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A new symmetric Hamiltonian constraint operator is proposed for loop quantum gravity, which is well 
defined in the Hilbert space of diffeomorphism invariant states up to non-planar vertices with valence 
higher than three. It inherits the advantage of the original regularization method to create new vertices 
to the spin networks. The quantum algebra of this Hamiltonian is anomaly-free on shell, and there is 
less ambiguity in its construction in comparison with the original method. The regularization procedure 
for this Hamiltonian constraint operator can also be applied to the symmetric model of loop quantum 
cosmology, which leads to a new quantum dynamics of the cosmological model.
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The singularity theorem of general relativity (GR) is a strong 
signal that the classical Einstein’s equations cannot be trusted 
when the spacetime curvature grows unboundedly. It is widely 
expected that a quantum theory of gravity would overcome the 
singularity problem of classical GR. A very lesson that one can 
learn from GR is that the spacetime geometry itself becomes dy-
namical. To carry out this crucial idea raised by Einstein 100 years 
ago, loop quantum gravity (LQG) is notable for its nonpertuibative 
and background-independent construction [1–4]. The kinematical 
Hilbert space of LQG consists of cylindrical functions over finite 
graphs embedded in the spatial manifold. The quantum geomet-
ric operators corresponding to area [5,6], volume [5,7,8], length 
[9–11], ADM energy [12] and quasi-local energy [13], etc. have 
discrete spectrums. The LQG quantization framework can also be 
generalized to high-dimensional GR [14] and scalar-tensor theories 
of gravity [15,16]. A crucial topic now in LQG is its quantum dy-
namics, which is being attacked from both the canonical LQG and 
the path integral approach of spin foam models. In the canoni-
cal approach a suitable regularization procedure was first proposed 
by Thiemann to obtain well-defined Hamiltonian constraint oper-
ators [17]. The Hamiltonian constraint operators obtained in this 
way will attach new arcs (edges) and hence create new trivalent 
co-planar vertices to the graph of the cylindrical function upon 
which they act [17,18]. The quantum dynamics determined by the 
Hamiltonian constraint operator is well tested in the symmetric 
models of loop quantum cosmology (LQC) [19]. The classical big 
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bang singularities are resolved by quantum bounces in the models 
[20–22]. However, there are ambiguities in the graph-dependent 
triangulation construction of this operator. There is no unique way 
to average over different choices of the triangulation. Moreover, in 
order to obtain the on shell anomaly-free quantum algebra of the 
Hamiltonian constraint operator [23], one has to employ degen-
erate triangulation at the co-planar vertices of spin networks in 
the regularization procedure of the Hamiltonian.1 This treatment 
implies that the regularization procedure has essentially neglected 
the Hamiltonian at the co-planar vertices before acting the regu-
lated operator on them. Otherwise, this kind of Hamiltonian con-
straint operator would generate an anomalous algebra in the full 
theory, unless one inputs certain unnatural requirement to the in-
teraction manner of the edges of the graph and the arcs added by 
the Hamiltonian operator [24]. The Hamiltonian constraint opera-
tors proposed recently in [25–27] do not generate new vertices on 
the graph of the cylindrical function and hence are anomaly-free 
on shell. However this kind of action cannot match the quantum 
dynamics of spin foam models where new vertices are unavoid-
able in their construction [28]. A regularization of the Hamiltonian 
constraint compatible with the spinfoam dynamics was consid-
ered in [29]. However, the resulted Hamiltonian operator acts non-
trivially on the vertices that it created and thus has still an anoma-
lous quantum algebra. It is therefore natural to ask the question 
whether one can construct some Hamiltonian constraint operator 
with the following properties: (i) it is well defined in a suitable 
Hilbert space, symmetric and anomaly-free; (ii) it generates new 
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vertices; (iii) its action on co-planar vertices is not neglected by 
some special regularization procedure, and there is no special re-
striction on the interaction manner of the edges of the graph and 
the arcs added by its action. We will show that the answer is af-
firmative. An alternative quantization of the Hamiltonian constraint 
in LQG possessing the above three properties will be proposed. The 
regularization procedure of the Hamiltonian operator can also be 
applied to LQC models.

