than, the nuclear radius and there will be
coherent interaction of constituents of the hadron with several
nucleons of the nucleus. The sum of all diagrams was calculated
by Gribov [8,9], which corrected the Glauber series by taking
into account the diffractive intermediate states in the sum over
subsequent rescatterings. The space–time picture analogy to the
Glauber series is nevertheless lost, as the interactions with dif-
ferent nucleons of the nucleus occurs nearly simultaneous in
time. The phenomenon of coherent multiple scattering is re-
ferred to as shadowing corrections.

An additional effect which comes into play at high energies,
is the possibility of interactions between soft partons of the dif-
ferent nucleons in the nucleus. In the Glauber–Gribov model
this corresponds to interactions between pomerons. These di-
agrams are called enhanced diagrams [10], and can also be
understood as interactions between strings formed in the col-
lision. Actually, the necessity to include such diagrams at high
energies can be related to unitarization of the total cross sec-
tion. There is a connection between these effects and saturation
effects already mentioned earlier.

The Glauber–Gribov model is described and a unitarity-
conserving procedure for finding the total cross section of γ ∗-
nucleus (γ ∗A) interaction, which corresponds to summing up
pomeron fan-diagrams, is presented in Section 2. Further we
will concentrate on new and interesting data on gluon diffrac-
tive distribution function, which we will describe in Section 3.
The results for gluon shadowing are presented in Section 4, and
our conclusions are drawn in Section 5.

2. The model

We consider the nucleus as a set of nucleons, in the spirit of
the Glauber model. The elastic γ ∗A scattering amplitude can
then be written as the sum of diagrams shown in Fig. 1, i.e. as
multiple γ ∗-nucleon (γ ∗N ) scattering diagrams with pomeron
exchange [4,11]. The contribution from 1,2, . . . scatterings

(2)σγ ∗A = Aσγ ∗N + σ
(2)
γ ∗A + · · · ,

should be summed up to obtain the total cross section. In
Eq. (2), the first term simply equals to the Glauber elastic con-
tribution and subsequent terms describe multiple interactions of
the incoming probe with the nucleons in the target nucleus.

The multiparticle content of subsequent diagrams in Fig. 1 is
given by AGK cutting rules [12], where the intermediate states
are on-shell. The cut contribution of the double rescattering di-
agram can be expressed in terms of diffractive deep inelastic
scattering (DDIS). The usual variables for DDIS: Q2, x,M2

and t , or xP, are shown in Fig. 2. The variable β = Q2

2 2 =

Q +M
Fig. 1. The single and double scattering contribution to the total γ ∗N cross
section.

x/xP plays the same role for the pomeron as the Bjorken vari-
able, x, for the nucleon. We assume that the amplitude of the
process is purely imaginary; this is justified for a value of the
pomeron intercept close to unity [13]. The contribution from
the second term in Eq. (2) to the total γ ∗A cross section is given
by [4]

σ
(2)
γ ∗A = −4πA(A − 1)

∫
d2b T 2

A(b)

(3)×
M2

max∫

M2
min

dM2
[dσD

γ ∗N(Q2, xP, β)

dM2 dt

]
t=0

F 2
A(tmin),

where TA(b) = ∫ +∞
−∞ dzρA(b, z) is the nuclear normalized den-

sity profile,
∫

d2b TA(b) = 1. The form factor FA is given by

(4)FA(tmin) =
∫

d2b J0
(√−tminb

)
TA(b),

where tmin = −m2
Nx2

P
, and J0(x) denotes the Bessel function

of the first kind. Strictly speaking, Eq. (3) is valid for nuclear
densities which depend separately on b and z, however we have
checked that calculations with an exact expression lead to negli-
gible corrections. Note that since Eq. (3) is obtained under very
general assumption, i.e. analyticity and unitarity, it can be ap-
plied for arbitrary values of Q2 provided x is very small. We
have assumed R2

A � R2
N , so that the t -dependence of the γ ∗N

cross section has been neglected. For a deuteron, the double
rescattering contribution has the following form

(5)σ
(2)
γ ∗d = −2

tmin∫
−∞

dt

M2
max∫

M2
min

dM2
dσD

γ ∗N
dM2 dt

FD(t),

where FD(t) = exp(at), with a = 40 GeV−2 [4].
In Eqs. (3) and (5), M2

min corresponds to the minimal mass
of the diffractively produced hadronic system, M2

min = 4m2
π =

0.08 GeV2, and M2
max is chosen according to the condition:

xP � xmax
P

. The choice of xmax
P

is governed by the fact that the
model is only valid for xP � 1, i.e. a large rapidity gap is re-
quired in the experimental data. We use the standard choice for
xmax

P
= 0.1 [14]. It is convenient as it guarantees the disappear-

ance of nuclear shadowing at x ∼ 0.1 as in experimental data.
Coherence effects are taken into account through FA(tmin) in
Eq. (4), which is equal to 1 at x → 0 and decreases with increas-
ing x due to the loss of coherence for x > xcrit ∼ (mNRA)−1.
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In the numerical calculations, a 3-parameter Woods–Saxon nu-
clear density profile with parameters from [15] has been used.

