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SUMMARY

Defining the molecular targets of insecticides is
crucial for assessing their selectivity and potential
impact on environment and health. Two commercial
insecticides are now shown to target a transient re-
ceptor potential (TRP) ion channel complex that is
unique to insect stretch receptor cells. Pymetrozine
and pyrifluquinazon disturbed Drosophila coordina-
tion and hearing by acting on chordotonal stretch
receptor neurons. This action required the two
TRPs Nanchung (Nan) and Inactive (Iav), which co-
occur exclusively within these cells. Nan and Iav
together sufficed to confer cellular insecticide
responses in vivo and in vitro, and the two insecti-
cides were identified as specific agonists of Nan-
Iav complexes that, by promoting cellular calcium
influx, silence the stretch receptor cells. This estab-
lishes TRPs as insecticide targets and defines spe-
cific agonists of insect TRPs. It also shows that
TRPs can render insecticides cell-type selective
and puts forward TRP targets to reduce side effects
on non-target species.

INTRODUCTION

Most highly effective insecticides act on targets specific to insect

nerves and muscles (Bloomquist, 1996; Casida, 2009; Casida

and Durkin, 2013; Lümmen, 2013). Despite decades of intensive

research to discover new insecticides and insecticide targets,

commercial neuroactive insecticides all seem to converge on

only seven molecular targets, the last of which was uncovered

30 years ago (Duce and Scott, 1985). Because neuroactive in-

secticides often act on ion channels, it was speculated that

some insecticides might target transient receptor potential

(TRP) family members (Lümmen, 2013). TRPs form homo- and

heteromeric cation channels in diverse cell types (Venkatacha-

lam and Montell, 2007), but experimental evidence demon-

strating that insecticides affect insects by acting on TRPs

has not been reported so far (Casida and Durkin, 2013;

Lümmen, 2013).
Pymetrozine (PM) and pyrifluquinazon (PFQ) (see Figure S1A)

are two commercial synthetic insecticides with unknown molec-

ular targets (Maienfisch, 2012; Casida andDurkin, 2013). PMand

PFQ have received considerable attention because they report-

edly disrupt coordination and feeding of plant-sucking insects

such as aphids and whiteflies and are effective against insects

that have developed resistance to other insecticides, while hav-

ing low acute toxicity to bees (Maienfisch, 2012). Studies on

locusts have shown that PM specifically affects chordotonal

neurons (CHNs) (Ausborn et al., 2005)—serially arranged stretch

receptors that control body movements in insects and crusta-

ceans (Field and Matheson, 1998; Kavlie and Albert, 2013) and

allow Drosophila to also sense gravity and to hear (Kamikouchi

et al., 2009; Yorozu et al., 2009; Sun et al., 2009). By analyzing

insecticidal effects of PM and PFQ on Drosophila behavior and

cell function, we have now identified TRP channels as their target

proteins.
RESULTS

To test for insecticide effects, we kept wild-type flies for 2 hr on

1% sugar water containing 0.5% DMSO and PM or PFQ at con-

centrations of 200 mM. PM or PFQ rendered the flies uncoordi-

nated and inactive, making them stay sedentary at the bottom

of their vial. We quantified this behavior with a simple climbing

assay (Sun et al., 2009), in which the percentage of flies is scored

that climb up in darkness into the upper half of a vertical vial (Fig-

ure 1A). Control flies kept on sugar water alone or on sugar water

plus DMSO displayed normal anti-gravitaxis behavior: within

30 s after being tapped down to the bottom, ca. 70% of the flies

climbed up, against the Earth’s gravitational field (Figure 1B, left

and right panels). This anti-gravitaxis was abolished by PM or

PFQ, resulting in climbing scores of consistently less than 1%

(Figure 1B, left and right panels, and Movie S1). Gravitaxis de-

fects reportedly also characterize Drosophila nanchung36a

(nan36a) and inactive1 (iav1) null mutants, whose CHNs are func-

tionally impaired (Kim et al., 2003; Gong et al., 2004). Consistent

with previous observations (Sun et al., 2009), we found that some

residual gravitaxis persists in these mutants (Figure 1B, middle

and right panels), presumably because gravity sensing is partly

taken over by other mechanosensory cells when CHNs are

impaired permanently (Kamikouchi et al., 2009). Neither PM

nor PFQ affected this residual gravitaxis (Figure 1B, middle
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Figure 1. Insecticides Affect Drosophila Behavior through CHNs