The Hamiltonian formalism of GR is formulated on a 4-dimen-
sional manifold M = R × �, with � being a 3-dimensional spatial 
manifold. In connection dynamics, the canonical variables on �

are the SU(2)-connection Ai
a and the densitized triad Ẽb

j , with the 
only nontrivial Poisson bracket {Ai

a(x), Ẽb
j (y)} = κβδ3(x, y), where 

κ ≡ 8πG and β is the Barbero–Immirzi parameter. The Hamilto-
nian constraint reads

H(N) = 1

2κ

∫
�

d3x N
Ẽa

i Ẽb
j√

det (q)

(
εi jk F k

ab − 2(1 + β2)K i[a K j
b]

)

=: H E(N) − T (N), (1)

where F i
ab ≡ 2∂[a Ai

b] + ε i
jk A j

a Ak
b is the curvature of Ai

a , K i
a is the 

extrinsic curvature of �, and det (q) is the determinate of 3-metric 
qab ≡ ei

ae j
bδi j with ei

a being the co-triad. H E (N) and T (N) are called 
the Euclidean and Lorentzian terms of the Hamiltonian constraints 
respectively. Both H E (N) and T (N) depend on the canonical vari-
ables in non-polynomial ways. Besides the indication of spin foam 
models, it is argued in [30] that the momentum variables in H E (N)

also imply the creation of new vertices by its action. Thus we 
adopt the so-called semi-quantized regularization approach de-
veloped in [31] to derive a new Hamiltonian constraint operator, 
which creates new vertices as well. The Hamiltonian is not ne-
glected at the co-planar vertices of spin networks by the regular-
ization. But the result of its action on the co-planar vertices is zero. 
Hence it has an anomaly-free algebra on shell.

Let us first consider H E (N). By introducing a characteristic 
function χε(x, y) such that lim

ε→0
χε(x, y)/ε3 = δ3(x, y) and using 

the point-splitting scheme, it can be regularized as

H E(N) = 1

2κ
lim
ε→0

∫
�

d3x N(x)V −1/2
(x,ε) εi jk F i

ab(x)Ẽa
j(x)

×
∫
�

d3 y χε(x, y)Ẽb
k(y)V −1/2

(y,ε) , (2)

where V (x,ε) := ε3
√

det(q)(x). Since the volume operator has a 
large kernel, the naive inverse volume operator is not well defined. 
However, one can use the idea in [32] to circumvent this problem 
by defining a permissible inverse square root of volume operator 
as

̂
V −1/2

(y,ε) := lim
λ→0

(V̂ (y,ε) + λ�3
p)−1 V̂ 1/2

(y,ε), (3)

where V̂ (y,ε) is the standard volume operator in LQG (see [7]) cor-
responding to the volume of the cube with center y and radial ε . 
It is easy to see that qualitatively V̂ −1/2 has the same properties 
as V̂ . Thus we can promote the classical volume in (2) into its 
quantum version (3) and replace both densitized triads in (2) by 
corresponding operators Êb

k(y) = −iβ�2
pδ/δAk

b(y) where �2
p = h̄κ . 

Acting on a cylindrical function fγ , the result formally reads

(−iβ�2
p

)2

2κ
lim
ε→0

1∫
dt′

1∫
dt

⎧⎨
⎩

∑
e′ �=e

χε

(
e′(t′), e(t)

)
N(e′(t′))V −1/2

(e′(t′),ε)
0 0
×
[
εi jk F i

ab(e′(t′))ė′ a(t′)ėb(t)
]

X j
e′(t′)Xk

e (t)
̂

V −1/2
(e(t),ε)

+
∑

e

χε

(
e(t′), e(t)

)
N(e(t′))V −1/2

(e(t′),ε)

[
εi jk F i

ab(e(t′))ėa(t′)ėb(t)
]

×
[
θ(t, t′)Xkj

e (t, t′) + θ(t′, t)X jk
e (t′, t)

]
̂

V −1/2
(e(t),ε)

}
· fγ , (4)

where θ(t, t′) = 1 for t′ > t and zero otherwise,
Xk

e (t) := tr[(he(0,t)τkhe(t,1))
T ∂/∂he(0,1)], X jk

e (t′, t) :=
tr[(he(0,t′)τ jhe(t′,t)τkhe(t,1))

T ∂/∂he(0,1)], here τk := − i
2 σk with σk

being the Pauli matrices, and T denotes transpose. Partitioning 
of the domain [0, 1] as N segments by inputing N − 1 points, 
0 = t0, t1, · · · , tN−1, tN = 1, and setting �tn ≡ tn − tn−1 ≡ δ, the 
integral in (4) can be replaced by the Riemann’s sum in a limit. 
Then (4) reduces to