Higher order rescatterings in Eq. (2) are model dependent.
We use the Schwimmer unitarization [16] for the total γ ∗A
cross section which is obtained from a summation of fan-
diagrams with triple-pomeron interactions. It was checked in
[4] that it gives results very close to other reasonable models,
such as the quasi-eikonal model. The total cross section is then

(6)σ Sch
γ ∗A = σγ ∗N

∫
d2b

ATA(b)

1 + (A − 1)f (x,Q2)TA(b)
,

where

(7)f
(
x,Q2) = 4π

σγ ∗N

M2
max∫

M2
min

dM2
[ dσD

γ ∗N
dM2 dt

]
t=0

F 2
A(tmin).

Eq. (6) does not take into account the shadowing effects of va-
lence quarks nor anti-shadowing effects, which may play an
important role for x � 0.1 [1].

Nuclear shadowing is studied in terms of the ratios of cross
sections per nucleon for different nuclei, defined as

(8)R(A/B) = B

A

σγ ∗A
σγ ∗B

,

as a function of x, which can in turn be expressed via structure
functions of the different nuclei. The simplest case is B = N ,
then

(9)RSch(A/N)(x) =
∫

d2b
TA(b)

1 + (A − 1)f (x,Q2)TA(b)
.

In this framework shadowing can also be calculated at a fixed
value of the impact parameter b for given values of {x,Q2}

(10)RSch(A/N)(b) = 1

1 + (A − 1)f (x,Q2)TA(b)
.

Thus the total γ ∗A cross section can be calculated within the
Glauber–Gribov model in a parameter-free way provided the
total γ ∗N cross section and the differential cross section for
diffractive production are known.

3. Diffractive parton densities from HERA

The cross sections of the inclusive and diffractive processes
are expressed through the nucleon structure functions, which
are in turn associated with distribution functions of partons in
the nucleon and in the pomeron. In DIS the structure function
of a nucleon, F2(x,Q2), is related to the total cross section of
γ ∗N interaction through

σγ ∗N = 4π2αem

Q2
F2

(
x,Q2),

valid at small x. Similar to the inclusive DIS case, a factoriza-
tion theorem has been proven in perturbative QCD to hold for
diffractive structure functions [17]. The relation between the
diffractive cross section and the diffractive structure function is
Fig. 2. DDIS kinematical variables in the infinite momentum frame.

given by

[dσD
γ ∗N(Q2, xP, β)

dM2 dt

]
t=0

= 4π2αemB

Q2(Q2 + M2)
xPF

(3)

2D
(
Q2, xP, β

)

where the usual factorization has been assumed:

dσD
γ ∗N(x,Q2,M2, t)

dM2 dt
=

[dσD
γ ∗N(x,Q2,M2)

dM2 dt

]
t=0

eBt .

A further assumption about the lower part of Fig. 2, the so-
called Regge factorization [18], allows us to write the diffrac-
tive structure function as

(11)F
(3)

2D
(
xP,Q2, β

) = fP(xP)F
(
β,Q2).

The first factor is referred to as the (t -integrated) pomeron flux
(we will not take into account the subleading contributions from
other reggeon trajectories), which is in turn defined as

fP(xP) = AP

tmin∫
tcut

eB0 t

x
2αP (t)−1
P

dt,

where AP is a constant that fixes the normalization of the flux,
and tcut = −1 GeV2. As usual, we assume a linear pomeron
trajectory, αP(t) = αP(0) + α′

P
t . The second factor in Eq. (11),

F(β,Q2), is the pomeron structure function. For the sake of
simplicity, Eq. (7) can now be reduced to

(12)f
(
x,Q2) = 4π

xmax
P∫

x

dxP B(xP)
F

(3)

2D(xP,Q2, β)

F2(x,Q2)
F 2

A(tmin),

where B(xP) = B0 + α′
P

ln 1
xP

. The ratio of structure functions
in the integrand can be understood as the density of partons
in the pomeron compared to the density of partons in the nu-
cleon.

