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The photosynthetic conversion ofwater tomolecular oxygen is catalyzed by theMn4CaO5 cluster in Photosystem
II and provides nearly our entire supply of atmospheric oxygen. The Mn4CaO5 cluster accumulates oxidizing
equivalents in response to light-driven photochemical events within Photosystem II and then oxidizes twomol-
ecules of water to oxygen. The Mn4CaO5 cluster converts water to oxygen much more efficiently than any syn-
thetic catalyst because its protein environment carefully controls the cluster's reactivity at each step in its
catalytic cycle. This control is achieved by precise choreography of the proton and electron transfer reactions as-
sociatedwithwater oxidation and by careful management of substrate (water) access and proton egress. This re-
viewdescribes the FTIR studies undertaken over the past two decades to identify the amino acid residues that are
responsible for this control and to determine the role of each. In particular, this review describes the FTIR studies
undertaken to characterize the influence of the cluster's metal ligands on its activity, to delineate the proton
egress pathways that link theMn4CaO5 clusterwith the thylakoid lumen, and to characterize the influence of spe-
cific residues on thewatermolecules that serve as substrate or as participants in the networks of hydrogen bonds
that make up the water access and proton egress pathways. This information will improve our understanding of
water oxidation by the Mn4CaO5 catalyst in Photosystem II and will provide insight into the design of new gen-
erations of synthetic catalysts that convert sunlight into useful forms of storable energy. This article is part of a
Special Issue entitled: Vibrational spectroscopies and bioenergetic systems.
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1. Introduction

The light-driven oxidation of water in Photosystem II (PSII) pro-
duces nearly all of the O2 on Earth and drives the production of nearly
all of its biomass. Photosystem II is an integral membrane protein com-
plex that is located in the thylakoid membranes of plants, algae, and
cyanobacteria. It is a homodimer in vivo, having a total molecular
weight of approximately 700 kDa with each monomer containing at
least 20 different subunits and nearly 60 organic and inorganic cofactors
including 35 Chl a, 11 carotenoid, two pheophytin, and two plastoqui-
none molecules. Each monomer's primary subunits include the mem-
brane spanning polypeptides CP47 (56 kDa), CP43 (52 kDa), D2
(39 kDa), and D1 (38 kDa), and the extrinsic polypeptide PsbO
(26.8 kDa). The D1 and D2 polypeptides are homologous and together
form a heterodimer at the core of each monomer. Within each mono-
mer, the CP47 and CP43 polypeptides are located on either side of the
D1/D2 heterodimer and serve to transfer excitation energy from the
peripherally-located antenna complex to the D1/D2 heterodimer, and
specifically to the photochemically active Chl a multimer known as
P680 [1–4].

The O2-evolving catalytic center in PSII consists of aMn4CaO5 cluster
and its immediate protein environment. The Mn4CaO5 cluster accumu-
lates four oxidizing equivalents in response to photochemical events
within PSII, and then catalyzes the oxidation of two molecules of
water, releasing one molecule of O2 as a by-product [5–11]. The
Mn4CaO5 cluster serves as the interface between single-electron photo-
chemistry and the four-electron process of water oxidation. The photo-
chemical events that precede water oxidation take place in the D1/D2
heterodimer. These events are initiated by the transfer of excitation
energy to P680 following capture of light energy by the antenna com-
plex. Excitation of P680 results in the formation of the charge-
separated state, P680•+ Pheo•−. This light-induced separation of charge is
stabilized by the rapid oxidation of Pheo•− byQA, the primary plastoqui-
none electron acceptor, and by the rapid reduction of P680•+ by YZ, one of
two redox-active tyrosine residues in PSII. The resulting YZ

• in turn oxi-
dizes the Mn4CaO5 cluster, while QA

•− reduces the secondary plastoqui-
none, QB. Subsequent charge-separations result in further oxidation of
theMn4CaO5 cluster and in the two-electron reduction and protonation
of QB to form plastoquinol, which subsequently exchanges into the
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membrane-bound plastoquinone pool. During each catalytic cycle, two
molecules of plastoquinol are produced at the QB site and the
Mn4CaO5 cluster advances through five oxidation states termed Sn,
where “n” denotes the number of oxidizing equivalents that are stored
(n = 0–4). The S1 state predominates in dark-adapted samples. The S4
state is a transient intermediatewhose formation triggers the formation
and release of O2 and the regeneration of the S0 state.