(A) Climbing assay, in which the percentage of flies that climb in darkness into the upper half of their vial is scored. (B) Left: climbing scores of wild-type flies fed

with and without PM or PFQ, determined at 2 s intervals, after the animals had been tapped down (N = 10 flies per vial, n = 10 repetitions each). Lines: means;

colored areas: ±1 SD. Middle and right: corresponding climbing scores for nan36a and iav1 mutants with and without PM or PFQ. (C) Left: measuring sound-

induced antennal displacements and compound action potentials (CAPs) of antennal CHNs (green). Middle: CAP amplitudes (top) and correspondingmechanical

susceptibility of the antenna (bottom) as functions of the sound particle velocity (example data from one animal each). In the control, CAP amplitudes reach 35 mV

(top), and motile CHN responses amplify the antenna’s mechanical susceptibility to faint sounds with a gain of ca. 10 (arrow). Right: maximum CAP amplitudes

(top) and amplification gains (bottom) in wild-type, nan36a, and iav1 mutants and nan rescue flies with and without PM or PFQ (means ± 1 SD, N = 6 flies each).

***p < 0.005, Mann-Whitney U tests with Benjamini-Hochberg correction). (D) Time course of the silencing of the tone-evoked CAPs of antennal CHNs

(means ± SD data from 3 wild-type flies each) during bath application of PM and PFQ. 100% corresponds to the mean amplitude before treatment.
and right panels, see also Movie S1 and Figure S1B), document-

ing that nan36 and iav1mutants show behavioral resistance to the

two insecticides.

Gravity sensing and hearing in Drosophila are mediated by

some 500 CHNs in the second segment of the fly’s antenna (Ka-

mikouchi et al., 2009; Sun et al., 2009). To test whether PM and
666 Neuron 86, 665–671, May 6, 2015 ª2015 Elsevier Inc.
PFQ affect CHNs, we exposed the flies to pure tones and moni-

tored the resulting antennal displacements and associated com-

pound action potentials (CAPs) of the antennal CHNs (Figure 1C).

In wild-type flies treated with sugar water alone or sugar water

plus DMSO, sound particle velocities exceeding 0.1 mm/s

evoked robust CAP responses (Figure 1C, top). Sound-induced



antennal displacements exhibited the characteristic nonlinear in-

tensity scaling that, arising frommotile responses of CHNs (Göp-

fert et al., 2006; Nadrowski et al., 2008), mechanically amplified

small antennal displacements with a gain of ten (Figure 1C, bot-

tom). PM and PFQ abolished both these electrical and motile

CHN responses, reducing the mechanical amplification gain to

one (Figures 1C and 1D). Electrical CHN responses are report-

edly also lost in nan36a and iav1 mutants (Kim et al., 2003;

Gong et al., 2004), yet their CHNs are still motile (Göpfert et al.,

2006), providing mechanical hyper-amplification with gains of

around 50 (Figure 1C, right). Unlike in wild-type flies, mechanical

amplification in nan36a and iav1 mutants was resistant to PM and

PFQ (Figure 1C, see also Figure S1B). This resistance broke

when we expressed a UAS-nan rescue construct containing an

upstream activating sequence (UAS) in the nan36a mutant back-

ground via the nan promoter fusion construct F-GAL4 (= nan-

GAL4) (Liu et al., 2007) (Figure 1C), which also rescued Iav local-

ization in the CHNs (Figure S2A).