The determination of the distribution of partons in the nu-
cleon and pomeron cannot be carried out in pQCD, since it



K. Tywoniuk et al. / Physics Letters B 657 (2007) 170–175 173
depends on soft processes such as confinement. The inclusive
distributions are measured in DIS experiments to high accuracy
and predictions of the DGLAP evolution are in good agree-
ment with experiment for a broad range of x and Q2 values.
Yet, the experimental status of the diffractive distribution func-
tions was, until recently, uncertain. The biggest uncertainty was
related to the gluon distribution, because it is not measured di-
rectly in the experiment. Some authors therefore assumed that
the shadowing from quarks and gluons are of equal strength
[19–21], while others predicted that the gluon shadowing dom-
inates [22–24].

The results of new high-precision measurements of the dif-
fractive parton distribution functions (DPDFs) presented by the
H1 Collaboration [25,26], shed new light on the role of gluon
shadowing at intermediate Q2. The quark singlet and gluon
DPDFs were fitted by a simple function

(13)βfD
i

(
β,Q2

0

) = Aiβ
−Bi (1 − β)Ci ,

(14)βgD
(
β,Q2

0

) = Agβ
−Bg (1 − β)Cg ,

where Ai , Bi and Ci are fitting parameters, at a given Q2
0 ∼

2 GeV2. In general, to ensure that the r.h.s. of Eq. (14) always
disappears as β → 1, it should be multiplied by exp(−0.01

1−x
).

QCD evolution to arbitrary Q2 was performed by the H1
group. For the quark singlet distribution, all three parameters
{Aq,Bq,Cq} were used in the fit, while the gluon density is
found to be insensitive to the Bg parameter, which is therefore
set to zero. This fit is referred to as the ‘FIT A’. Additionally, be-
cause of DGLAP evolution, data at β � 0.3 cannot constrain the
gluon density because of the large quark contribution to the Q2

evolution. This lack of sensitivity is confirmed by repeating the
fit with the parameter Cg set to zero, and is further referred to as
the ‘FIT B’. The values of the corresponding pomeron parame-
ters are listed in Table 1. The fitted quark singlet distributions
of ‘FIT A’ and ‘FIT B’ are consistent with each other.

Inclusion of diffractive di-jet production in the analysis pro-
vides a big improvement in the precision of the gluon density
measurement [27], which can be further constrained by the dif-
fractive production of charm in DIS [28]. A combined fit to
DDIS data and diffractive di-jets [27] results in a curve simi-
lar to fit B (described above) yet with a slightly smaller gluon
density at β > 0.5. For completeness, we also compare the new
results with the old H1 parameterization [29] presented in 2002
(corresponding pomeron parameters are given in Table 1).

The gluon distribution is almost a factor of 10 bigger than
the quark distribution at the same Q2 for a broad region
of β [25,26]. Shadowing from quarks was calculated in [11]
using the old H1 parameterizations, and we have checked
that the new H1 data are consistent with their calculations.
Furthermore, in the relevant kinematical range for hadron–
nucleus and nucleus–nucleus collisions at RHIC and LHC,
the gluon density dominates. In what follows, we will there-
fore consider structure functions of gluons in nuclei. The
first term in Eq. (2) is then proportional to AGN(x,Q2),
while the second rescattering term is correspondingly equal to
Table 1
Pomeron parameters from H1 Collaboration [25,26,29]

αP(0) [FIT A] 1.118
αP(0) [FIT B] 1.111
α′

P
0.06 GeV−2

B0 5.5 GeV−2

αP(0) [2002] 1.173
α′

P
[2002] 0.26 GeV−2

B0 [2002] 4.6 GeV−2

Fig. 3. Gluon shadowing for deuteron (dash-dotted curves) and for heavy ions:
Ca (dotted curves), Pd (dashed curves), Au (solid curves). Black curves are for
FIT A and grey curves are for FIT B.

−A(A − 1)GN(x,Q2)
∫

d2TA(b)2 f (x,Q2), where

(15)

f
(
x,Q2) = 4π

xmax
P∫

x

dxP B(xP)fP(xP)
βgD(β,Q2)

GN(x,Q2)
F 2

A(tmin).

Thus the gluon shadowing factor, Rg , is calculated according
to Eq. (9) with f (x,Q2) given by Eq. (15). The gluon distrib-
ution of the nucleon, GN(x,Q2) = xg(x,Q2), was taken from
CTEQ6M parameterization [30].