In the recent 1.9 Å crystallographic structural model of PSII (PDB
ID: 3ARC) [12,13], and in subsequent computational refinements of
the structure of the Mn4CaO5 cluster and its ligation environment
[14–19], the cluster is arranged as a distorted Mn3CaO4 cube that is
linked to a fourth “dangling” Mn ion (denoted MnA4) by one corner
oxo bridge (denoted O5) and by an additional oxygen bridging
ligand (see Fig. 1). The cluster's Mn and Ca ions are ligated by six
carboxylate groups and one histidine residue, all but one of which
Fig. 1. TheMn4CaO5 cluster and its environment from the 1.9 Å structural model of PSII [12,13].
ganese ions (the labels A4, B3, C2, and D1 reflect the combined crystal structure and EPR-base
spheres, μ-oxo bridges; small red spheres, water molecules including the four water molecules
R357 is behind μ-oxo bridge O2.
are supplied by the D1 polypeptide. Numerous immobilized water
molecules are located on or near the Mn4CaO5 cluster, including
two that are bound to MnA4 (these are denoted as W1 and W2) and
two that are bound to the Ca ion (these are denoted as W3 and
W4). In recent proposals for the mechanism of O\O bond formation,
O5 derives from one of the two substrate water molecules and be-
comes incorporated into the product dioxygen molecule by reacting
with another substrate water-derived Mn or Ca ligand, possibly W2,
W3, or a water molecule that binds to MnD1 during the S2 to S3 tran-
sition [8,9,20–27]. Structural flexibility of the Mn4CaO5 cluster is a
key aspect of these proposals and there is an emerging consensus
that the Mn4CaO5 cluster readily interconverts between two nearly
isoenergetic conformers during the S state cycle, with O5 ligating
the dangling MnA4 ion in one conformer and ligating MnD1 in the
other [8,9,17,19,28–32]. In the S2 state, this interconversion is linked
Except as noted otherwise, all residues are from the D1 polypeptide. Purple spheres, man-
d notations for the Mn ions [9]); yellow sphere, calcium; green sphere, chloride; large red
bound to MnA4 (W1 andW2) and Ca (W3 andW4). In this view, the side chain of CP43–
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to a redox isomerization, with the Mn ion not binding O5 being in its
Mn(III) oxidation state in addition to having an open coordination
position along its Jahn–Teller axis.

Water oxidation in PSII involves a precisely choreographed sequence
of proton and electron transfer steps in which the release of protons is
required to prevent the redox potential of the Mn4CaO5 cluster from
rising to levels that prevent its subsequent oxidation by YZ

• [33–37].
This choreography is characterized by a strictly alternating removal of
electrons and protons from the Mn4CaO5 cluster during the S state
cycle, with proton transfer preceding the oxidation of the Mn4CaO5

cluster during the S2 to S3 and S3 to S4 transitions [7,22,34,35,37,38].
During the S2 to S3 and S3 to S4 transitions, the trigger for proton transfer
has been proposed to be the formation of YZ

• , with the positive charge on
the YZ

• /D1-His190 pair [39] inducing the deprotonation of CP43–R357
[33,36,40,41] or a nearby cluster of water molecules [38]. In these pro-
posals, the subsequent oxidation of the Mn4CaO5 cluster involves the
simultaneous transfer of a proton from the Mn4CaO5 cluster to the
now deprotonated CP43–R357 or water cluster. Experimental support
for these proposals has been provided by time-resolved X-ray absorp-
tion [42,43], optical absorption [44–46], infrared absorption [47], and
photothermal beam deflection [38] measurements. The measurements
show that, once the YZ

• S3 state is achieved, electron transfer from the
Mn4CaO5 cluster to YZ

• (with concomitant O2 formation) takes place
only after a lag of 200–250 μs that is assigned to the time for proton
removal. The deprotonation of CP43–R357 (or the cluster of water
molecules) is envisioned to take place via one or more proton egress
pathways leading from the Mn4CaO5 cluster to the thylakoid lumen.
These pathways are expected to be comprised of networks of hydrogen
bonds involving protonatable amino acid side chains and water mole-
cules. Several possible pathways for water access, O2 egress, and proton
egress have been identified in the 1.9 Å [12,13] and earlier 3.5 Å to 2.9 Å
[48–50] crystallographic structural models on the basis of visual exam-
inations [12,48,51–54], electrostatic calculations [55], solvent accessibil-
ity simulations [56], cavity searching algorithms [50,57,58], molecular
dynamics simulations of water diffusion [59–62], and the identification
of oxidatively-modified amino acid residues in the interior of PSII [63,
64] (for review, see Refs. [54,65–67]).