nan and iav both encode TRP vanilloid (TRPV) subfamily mem-

bers that seem conserved across insect species (Matsuura et al.,

2009). Nan and Iav co-localize and presumably heteromerize in

the mechanosensory cilia of CHNs, where the two proteins are

abolished together in both nan36a and iav1 nulls (Gong et al.,

2004; see also Figure S2A). To test whether Nan and Iav also

co-occur in cells other than CHNs, we generated flies co-ex-

pressing the promoter fusion constructs nan-GAL4 and iav-

lexA, in which the nan and iav promoters are fused to the

transcriptional activators GAL4 and LexA, respectively (Liu

et al., 2007; Shearin et al., 2013). Driving fluorescent reporters

via these constructs indicated that Nan and Iav exclusively co-

occur in CHNs. Judging from the promoter fusions, iav seems

solely expressed by CHNs, including the antennal ones and

the five CHNs of the larval abdominal lateral pentascolopidial or-

gan (lch5) (Figure 2A, Figures S2B–S2E). nan, by contrast, was

expressed more broadly, including most CHNs as well as

some multidendritic neurons (Figure 2A) and hygroreceptors in

the third segment of the fly’s antenna that reportedly require

Nan (Liu et al., 2007) (Figure S2E). When we used nan-GAL4 to

drive expression of the calcium sensor GCaMP6m (Chen et al.,

2013), we found that bath application of PM or PFQ induces

strong calcium signals in CHNs that co-express nan and iav,

but not in multidendritic neurons that only express nan (Fig-

ure 2B). PM and PFQ also evoked strong and sustained calcium

signals in antennal CHNs (Figure 2C), corroborating previous re-

ports that PM electrically silences cells through overstimulation

(Ausborn et al., 2005). For antennal CHNs, this silencing

occurred gradually within about 1 min after bath application of

PM or PFQ (Figure 1D), suggesting that the increased calcium

levels (Figure 2C) functionally deteriorate the CHNs. No insecti-

cide-evoked calcium responses were seen in the fly’s brain (Fig-

ures 2C–2E), and calcium responses were also absent from the

CHNs of nan36a and iav1 mutants (Figures 2D–2F) as well as

from muscles (Figure S2F) and the hygroreceptors in the third

antennal segment that express only nan (Figures 2G and 2H).

Misexpressing iav by driving a UAS-iav construct (Kwon et al.,

2010) with the pan-neuronal driver elav-GAL4 conferred insecti-

cide-evoked calcium responses to these latter hygroreceptors

but not to central neurons in the brain (Figures 2G and 2H). iav
expression thus renders nan-positive cells, but not nan-negative

ones responsive to the insecticides, providing in vivo evidence

that cellular insecticide actions require both Iav and Nan.

To test whether insect TRPVs can confer cellular insecticide

responses in vitro, we transiently transduced hamster ovary

CHO-K1 cells with adenoviruses expressing Drosophila Nan or

Iav (Figure S3A). Because PFQ was found to deacetylate spon-

taneously in aqueous solution (Figure S3B), we also tested de-

acetylated PFQ (= dPFQ) (Figure 3; Figure S3B). Using fluo-4

as a calcium indicator (Gee et al., 2000), we found that PM,

PFQ, and dPFQ evoke calcium responses in cells co-expressing

Nan and Iav but not in cells expressing Nan or Iav alone (Fig-

ure 3A). Dose-response curves yielded half-maximal effective

(E50) concentrations of 0.1 and 0.12 mM for PM and dPFQ,

respectively (Figure 3G). Compared to dPFQ, PFQ was about

100-fold less potent (E50 of 10.5 mM, Figure S3C), suggesting

that PFQ is a prodrug that is activated through deacetylation.