The model for diffractive production by virtual photon de-
scribed above is applicable for intermediate Q2 > 1–2 GeV2

[25,26]. It is also important to keep in mind that the parameteri-
zation of H1 data leads to a violation of unitarity for x → 0 and
should be modified at very low x (probably already at x ∼ 10−4

for low Q2) [31]. Therefore our predictions are reliable in the
region x > 10−4 which is relevant for RHIC and most experi-
ments at LHC, and should be taken with care for x < 10−4.

4. Numerical results

Gluon shadowing for deuteron and various heavy ions (Ca,
Pd and Au) at Q2 = 6.5 GeV2 is presented in Fig. 3. We have
made the calculations using two fits of the gluon diffractive dis-
tribution function, FIT A and FIT B. The gluon shadowing is
very strong at small x, and disappearing at x = xmax

P
. This is a

consequence of the coherence effect in the form factor Eq. (4),
and the vanishing integration domain in Eq. (12). Gluon shad-
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Fig. 4. Gluon shadowing for Pb for different virtualities, Q2.

owing is as low as 0.35 for the Au/nucleon ratio. In Fig. 4
shadowing in Pb is shown for different values of Q2. We have
also included the result using the 2002 H1 parameterization for
Q2 = 6.5 GeV2. Although the difference for the experimen-
tally measured gluon distribution function is quite substantial,
the shadowing contribution is stable, changing maximally 30%
for the lowest x.

There is little change to be observed in the gluon shadowing
ratio with increasing Q2. The QCD evolution of the main term
and rescattering terms are effectively treated separately in our
approach, and therefore the shadowing correction has a slow,
logarithmic dependence on Q2 [32]. The Q2 dependence of
shadowing was studied within a similar model in [4] and good
agreement with existing data was found.

A comparison of the results of our model with other pre-
dictions is presented in Fig. 5 for Pb at Q2 = 5 GeV2. For
x � 10−3 our model predicts stronger gluon shadowing com-
pared to FGS [24], while models based on global fits to existing
data on nuclear modifications and DGLAP evolution [33,34]
predict a modest gluon shadowing effect. The authors of [24]
have made calculations in a similar framework as the presented
model, using a quasi-eikonal summation of higher-order di-
agrams. In general, the quasi-eikonal model gives rise to a
stronger shadowing effect than models including enhanced di-
Fig. 5. Comparison of the results of the Glauber–Gribov model with FGS model
[24], EKS [33] and HKM [34] parameterizations.

Fig. 6. Impact parameter dependence of gluon shadowing in the Glauber–
Gribov model, compared to the predictions of FGS [24].

agrams, i.e. pomeron interactions, like the Schwimmer model,
at x < 10−3. This is not so clear from the figure as the authors
of [24] put xmax

P
= 0.03 and include anti-shadowing for gluons.

The quasi-eikonal model will, at asymptotical energies, lead to
the grey disc limit.

We have also calculated the impact parameter dependence
of Glauber–Gribov gluon shadowing given x = 10−3 and Q2 =
5 GeV2, and compared it (Fig. 6) to results from [24] in both
“high” and “low” gluon shadowing mode. Our model predict
shadowing in agreement with the strongest FGS prediction,
which is 20% lower than in the “low” gluon shadowing mode
for central impact parameters. The shape seems to be com-
patible between the two models. We have also checked that
agreement with the FGS model improves when updated H1 pa-
rameterizations are used [35].

5. Conclusions

Calculations of gluon shadowing in heavy-ions and deuteron
have been made within the Gribov–Glauber model, which is
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a parameter-free framework to calculate shadowing effects in
hadron–nucleus collisions at high energy. Diffractive struc-
ture functions have been parameterized using the latest NLO
QCD fits from HERA experiments. Rather substantial shad-
owing effects are predicted for heavy nuclei at x < 10−3,
which is slowly changing with increasing Q2. This will have
implications for both light and heavy particle production in
hadron–nucleus collisions at RHIC and LHC, where the rele-
vant {x,Q2} range is being probed.

Comparison to other models predicting strong shadowing
effects at x < 10−2 have been performed. Calculations of
Glauber–Gribov shadowing using Schwimmer summation of
fan diagrams differ from other approaches within the same
framework mainly due to differences in the treatment of higher
order rescatterings, which is important in the low-x region, and
due to differences in the QCD evolution in logQ2. The advan-
tages of our method is the clear treatment of these effects within
a well-established framework.

The nuclear PDFs can be measured in ultra-peripheral colli-
sions at both RHIC and LHC [36]. In the future, hopefully an
electron-ion collider (eRHIC) would provide clear information
about DIS on nuclei which would dramatically improve our un-
derstanding of high-energy nuclear effects such as shadowing.
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