FTIR difference spectroscopy is an extremely sensitive tool for
characterizing the dynamic structural changes that occur during an
enzyme's catalytic cycle [68–72]. It is particularly well suited for
analyzing polypeptide conformational changes, protonation/depro-
tonation reactions of amino acid side chains, and the structural
changes of hydrogen bonded water molecules. In PSII, the frequen-
cies of numerous vibrational modes change as the Mn4CaO5 cluster
is oxidized through the S state cycle, including many modes that
are attributable to carboxylate residues and hydrogen-bonded
water molecules [73–76]. This review focuses on the studies
designed to characterize the structural changes of the Mn4CaO5

cluster's protein ligands that may occur during the individual steps
in the catalytic cycle, to delineate the networks of hydrogen bonds
that form the dominant proton egress pathways leading from the
Mn4CaO5 cluster to the thylakoid lumen, and to determine the influ-
ence of specific amino acid residues on the water molecules located
on or near the Mn4CaO5 cluster, some of which may serve as sub-
strate for O2 formation. Another review in this issue focuses on
other aspects of the electron and proton transfer reactions that
accompany the oxidation of water to dioxygen in PSII, including
dynamic aspects [77].

2. Metal ligation

2.1. Mid-frequency region

Mid-frequency S2-minus-S1 FTIR difference spectra of PSII core
complexes free of contributions from the quinone electron acceptors
were first reported between 1992 and 1999 [78–83]. The first mid-
frequency S3-minus-S2 FTIR difference spectrum was reported in
2000 [84]. The first sets of complete mid-frequency Sn + 1-minus-Sn
FTIR difference spectra were reported in two back-to-back publica-
tions in 2001 [85,86]. The importance of sample hydration for ob-
serving these spectra was pointed out in 2002 [87]. The individual
Sn + 1-minus-Sn FTIR difference spectra of wild-type PSII core com-
plexes contain a wealth of spectral features (e.g., Fig. 2). On the
basis of their downshifts in samples that had been globally labeled
with 13C or 15N, features appearing between 1700 and 1630 cm−1

were assigned to amide I modes, some features appearing between
1600 and 1500 cm−1 were assigned to amide II modes and others
to asymmetric carboxylate stretching [νasym(COO−)] modes, and
features appearing between 1450 and 1300 cm−1 were assigned to
symmetric carboxylate stretching [νsym(COO−)] modes [88–91]. On
the basis of a 7 cm−1 downshift in samples that had been specifically
labeled with 15N-histidine, a negative feature near 1113–1114 cm−1

in the S2-minus-S1 FTIR difference spectrumwas assigned to the C\N
stretching mode of a histidyl imidazole ring whose π nitrogen is
protonated, with the Nπ\H group participating in a hydrogen bond
[83]. The appearance of the 1113–1114 cm−1 feature in the S2-
minus-S1 spectrum was taken to imply that the τ nitrogen of this
histidine (now presumed to be D1-H332) ligates a Mn ion [83].
Subsequent work showed that this spectral feature is positive in
the S1-minus-S0 spectrum, negative in the S2-minus-S1 and S3-
minus-S2 spectra, and absent from the S0-minus-S3 spectrum [92]. It
was concluded that changes to the vibrational mode that occur
during the S0 to S1 transition are reversed during the S1 to S2 and
S2 to S3 transitions and that the mode is not perturbed during the
S3 to S0 transition [92].

2.1.1. The C-terminus of the D1 polypeptide at Ala344
Attempts to assign features in the Sn + 1-minus-Sn difference spectra