dPFQ evoked faster calcium responses of Drosophila CHNs

than did PFQ (Figure S3D), providing in vivo support for such

PFQ activation. Using dPFQ, maximum calcium responses

were obtained when the CHO cells were co-transduced with

Nan and Iav adenoviral particles at a ratio of 1:1 (Figure 3B,

left). Western blotting confirmed that this co-transduction leads

to approximately equal cellular Nan and Iav protein levels (Fig-

ure 3B, right), suggesting that the insecticides evoke cellular cal-

cium signals by activating Nan-Iav complexes with a Nan:Iav

stoichiometry of 1:1. To test whether Nan and Iav assemble

into Nan-Iav complexes, we fused the two proteins with two

different epitope tags, co-expressed them in CHO cells, and

found that Nan co-immunoprecipitates with Iav protein (Fig-

ure 3C). To further test for Nan-Iav complex formation, we

tagged Iav and Nan with AcGFP and mCherry moieties, respec-

tively, and co-expressed them in CHO cells. Iav-AcGFP excita-

tion elicited Nan-mCherry emission, documenting Förster reso-

nance energy transfer (FRET) between the AcGFP/mCherry

pair (Figure S3E). Together, these experiments document

in vitro complex formation for Nan and Iav, corroborating in vivo

indications that these two TRPVs form heteromers (Gong et al.,

2004; Delmas and Coste, 2013).

Confocal microscopy on CHO cells revealed that the bulk of

Nan and Iav proteins localizes to intracellular compartments,

regardless whether they were expressed alone or together (Fig-

ure S3F). In line with previous observations (Cuajungco et al.,

2006), heterologously expressed mouse TRPV4 was also found

mainly inside cells (Figure S3F). Analogous to mammalian

TRPVs, the two insect TRPVs thus seem to require specific stim-

uli and/or co-factors to facilitate their surface translocation (Ven-

katachalam and Montell, 2007). Notwithstanding the predomi-

nantly intracellular localization of heterologously expressed

Nan and Iav, the insecticide-evoked calcium signals were found

to reflect calcium entry into theCHOcells rather than internal cal-

cium mobilization. First, the responses were abolished by the

removal of calcium from the external medium, documenting

that they require extracellular calcium (Figure 3D). Second, the

calcium responses were blocked by ruthenium red (Figure 3E),

a cell-impermeable pan-inhibitor of TRPs (Vriens et al., 2009).

Third, although the low surface expression of Nan-Iav hampered

the detection of insecticide-evoked currents by patch clamp,
Neuron 86, 665–671, May 6, 2015 ª2015 Elsevier Inc. 667
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Figure 2. Insecticides Affect CHNs

(A) CHNs in the adult antenna (left) and the larval

lch5 (right) co-express nan and iav, whereas some

multidendritic (md) neurons express nan (top right)