(−iβ�2
p

)2

2κ
lim
δ→0

lim
ε→0

δ2

⎧⎨
⎩

∑
e′ �=e

N∑
n,m=1

χε

(
e′(t′

m−1), e(tn−1)
)

× N(e′(t′
m−1))V −1/2(

e′(t′m−1),ε
)

×
[
εi jk F i

ab(e′(t′
m−1))ė′ a(t′

m−1)ėb(tn−1)
]

× X j
e′(t′

m−1)Xk
e (tn−1)

̂
V −1/2(

e(tn−1),ε
)

+
∑

e

N∑
n,m=1

χε (e(tm−1), e(tn−1)) N(e(tm−1))V −1/2(
e(tm−1),ε

)

×
[
εi jk F i

ab(e(tm−1))ėa(tm−1)ėb(tn−1)
]

×
[
θ(tn−1, tm−1)Xkj

e (tn−1, tm−1)

+ θ(tm−1, tn−1)X jk
e (tm−1, tn−1)

]
̂

V −1/2(
e(tn−1),ε

)
}

· fγ . (5)

Since the volume operator and hence ̂V −1/2
(y,ε) vanish at divalent ver-

tices, for sufficiently small ε , the only non-vanishing terms of the 
summation in (5) correspond to those of m = n = 1. Moreover, 
the terms corresponding to m = n = 1 in the second summation 
of (5), which involves only summation over e(= e′), vanish due to 
εi jk F i

ab(e(t0))ėa(t0)ėb(t0) = 0. For e �= e′ , we have

δ2 F i
ab(e′(0))ė′ a(0)ėb(0) ≈ 2

N�

sgn(e′, e)tr�
(
hαe′eτi

)
, (6)

where N� = − �(�+1)(2�+1)
3 with � a half-integer representing a spin 

representation of SU(2), αe′e is a loop formed by adding an arc be-
tween e′(δ) and e(δ), and sgn(e′, e) := sgn[εabė′ a(0)ėb(0)] is the 
orientation factor which can be promoted into its quantum op-

erator. From the property of V̂ , we know that ̂V 1/2
(v,ε) ≡ ̂

V 1/2
v is 

independent of ε . Thus we can take the trivial limit ε → 0 and 
obtain

Ĥ E
δ (N) · fγ :=

(
β�2

p

)2

κN�

∑
v∈V (γ )

Nv
̂
V −1/2

v

×
[ ∑

e∩e′=v

sgn(e′, e)εi jktr�
(
hαe′eτi

)
J j

e′ J k
e

]
̂
V −1/2

v · fγ

=:
∑

v∈V (γ )

Nv

∑
′

Ĥ E
v,e′e (7)
e∩e =v
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where Nv ≡ N(v) and J i
e ≡ −i X i

e is the self-adjoint right-invariant 
operator. The assignment of αe′e is diffeormorphism covariant in 
the sense that, for any ϕ ∈ Diff(�) there exists ϕ′ ∈ Diff(�) such 
that ϕ′(ϕ(γ )) = ϕ(γ ) and ϕ′ (αϕ(e′)ϕ(e)

) = ϕ(αe′e) [17]. Applying 
Ĥ E

v,e′e on the n-valent non-planar vertex v of T v
γ ,
j,
i , the inter-

twiner iv associated to v will be changed to i′v , while, as a mul-
tiplication operator, hαe′e will change the spins associated to the 
segments of e′ and e. Hence the action of Ĥ E

v,e′e is given by

, (8)

where j̃′ ∈ {| j′ − �|, · · · , j′ + �}, ̃j ∈ {| j − �|, · · · , j + �}, and H( j′, j̃′,
j, ̃j, · · ·) are coefficients with “· · ·” denoting spins associated to 
other edges incident at v .

