
FEBS Letters 580 (2006) 2850–2852

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Minireview

Potassium channels as tumour markers
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Abstract An increasing number of ion channels are being found
to be causally involved in diseases, giving rise to the new field of
‘‘channelopathies’’. Cancer is no exception, and several ion chan-
nels have been linked to tumour progression. Among them is the
potassium channel EAG (Ether-a-go-go). Over 75% of tumours
have been tested positive using a monoclonal antibody specific for
EAG, while inhibition of this channel decreased the proliferation
of EAG expressing cells. The inhibition of EAG is accomplished
using RNA interference, functional anti-EAG1 antibodies, or
(unspecific) EAG channel blockers. Fluorescently labelled re-
combinant Fab fragments recognizing EAG allow the distribu-
tion of EAG to be visualized in an in vivo mouse tumour model.
� 2006 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Historical overview

A growing number of ion channels are being implicated in

tumor progression, with sodium and potassium channels

among them. With respect to potassium channels, it has been

postulated that they are important for proliferation since they

influence cell volume [1]. However, this would be a general

mechanism that applies to all types of potassium channels,

and this is not the case [2]. To date, over 70 types of potassium

channels are known [3], but only a few have been directly

implicated in cell proliferation and tumour growth. The best

studied cases include Kv1.3 (KCNA3) [4–8], IKCa1 (KCa3.1,

KCNN4) [9], TASK-3 (K2P9.1, KCNK9) [10], HERG

(Kv11.1, KCNH2) [11–15] and EAG1 (KV10.1, KCNH1)

[16,18]. Taking EAG as an example, what is the evidence for

its involvement in cell proliferation and tumour progression?
2. EAG is involved in cell cycle and proliferation

Initially, it was observed that the activation kinetics of EAG

markedly depend on the holding potential, becoming more ra-

pid at depolarized potentials [19], and that the Drosophila var-
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iant is permeable to potassium and calcium, as well as being

modulated by cAMP [20]. In addition, extracellular magne-

sium concentrations are able to modulate the kinetics [21].

The first indications that EAG is involved in the cell cycle

came from the observation that mitosis-promoting factor af-

fects the amount of current through this channel [22] and that

the particular cell-cycle stage modulates its selectivity to cae-

sium and block by intracellular sodium [23]. Furthermore,

the microtubule depolymerization that occurs during mitosis

produces similar effects [24], further strengthening the evidence

that EAG is modulated during cell cycle.

Similarly to most potassium channels, EAG subunits form a

functional channel when assembled into tetramers. Given that

there is another human isoform of EAG, EAG2, heteromulti-

meric channels comprised of EAG1 and EAG2 can be formed.

The specificity of this interaction is determined by the C-termi-

nally located tetramerizing coiled–coiled (TCC) domain which

also determines the possible tetramer composition, as it for

example precludes the formation of functional channels com-

posed of EAG and HERG subunits [25]. During these studies,

it became evident through electrophysiological measurements

that few functional EAG channels exist despite the fact that sig-

nificant intracellular levels of EAG protein could be detected.

This discrepancy is probably caused by the retention of EAG

in the ER (which would be consistent with the fact that the

EAG sequence contains an ER-retention signal LRKR [26]),

and modulation of its trafficking by glycosylation [27].
3. Inhibition of currents through EAG

Outside the CNS, EAG is a specific marker for tumor tissue

[16–18] and its inhibition by astemizole or the tricyclic antide-

pressant imipramine reduces the proliferation of tumor cells

[28,29]. Obviously, an EAG inhibitor would be a helpful tool

for the development of diagnostic and therapeutic agents and

therefore the blocking mechanism of EAG1 channels by

astemizole and imipramine was investigated in detail [30].

Unfortunately, these substances are unspecific and also affect

the human EAG-related gene product, HERG.

Another strategy is the development of specific antibodies that

recognize the extracellularly accessible tumor markers. The effi-

ciency and convenience of the use of antibodies against tumor-

specific markers, such as HER-2/neu, are sometimes combined

with other chemotherapeutics to increase response rates or re-

duce the effective dose [31]. Recent advances in near-infrared

fluorescent (NIF) imaging [32], in combination with specific
blished by Elsevier B.V. All rights reserved.
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antibodies, have allowed in vivo molecular imaging of small ani-

mals. For this approach, the antibodies need to be labeled with

infrared emitting dyes such as AlexaFluor 680 or Cy5.5.

We tested this approach by labeling a monoclonal antibody

specific for EAG1 with a secondary antibody labeled with

AlexaFluor 680 [33]. The resulting complex was injected into

immuno-suppressed mice grafted with MBA-MB-413S human

mammary carcinoma cells (which are positive for EAG1

expression) as a tumor model. Twenty-four hours after injec-

tion of 100 lg of the anti-EAG1–Alexafluor complex, the pri-

mary tumor as well as the corresponding sentinel node, was

clearly visible (see Fig. 1). This indicates the association of this

NIF complex with the extracellular EAG1 epitope [33].
4. Fluorescently labeled single chain anti-EAG antibody

A disadvantage of this approach is the large size of the fluo-

rescent complex that consists of two complete antibodies and

the conjugated fluorescent dye. Direct labeling of the antibody

with the fluorescent dyes caused a significant reduction in affin-

ity, possibly due to their conjugation to several lysine residues

present in the antibody’s complementarity determining regions

(CDR’s). We have addressed this issue by generating a recom-

binant single-chain anti-EAG1 antibody comprising only the

Fab’ domain, which did not significantly differ in either affinity

or specificity to the whole antibody, and to which a poly-lysine

chain was linked, thereby increasing the labeling efficiency. In

this way, a much smaller anti-EAG1–Cy5.5 complex was gen-
Fig. 1. False-color image of NIR intensities from Cy5.5 conjugated to
anti-EAG Fab fragment 24 h after i.v. injection of the conjugate. The
mouse had been grafted with MBA-MB-435 cells and a palpable
tumour had just developed. A shift towards the red indicates higher
intensities. The lifetime of the fluorescence observed corresponds to
Cy5.5.
erated, which can more easily penetrate dense tumour tissue.

In addition, it is also now possible to produce an engineered

protein consisting of the single-chain antibody and a modified

fluorescent protein with red-shifted spectrum.
5. In vivo imaging of EAG

Fig. 1 shows an image of a mouse 24 h after i.v. injection of a

poly-lysine containing recombinant anti-EAG1-Fab’ fragment I

conjugated to Cy5.5. The immunodeficient mouse had previously

been grafted with MBA-MB-435S cells. The false colors corre-

spond to NIR intensities obtained using an eXplore Optix System

(General Electric Healthcare, London, Canada). The mouse was

anaesthetized by inhalation of isofluorane, a procedure that can

be applied repeatedly without harming the living animal.

In summary, EAG is a novel and highly significant tumour

marker that has diagnostic and therapeutic potential. Being a

potassium channel, it is extracellularly accessible and can be

molecularly labelled in vivo using NIR imaging.
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alez, A., Perez-Cardenas, E., Pardo, L.A., Morales, A., Taja-
Chayeb, L., Escamilla, J., Sanchez-Peña, C. and Camacho, J.
(2004) Ether a go-go potassium channels as human cervical cancer
markers. Cancer Res. 64, 6996–7001.

[19] Ludwig, J., Terlau, H., Wunder, F., Brüggemann, A., Pardo,
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