but not iav (bottom right). (B) Insecticide-evoked

calcium responses in the larval peripheral nervous

system revealed by driving GCaMP6m via nan-

GAL4. Right: regions of interest. Left: correspond-

ing calcium signals evoked by bath application of

50 mM PM (left) or PFQ (right) in the dendrites and

somata of lch5 neurons (left), and their absence in

md neurons that only express nan (right) (example

traces from one animal each). (C–F) Insecticide-

evoked calcium responses of CHNs in the second

antennal segment and brain neurons revealed by

expressing GCaMP6m via the pan-neural driver

elav-GAL4. Right: regions of interest. Left: example

traces of PM- and PFQ-evoked calcium signals in

wild-type flies (C) and nan36a (D) and iav1 (E) mu-

tants. (F) Maximum calcium signals observed upon

compound administration (N = 6 each, means ±

SD). **p < 0.01, U tests with Benjamini-Hochberg

correction. Antennal CHNs but not central brain

neurons show insecticide-evoked calcium in-

creases in wild-type flies that are lost in nan36a and

iav1 mutants (D–F). The slight movement artifacts at

the beginning of the responses in (B)–(E) are caused

by the insecticide injection. (G) Insecticide-evoked

calcium responses of hygroreceptors in the third

segment of the antenna brain neurons with and

without pan-neural misexpression of iav (example

traces from one animal each). (H) Respective

maximum calcium response amplitudes. N = 6

each, means ± SD). **p < 0.01, U tests with Benja-

mini-Hochberg correction. Iav selectively confers

calcium responses to the hygroreceptors, which

also express nan.
a fluorescent voltage indicator whose translocation across

plasma membrane depends on the membrane depolarization

(Zheng et al., 2004) reported insecticide-induced changes

of the cell membrane potential (Figure 3F). These potential

changes resembled the calcium signals with respect to

their time course (Figure 3F, left) and their dose dependence

(Figure 3F, right). Like the calcium signals, the potential
668 Neuron 86, 665–671, May 6, 2015 ª2015 Elsevier Inc.
changes were abolished by the omission

of external calcium, indicating that Nan-

Iav complexes form calcium-conducting

ion channels (Figure S3G). By activating a

relatively low number of Nan-Iav com-

plexes that are exposed to the surface,

the insecticides thus promote calcium

entry into cells.

Togain insight into the target selectivityof

the insecticides, we also transduced CHO-

K1 cells with the mouse TRPV channel

TRPV4. To allow for comparison with cells

that co-express Nan and Iav, we equalized

TRPV4 protein levels with those of Nan

and Iav via western blotting (Figure S3H).

The TRPV4 agonist GSK1016790A (Thor-
neloe et al., 2008) activated TRPV4 but not Nan-Iav (Figure 3G).

Conversely, PM activated Nan-Iav but not TRPV4 (Figure 3G).

PFQ failed toactivateTRPV4atconcentrationsofup to90mM(Fig-

ure S3I), whereas dPFQ activated both Nan-Iav and TRPV4,

though its potency for Nan-Iav was ca. 100-fold higher than for

TRPV4 (E50s of 0.12 and 10.5 mM, respectively; Figure 3G). Be-

sides GSK1016790A, we tested several agonists of mammalian
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Figure 3. Insecticides Activate Nan-Iav Heteromers

(A) Insecticides (20 mM) evoke calcium signals (relative fluorescence units [RFU]) in CHO cells co-expressing Nan and Iav but not parental cells or cells ex-

pressing Nan or Iav alone (averages [lines] ± 1 SD [areas] of 4 repetitions). (B) Dose-response relationships of dPFQ-evoked calcium signals and fitted Hill

equations for co-transduction with different Nan:Iav adenoviral particle ratios (left, n = 4 each). Right: respective western blot with an antibody against a common

AcGFP moiety of Nan and Iav. (C) Nan and Iav co-immunoprecipitate. CHO cells were transduced with FLAG-tagged Iav and/or HA-tagged Nan, and FLAG-Iav

was immunoprecipitated (IP) with an anti-FLAG antibody. (D) Dose-response relationships of dPFQ-evoked calcium responses of cells co-expressing Nan and

Iav at different external calcium concentrations (n = 4). (E) Maximum calcium responses evoked by 20 mMdPFQ or 0.2%DMSO in cells transduced with Nan and

Iav, with (controls) and without ruthenium red (n = 4). (F) dPFQ-evoked calcium and membrane potential signals as functions of time (left) and the dPFQ con-

centration (right) (n = 4). (G) Dose response of CHO cells transduced with Nan and Iav (left) or mouse TRPV4 (right) for PM, dPFQ, and GSK1016790A (n = 4).
TRPVs (Vriens et al., 2009), but none of them activated the co-ex-

pressedNan and Iav proteins (Figure S3J). Contrastingwith previ-

ous observations (Kim et al., 2003; Gong et al., 2004), hypotonic

stimuli failed to activate CHO cells expressing Nan or Iav alone

or Nan and Iav together, whereas TRPV4 conferred hypotonically

evoked responses to CHO cells (Figure S3K), consistent with pre-

vious reports (Liedtke et al., 2000; Strotmann et al., 2000;Wissen-

bach et al., 2000).