The above regularization approach can be similarly used to 
quantize the Lorentzian term in the Hamiltonian (1). The Lorentzian 
term can be regularized as

T (N) = 2(1 + β2)

2κ
lim
ε→0

∫
�

d3x N(x)V −1/2
(x,ε) (K [ j

a K k]
b )(x)Ẽa

j(x)

×
∫
�

d3 y χε(x, y)Ẽb
k(y)V −1/2

(y,ε) . (9)

Following the regularization procedure of the Euclidean term, 
Eq. (6) is now replaced by

δ2 K [ j
a (e′(0))K k]

b (e′(0))ė′ a(0)ėb(0) ≈ sgn(e′, e)K j
e′ K k

e , (10)

where K j
e′ := − 1

κβN�

(
τ jhse′

{
h−1

se′ , K̄
})

, with se′ as the start-

ing segment of e′ with parameter length δ, and we have used 
the identity K j

a = 1
κβ

{A j
a, K̄ } = 1

κβN�
tr�(τ j{Aa, K̄ }), with K̄ :=∫

�
d3x K i

a Ẽa
i = 1

β2 {H E (1), V } [17]. Replacing the Poisson brackets 
by commutators times 1/(ih̄), we obtain the quantized Lorentzian 
term

T̂δ(N) · fγ = 2(1 + β2)
(
β�2

p

)2

2κ

∑
v∈V (γ )

Nv
̂
V −1/2

v

×
[ ∑

e∩e′=v

sgn(e′, e)K̂ j
e′ K̂ k

e J j
e′ J k

e

]
̂
V −1/2

v · fγ , (11)

where

K̂ i
e := − 1

i�2
pβN�

(
τihse

[
h−1

se
, ˆ̄K

])
,with ˆ̄K := 1

ih̄β2

[
Ĥ E

δ (1), V̂
]
.

(12)

Hence the total regulated Hamiltonian constraint operator is given 
by

Ĥδ(N) · fγ :=
∑

v∈V (γ )

Nv

(
Ĥ E

v − T̂ v

)
· fγ =:

∑
v∈V (γ )

Nv Ĥ v · fγ .

(13)

Notice that for a given γ , there are indeed finite terms contribu-
tion to the summation no matter how fine the partition is. Hence 
the operator (13) is well defined in Hkin. Since the volume oper-

ator and hence ̂V −1/2 vanish at internal gauge invariant trivalent 
(y,ε)
vertices as well, Ĥδ(N) acts nontrivially only on non-planar ver-
tices with valence higher than three. Note that we can also employ 
a fourfold point-splitting scheme as in [31] to regulate the Hamil-
tonian constraint. In this case 1/

√
det(q) in (1) can be absorbed 

into Poisson brackets, and the final operator takes the same form 

as (7) and (11), except that ̂V −1/2
v is replaced by

̂
V −1/2

alt,v :=
∣∣∣∣∣∣−

4 × 8

3!E(v)

∑
sI ∩s J ∩sK =v

ε I J K tr
(

( 1
2 )ê I

( 1
2 )ê J

( 1
2 )êK

)∣∣∣∣∣∣ , (14)

where ( 1
2 )ê I := − 2

iβ�2
p

hsI [h−1
sI

, V̂ 1/2
v ]. It can be shown that qualita-

tively ̂V −1/2
alt,v has the same key properties as

̂
V −1/2

v [33].

Let � := Cyl∞(A/G) be the set of smooth cylindrical function 
and �′

Diff be the space of diffeomorphism-invariant distributions 
on �. Then the number ψ(Ĥδ(N) · f ) for any f ∈ � and ψ ∈ �′

Diff
depends only on the diffeomorphism class of the loop assignments. 
Hence the limit δ → 0 can be taken in the Rovelli–Smolin topology 
as [24,34](
(Ĥ(N))′ · ψ

)
( fγ ) := lim

δ→0

(
(Ĥδ(N))′ · ψ

)
( fγ )

:= lim
δ→0

ψ(Ĥδ(N) · fγ ). (15)

However, (Ĥ(N))′ is not well defined in �′
Diff , since it does not 

keep �′
Diff invariant. Taking account of the fact that the assign-

ment of loops by Ĥδ(N) is diffeomorphism covariant and it acts 
nontrivially only on non-planar vertices with valence higher than 
three, we consider almost diffeomorphism invariant states which 
are obtained from the spin network states by averaging over their 
images under diffeomorphisms but leaving fixed sets of non-planar 
vertices with valence higher than 3 in the spatial manifold invari-
ant, parallel to the proposal in [25]. Given a graph γ , we denote 
its non-planar vertices with valence higher than 3 by V np4(γ ), the 
group of all diffeomorphisms preserving V np4(γ ) by Diff(�)V np4(γ ) , 
and the diffeomorphism acting trivially on γ by TDiff(�)γ . For any 
fγ ∈ �, we define a map η : � → �′ by