DISCUSSION

PMand PFQ are the first specific agonists of insect TRPs and the

first insecticides that are shown to target TRPs. By activating

Nan-Iav TRPV channel complexes, both insecticides impair in-

sect coordination by affecting CHNs. This cell-type-specific

insecticidal action is supported by the behavioral insecticide

resistance of Drosophila mutants with impaired CHNs (Fig-

ure 1A), as well as by the absence of insecticide-evoked re-

sponses from other sensory neurons (Ausborn et al., 2005), the
CNS (Figures 1C–1E), and muscles (Figure S2F). The cell-type

selectivity is shown to reflect the selective co-occurrence of

Nan and Iav in CHNs, where they have been proposed to

mediate mechanosensory stimulus transduction (Lehnert et al.,

2013). The absence of insecticide-evoked responses from mus-

cles is consistent with a recently reported role of Iav, but not Nan,

at the neuromuscular junction (Wong et al., 2014). Our inability to

reproduce the reported hypotonic activation of Nan and Iav in

CHO cells (Kim et al., 2003; Gong et al., 2004) raises the need

to revisit the activation mechanisms and roles of these channels

in mechanotransduction and CHN function.

Nan and Iav together are shown to be required and sufficient

to confer cellular insecticide responses in vivo (Figures 2D–2H)

and in vitro (Figure 3), promoting cellular calcium entry that

seems to electrically silence the CHNs (Figure 1D). Nan and

Iav are further shown to assemble into functional Nan-Iav com-

plexes (Figures 3C and S3E), corroborating previous immuno-

histological in vivo indications for their heteromerization (Gong

et al., 2004). Activating Nan-Iav complexes, but not their single
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subunits, PM and PFQ are remarkable in that they selectively

stimulate two interacting TRPs, making them useful tools to

specifically probe the permeation properties of a heteromeric

TRP complex and its activation mechanisms. Judging from

our data, PM and PFQ seem to activate Nan-Iav directly, yet

further studies will be required to test the directness of this acti-

vation and to assess whether the insecticides physically bind to

Nan-Iav.

The apparent cell specificity conferred by their TRP targets

distinguishes PM and PFQ from other commercial insecticides

that act rather broadly on insect neurons or muscles. The use

of a different molecular target may explain in some cases why in-

sects resistant to other insecticides are still susceptible to PM

and PFQ (Maienfisch, 2012). Because Nan and Iav seem

conserved across insects, one would expect the two insecti-

cides to broadly act on insect species. Indeed, although PM

and PFQ are primarily used to control plant-sucking hemipteran

insects, they reportedly also affect thysanopteran (Maienfisch,

2012), orthopteran (Ausborn et al., 2005; Möckel et al., 2011),

and coleopteran (Tait et al., 2011; Chang and Snyder, 2008;

Cole et al., 2010) insects and have nonlethal effects on honey

bees (Maienfisch, 2012). The different strengths of the effects

might reflect sequence variations of Nan-Iav and/or differences

in the importance of CHNs for insect survival: PM and PFQ are

described as feeding blockers that disrupt feeding in plant-suck-

ing insects (Maienfisch, 2012). Upon treatment, these insects

starve because they can no longer penetrate plants with their

mouthparts (Maienfisch, 2012). This ultimately lethal effect

seems to contrast with the persistent viability of Drosophila

and locusts (Ausborn et al., 2005). The dispensability of CHNs

for Drosophila survival is illustrated by the fact that nan and iav

mutants are viable and develop to adults without functional

CHNs (Kim et al., 2003; Gong et al., 2004). Possibly, movement

control by CHNs is particularly crucial for inserting the mouth-

parts into plant tissues,making plant-sucking insects particularly

vulnerable to PM and PFQ. Differences in insect feeding styles

might also explain the reportedly low acute toxicity of the two

insecticides for honey bees. In addition, we anticipate that tar-

geting TRPs with insecticides might help to reduce potential

side effects on pollinators: insect TRPP, for example, which is

implicated in Drosophilamale fertility (Gao et al., 2003), is absent

in lepidopterans and hymenopterans, including bees (Matsuura

et al., 2009).