η( fγ ) := 1

Nγ

∑
ϕ∈Diff(�)Vnp4(γ )/TDiff(�)γ

Ûϕ · fγ , (16)

where Ûϕ is the unitary representation of ϕ , and Nγ is a nor-
malization factor. We can equip the space �np4 := η(�) with a 
natural inner product as 〈η( f )|η(g)〉 := η( f )(g), ∀ f , g ∈ �. The 
new Hilbert space Hnp4 is defined as the completion of �np4. Note 
that �np4 is also in the dual space of the space of diffeomorphism 
invariant states up to all vertices of spin networks which was fully 
discussed in [25]. Whether (Ĥ(N))′ can be well defined in Hnp4

is a delicate issue. In particular, if the action of Ĥδ(N) on a non-
planar vertex with higher valence could deduce the valence so that 
it becomes less than 4 or the vertex becomes co-planar, (Ĥ(N))′
would be ill-defined on the resulted almost diffeomorphism in-
variant states.2 Fortunately, we can use the freedom of choosing 
the spin representations � attached to each new added loop in (6)
to ensure that the valence of any vertex would not be changed by 
the action of Ĥδ(N). Then it is straightforward to see that (Ĥ(N))′
is well defined in Hnp4. By the dual action, (Ĥ(N))′ will annihi-
late the arcs like the one connecting v2 and v3 in (8). Since Ĥδ(N)

vanishes at co-planar vertices, it is obvious that

2 Thanks to the comment from Jerzy Lewandowski.
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(
[(Ĥ(M))′, (Ĥ(N))′] · φ

)
( fγ )

= φ
((

Ĥδ′(N)Ĥδ(M) − Ĥδ′(M)Ĥδ(N)
)

· fγ
)

= 0, ∀ fγ ∈ �,φ ∈ �np4. (17)

Hence for any ψ ∈ �′
Diff, which is also a distribution on �np4, we 

have((
[(Ĥ(M))′, (Ĥ(N))′]

)′ · ψ
)

(φ) = ψ
(
[(Ĥ(M))′, (Ĥ(M))′)] · φ

)
= 0, ∀φ ∈ �np4. (18)

Therefore the quantum algebra of the Hamiltonian constraint op-
erators (Ĥ(N))′ is anomaly-free on shell. A symmetric Hamiltonian 
constraint operator corresponding to (Ĥ(N))′ can be defined in 
Hnp4 as

(Ĥsym(N))′ := 1

2

(
(Ĥ(N))′ + ((Ĥ(N))′)†

)
, (19)

where ((Ĥ(N))′)† denotes the adjoint of (Ĥ(N))′ . The action of 
((Ĥ(N))′)† on an almost diffeomorphism invariant state will cre-
ate co-planar vertices and arcs like in (8). Thus it is easy to see 
that the quantum algebra of (Ĥsym(N))′ is also anomaly-free.

Now we test the above regularization technique of the anomaly-
free Hamiltonian constraint operators in the symmetry-reduced 
model of LQC. For simplification, we consider only the spatially 
flat and isotropic model. The construction can be generalized to 
the other cosmological models directly. Introducing an elemen-
tary cell V adapted to the fiducial triad, the connections Ai

a and 
the densitized triads Ea

i can be expressed as Ai
a = cV −1/3

o
oei

a and 
Ea

i = pV −2/3
o

√
oq oea

i , where (oei
a, oea

i ) is a set of orthonormal co-
triads and triads compatible with the fiducial metric oqab [19]. The 
basic (nonvanishing) Poisson bracket is given by {c, p} = κβ

3 . To 
pass to the quantum theory, one constructs a kinematical Hilbert 
space Hgrav

kin = L2(RBohr, dμBohr), where RBohr is the Bohr com-
pactification of the real line and dμBohr is the Haar measure 
on it [19]. The holonomy of Ai

a along an edge, parallel to the 
triad vector oea

i , of length μ̄V 1/3
o with respect to oqab is given by 

hμ̄
i = cos μ̄c

2 I + 2 sin μ̄c
2 τi , where I is the identity 2 × 2 matrix. Be-

cause of homogeneity, the Hamiltonian constraint can be written 
as [19,20]

H = − 1

β2
H E(1) = − 1

2κβ2

∫
V

d3x
εi jk F i

ab Ẽa
j Ẽb

k√
det(q)