EXPERIMENTAL PROCEDURES

Animals

Flies were maintained in accordance with German Federal regulations (license

Gen.Az 501.40611/0166/501). Specific details regarding the strains used in the

experiments can be found in the Supplemental Experimental Procedures.

Behavioral Analyses

Tube-climbing assays were carried out under infrared illumination essentially

following established protocols (Sun et al., 2009).

In Vivo Cell Responses

The methods to access sound-evoked electrical and motile CHN responses

have previously been described (Albert et al., 2006). Live imaging of intracel-

lular calcium responses was performed following established protocols (Kami-

kouchi et al., 2010; Parton et al., 2010).
670 Neuron 86, 665–671, May 6, 2015 ª2015 Elsevier Inc.
In Vitro Cell Responses

CHO-K1 cells were transduced with adenoviruses expressing Drosophila Nan

or Iav either alone or in combination, or mouse TRPV4, as fusion proteins con-

taining AcGFP and FLAG tags at carboxyl termini (for details, see Supple-

mental Experimental Procedures). Cells were seeded on 96-well plates and

their insecticide responses were assessed using a Fluorometric Imaging Plate

Reader (Marshall et al., 2013).

Statistical Analyses

Statistical comparison of means was performed using two-tailed Mann-Whit-

ney U tests and significance was concluded when p < 0.05. Unless otherwise

stated, data are presented as mean ± 1 SD.
SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

three figures, and one movie and can be found with this article online at

http://dx.doi.org/10.1016/j.neuron.2015.04.001.
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Nadrowski, B., Albert, J.T., and Göpfert, M.C. (2008). Transducer-based force

generation explains active process in Drosophila hearing. Curr. Biol. 18, 1365–

1372.

Parton, R.M., Vallés, A.M., Dobbie, I.M., and Davis, I. (2010). Drosophila larval

fillet preparation and imaging of neurons. Cold Spring Harb Protoc 2010,

t5405.

Shearin, H.K., Dvarishkis, A.R., Kozeluh, C.D., and Stowers, R.S. (2013).

Expansion of the gateway multisite recombination cloning toolkit. PLoS ONE

8, e77724.

Strotmann, R., Harteneck, C., Nunnenmacher, K., Schultz, G., and Plant, T.D.

(2000). OTRPC4, a nonselective cation channel that confers sensitivity to

extracellular osmolarity. Nat. Cell Biol. 2, 695–702.

Sun, Y., Liu, L., Ben-Shahar, Y., Jacobs, J.S., Eberl, D.F., and Welsh, M.J.

(2009). TRPA channels distinguish gravity sensing from hearing in

Johnston’s organ. Proc. Natl. Acad. Sci. USA 106, 13606–13611.

Tait, M.F., Horak, A., and Dewar, A.M. (2011). Control of pollen beetles,

Meligethes aeneus, in oilseed rape using pymetrozine. Asp. Appl. Biol. 106,

187–194.

Thorneloe, K.S., Sulpizio, A.C., Lin, Z., Figueroa, D.J., Clouse, A.K.,

McCafferty, G.P., Chendrimada, T.P., Lashinger, E.S., Gordon, E., Evans, L.,

et al. (2008). N-((1S)-1-[4-((2S)-2-[(2,4-dichlorophenyl)sulfonyl]amino-3-hy-

droxypropanoyl)-1-piperazinyl]carbonyl-3-methylbutyl)-1-benzothiophene-2-

carboxamide (GSK1016790A), a novel and potent transient receptor potential

vanilloid 4 channel agonist induces urinary bladder contraction and hyperac-

tivity: Part I. J. Pharmacol. Exp. Ther. 326, 432–442.

Venkatachalam, K., and Montell, C. (2007). TRP channels. Annu. Rev.

Biochem. 76, 387–417.

Vriens, J., Appendino, G., and Nilius, B. (2009). Pharmacology of vanilloid tran-

sient receptor potential cation channels. Mol. Pharmacol. 75, 1262–1279.
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