. (20)

Since 
√

det(q) = V
(

V −1
o

√
det(oq)

)
where V := |p|3/2 is the physi-

cal volume of V , we can write H as

H = − 1

2κβ2

∫
V

d3x
Vo√

det(oq)
V −1/2εi jk F i

ab Ẽa
j Ẽb

k V −1/2. (21)

Note that Ẽa
j can be directly quantized as

ˆ̃Ea

j = V −2/3
o

√
det(oq) oea

j p̂

:= V −2/3
o

√
det(oq) oea

j ×
(

−ih̄
κβ

3

)
d

dc
. (22)

After the action of ˆ̃Ea

j and ˆ̃Eb

k , we can integrate F i
ab over the plane 

spanned by oea
j and oeb

k to yield a holonomy along a loop. Promot-
ing functions into corresponding operators, the regulated operator 
corresponding to (20) reads

Ĥμ̄ = − 1
2

V̂ −1/2 1
2
εi jktr�

(
ĥ
α

μ̄ τi

)
p̂ p̂ V̂ −1/2 , (23)
2κβ N� μ̄ jk
where αμ̄
jk is a loop along a square in the j–k plane spanned by 

a face of V , each of whose sides has length μ̄V 1/3
o with respect 

to oqab , and h
α

μ̄
jk

= hμ̄
j hμ̄

k

(
hμ̄

j

)−1 (
hμ̄

k

)−1
. Since the area operator 

in LQG has a minimum nonzero eigenvalue � ≡ 2
√

3πβ�2
p which 

introduces a nature cut off to the size of the loop αμ̄
jk , we obtain

Ĥ = − 3

κβ2
V̂ −1/2 1

μ̄2
sin2(μ̄c)p̂ p̂ V̂ −1/2, μ̄2|p| = �. (24)

This Hamiltonian constraint operator is obviously simpler than 
those appeared in LQC models (e.g. the APS Hamiltonian opera-
tor [20]). Note that the volume operator V̂ acts on its eigenstates 
as

V̂ |v〉 =
(

8πβ

6

)3/2 |v|
K

�3
p|v〉, with K ≡ 2

√
2

3
√

3
√

3
, (25)

where v := sgn(p)|p|3/2/ 
(

2πβ�2
p

√
�

)
, and the states |v〉 consist 

of an orthonormal basis of Hgrav
kin . The symmetric Hamiltonian con-

straint operator can be defined by

Ĥsym := 1

2
(Ĥ + Ĥ†). (26)

Then we can write down the action of Ĥsym on |v〉 as

Ĥsym|v〉 =
{

f+4(v)|v + 4〉 − 2 f0(v)|v〉 + f−4|v − 4〉, v �= 0,

0, v = 0,

(27)

where

f M(v) := 27

32κβ3/2

√
8π

6
K�p

×
(
|v|5/6|v + M|1/6 + |v|1/6|v + M|5/6

)
. (28)

It is straightforward to check that the Hamiltonian operator (26)
has correct classical limit and the classical big bang singularity can 
also be avoided by a quantum bounce of this dynamics.

To summarize, the Hamiltonian constraint of GR is successfully 
quantized in LQG by adopting the semi-quantized regularization 
approach. The resulted operator is symmetric and well defined in 
the Hilbert space Hnp4 of diffeomorphism invariant states up to 
non-planar vertices with valences higher than 3. The action of this 
Hamiltonian constraint operator creates new trivalent co-planar 
vertices to the spin networks but does not change the valence 
of the acted vertices, and hence it can be symmetric and match 
the quantum dynamics of spin foam models. Meanwhile, since 
our regularization procedure does not involve any triangulation of 
the spatial manifold, the ambiguities of choosing certain triangula-
tion are avoided in the new construction. The Hamiltonian is not 
neglected at the co-planar vertices of spin networks by the reg-
ularization. But the result of its action on the co-planar vertices 
is zero. Hence the quantum algebra of the new Hamiltonian con-
straint operator is anomaly-free on shell. It is thus possible to find 
solutions of the quantum Hamiltonian constraint in Hnp4. The reg-
ularization procedure for the Hamiltonian operator in full theory 
is also applied to the isotropic model of LQC. The resulted Hamil-
tonian constraint operator is simpler than those appeared in LQC 
models. Meanwhile, it inherits the qualitative properties of the pre-
vious Hamiltonian operators in LQC, so that it has correct classical 
limit and the classical big bang singularity can also be avoided by 
a quantum bounce.

The authors would like to thank Jerzy Lewandowski, Chopin 
Soo, Thomas Thiemann and Hoi-Lai Yu for useful discussions. J.Y.



J. Yang, Y. Ma / Physics Letters B 751 (2015) 343–347 347
is supported in part by NSFC No. 11347006, and by the Institute of 
Physics, Academia Sinica, Taiwan. Y.M. is supported in part by the 
NSFC (Grant Nos. 11235003 and 11475023) and the Research Fund 
for the Doctoral Program of Higher Education of China.

References

[1] T. Thiemann, Modern Canonical Quantum General Relativity, Cambridge Uni-
versity Press, Cambridge, 2007.

[2] C. Rovelli, Quantum Gravity, Cambridge University Press, Cambridge, 2004.
[3] A. Ashtekar, J. Lewandowski, Class. Quantum Gravity 21 (2004) R53.
[4] M. Han, Y. Ma, W. Huang, Int. J. Mod. Phys. D 16 (2007) 1397.
[5] C. Rovelli, L. Smolin, Nucl. Phys. B 442 (1995) 593.
[6] A. Ashtekar, J. Lewandowski, Class. Quantum Gravity 14 (1997) A55.
[7] A. Ashtekar, J. Lewandowski, Adv. Theor. Math. Phys. 1 (1998) 388.
[8] T. Thiemann, J. Math. Phys. 39 (1998) 3347.
[9] T. Thiemann, J. Math. Phys. 39 (1998) 3372.

[10] E. Bianchi, Nucl. Phys. B 807 (2009) 591.
[11] Y. Ma, C. Soo, J. Yang, Phys. Rev. D 81 (2010) 124026.
[12] T. Thiemann, Class. Quantum Gravity 15 (1998) 1463.
[13] J. Yang, Y. Ma, Phys. Rev. D 80 (2009) 084027.
[14] N. Bodendorfer, T. Thiemann, A. Thurn, Class. Quantum Gravity 30 (2013) 

045003.
[15] X. Zhang, Y. Ma, Phys. Rev. Lett. 106 (2011) 171301.
[16] X. Zhang, Y. Ma, Phys. Rev. D 84 (2011) 104045.
[17] T. Thiemann, Class. Quantum Gravity 15 (1998) 839.
[18] M. Gaul, C. Rovelli, Class. Quantum Gravity 18 (2001) 1593.
[19] A. Ashtekar, M. Bojowald, J. Lewandowski, Adv. Theor. Math. Phys. 7 (2003) 233.
[20] A. Ashtekar, T. Pawlowski, P. Singh, Phys. Rev. D 74 (2006) 084003.
[21] Y. Ding, Y. Ma, J. Yang, Phys. Rev. Lett. 102 (2009) 051301.
[22] J. Yang, Y. Ding, Y. Ma, Phys. Lett. B 682 (2009) 1.
[23] R. Gambini, J. Lewandowski, D. Marolf, J. Pullin, Int. J. Mod. Phys. D 7 (1998) 

97.
[24] T. Thiemann, Class. Quantum Gravity 15 (1998) 875.
[25] J. Lewandowski, H. Sahlmann, Phys. Rev. D 91 (2015) 044022.
[26] E. Alesci, M. Assanioussi, J. Lewandowski, I. Mäkinen, Hamiltonian operator for 

loop quantum gravity coupled to a scalar field, arXiv:1504.02068.
[27] M. Assanioussi, J. Lewandowski, I. Mäkinen, New scalar constraint operator for 

loop quantum gravity, arXiv:1506.00299.
[28] A. Perez, Living Rev. Relativ. 16 (2013) 3.
[29] E. Alesci, C. Rovelli, Phys. Rev. D 82 (2010) 044007.
[30] T. Thiemann, Lect. Notes Phys. 721 (2007) 185.
[31] T. Thiemann, Class. Quantum Gravity 15 (1998) 1281.
[32] A.N. Tikhonov, Dokl. Akad. Nauk SSSR 39 (1943) 195.
[33] J. Yang, Y. Ma, Alternative volume operator and consistency check on the vol-

ume operators, to appear.
[34] C. Rovelli, L. Smolin, Phys. Rev. Lett. 72 (1994) 446.

http://refhub.elsevier.com/S0370-2693(15)00821-7/bib546869656D616E6E3A32303037626Bs1
http://refhub.elsevier.com/S0370-2693(15)00821-7/bib546869656D616E6E3A32303037626Bs1
http://refhub.elsevier.com/S0370-2693(15)00821-7/bib526F76656C6C693A323030347476s1
http://refhub.elsevier.com/S0370-2693(15)00821-7/bib41736874656B61723A323030346568s1
http://refhub.elsevier.com/S0370-2693(15)00821-7/bib48616E3A323030356B6Ds1
http://refhub.elsevier.com/S0370-2693(15)00821-7/bib526F76656C6C693A313939346765s1
http://refhub.elsevier.com/S0370-2693(15)00821-7/bib41736874656B61723A313939366567s1
http://refhub.elsevier.com/S0370-2693(15)00821-7/bib41736874656B61723A313939376662s1
http://refhub.elsevier.com/S0370-2693(15)00821-7/bib546869656D616E6E3A313939366175s1
http://refhub.elsevier.com/S0370-2693(15)00821-7/bib546869656D616E6E3A313939366174s1
http://refhub.elsevier.com/S0370-2693(15)00821-7/bib4269616E6368693A323030386573s1
http://refhub.elsevier.com/S0370-2693(15)00821-7/bib4D613A323031306679s1
http://refhub.elsevier.com/S0370-2693(15)00821-7/bib546869656D616E6E3A313939377273s1
http://refhub.elsevier.com/S0370-2693(15)00821-7/bib59616E673A323030387468s1
http://refhub.elsevier.com/S0370-2693(15)00821-7/bib426F64656E646F726665723A323031316E78s1
http://refhub.elsevier.com/S0370-2693(15)00821-7/bib426F64656E646F726665723A323031316E78s1
http://refhub.elsevier.com/S0370-2693(15)00821-7/bib5A68616E673A323031317669s1
http://refhub.elsevier.com/S0370-2693(15)00821-7/bib5A68616E673A323031317667s1
http://refhub.elsevier.com/S0370-2693(15)00821-7/bib546869656D616E6E3A313939366177s1
http://refhub.elsevier.com/S0370-2693(15)00821-7/bib4761756C3A323030306261s1
http://refhub.elsevier.com/S0370-2693(15)00821-7/bib41736874656B61723A323030336864s1
http://refhub.elsevier.com/S0370-2693(15)00821-7/bib41736874656B61723A32303036776Es1
http://refhub.elsevier.com/S0370-2693(15)00821-7/bib44696E673A323030387471s1
http://refhub.elsevier.com/S0370-2693(15)00821-7/bib59616E673A323030396670s1
http://refhub.elsevier.com/S0370-2693(15)00821-7/bib47616D62696E693A313939376263s1
http://refhub.elsevier.com/S0370-2693(15)00821-7/bib47616D62696E693A313939376263s1
http://refhub.elsevier.com/S0370-2693(15)00821-7/bib546869656D616E6E3A313939366176s1
http://refhub.elsevier.com/S0370-2693(15)00821-7/bib4C6577616E646F77736B693A32303134687A61s1
http://refhub.elsevier.com/S0370-2693(15)00821-7/bib416C657363693A32303135776C61s1
http://refhub.elsevier.com/S0370-2693(15)00821-7/bib416C657363693A32303135776C61s1
http://refhub.elsevier.com/S0370-2693(15)00821-7/bib417373616E696F757373693A32303135676B61s1
http://refhub.elsevier.com/S0370-2693(15)00821-7/bib417373616E696F757373693A32303135676B61s1
http://refhub.elsevier.com/S0370-2693(15)00821-7/bib506572657A3A323031327776s1
http://refhub.elsevier.com/S0370-2693(15)00821-7/bib416C657363693A323031306762s1
http://refhub.elsevier.com/S0370-2693(15)00821-7/bib546869656D616E6E3A323030366366s1
http://refhub.elsevier.com/S0370-2693(15)00821-7/bib546869656D616E6E3A313939377274s1
http://refhub.elsevier.com/S0370-2693(15)00821-7/bib54696B686F6E6F763A31393433s1
http://refhub.elsevier.com/S0370-2693(15)00821-7/bib526F76656C6C693A31393933626Ds1

	New Hamiltonian constraint operator for loop quantum gravity
	References