to individual amino acid residues began appearing in 2004. To test the
proposal [93] that the C-terminus of the D1 polypeptide at D1-A344
ligates one or more Mn ions, the mid-frequency FTIR difference spectra
of unlabeled and L-[1-13C]alanine-labeled wild-type Synechocystis PSII
core complexes were compared. Two independent FTIR studies showed
that the incorporation of L-[1-13C]alanine altered the wild-type S2-
minus-S1mid-frequency FTIR difference spectrum in the symmetric car-
boxylate stretching region [94,95]. The 12C-minus-13C double difference
spectrum of this region (Fig. 3) showed that the alterations represent
the 13C-induced shift of a single vibrational mode. In the S1 state, this
mode appears at ~1355 cm−1 and is shifted by 13C to either ~1339 or
~1320 cm−1. In the S2 state, this mode appears at either ~1339 or
~1320 cm−1 and is shifted by 13C to ~1302 cm−1. This mode could be
assigned unambiguously to the α-COO− group of Ala344 because the
mode was not shifted by the incorporation of L-[1-13C]alanine into
either D1-A344G or D1-A344S PSII core complexes (Fig. 3) [94,95]
(the C-terminalα-COO− group of the D1 polypeptide cannot be labeled
in either mutant because it is not provided by alanine). On the basis of
the observed frequencies, it was concluded that the α-COO− group of
D1-A344 is a unidentate ligand of a metal ion in both S1 and S2 states
[94,95]. The mode downshifts by ~17 cm−1 or ~36 cm−1 during the
S1 to S2 transition [94,95] and is restored during the S3 to S0 transition
[95,96]. These frequency shifts were taken to imply that the ligating
C\O bondweakens during the S1 to S2 transition and is restored during
the S3 to S0 transition. This weakening was attributed to the increased
charge that develops on the Mn4CaO5 cluster during the S1 to S2 transi-
tion. Consequently, it was proposed that the α-COO− group of Ala344
ligates aMn ionwhose charge or formal oxidation state increases during
the S1 to S2 transition [94,95,97]. However, on the basis of QM/MManal-
yses performed in conjunction with the earlier ~3.5 Å crystallographic
structural model [48], it was concluded that the partial atomic charges
of the individual Mn ions would change little during any of the S state
transitions, and that a redistribution of charge on the Mn4CaO5 cluster
during the S1 to S2 transition could produce a similar downshift if D1-



Fig. 2. Comparison of the mid-frequency FTIR difference spectra of wild-type (black) and D1-D61A (red) PSII core complexes in response to four successive flash illuminations applied at
0 °C. The “S0-minus-S3” and “S1-minus-S0” spectra of D1-D61A probably correspond to amixture of S state transitions . Dark-minus-dark control traces are included to show the noise level
(lower traces).
Reprinted with permission from Ref. [126]. Copyright 2014, American Chemical Society.
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A344 was coordinated to the Ca ion [36,98,99]. Indeed, the α-COO−

group of Ala344 forms an asymmetric bridge between the Ca ion and
MnC2 in the 1.9 Å crystallographic structural model [12,13] (Fig. 1).
Furthermore, most of the other carboxylate ligands of the Mn4CaO5

cluster are insensitive to the oxidations of the cluster that occur during
the S state cycle (see below, Section 2.1.3). Consequently, the reason
that the νsym(COO−) mode of D1-A344 downshifts during the S1 to S2
transition is not known. Perhaps the reason is related to one conclusion
of a polarized attenuated total reflection FTIR study [100], that D1-
Ala344 may significantly change its orientation during the S1 to S2
transition.

2.1.2. CP43–Glu354
The S2-minus-S1 FTIR difference spectrum of CP43–E354Q PSII core

complexes shows alterations throughout the amide II, νasym(COO−) and
νsym(COO−) regions [101–103]. Global labeling with 15N showed that
the CP43–E354Q mutation perturbs both amide II and carboxylate
stretching modes [103]. Specific labeling with L-[1-13C]alanine showed
that the CP43–E354Q mutation shifts the νsym(COO−) mode of the α-
COO− group of D1-Ala344 to higher frequencies by 3–6 cm−1 in both
S1 and S2 states [103]. These data show that the CP43–E354Q mutation
perturbs multiple carboxylate groups in the vicinity of theMn4CaO5 clus-
ter. In one study [102], negative features at 1525 cm−1 and 1394 cm−1 in
the S2-minus-S1 FTIR difference spectrum of wild-type PSII were assigned
to the νasym(COO−) and νsym(COO−)modes of CP43–E354 in the S1 state,
respectively, and the positive features at 1502 cm−1 and 1431 cm−1were
assigned to the νasym(COO−) and νsym(COO−) modes of CP43–E354 in
the S2 state, respectively [102]. On the basis of these assignments,
CP43–E354 was proposed to bridge two Mn ions in the S1 state and
shift to chelating bidentate coordination of a single Mn ion in the S2
state [102]. However, in another study [103], the positive feature near
1502 cm−1was assigned to an amide IImode on the basis of its downshift
by 14–15 cm−1 after global labeling with 15N (although the presence of
the νasym(COO−) mode at the same frequency could not be excluded

image of Fig.�2


Fig. 3. Comparison of the double difference spectra, 12C-minus-13C, of wild-type (black),
D1-A344G (blue) and D1-A344S (red) PSII core complexes obtained by subtracting the
S2-minus-S1 FTIR difference spectra of [1-13C]alanine-labeled samples from the S2-
minus-S1 FTIR difference spectra of unlabeled samples.
Reprinted with permission from Ref. [94]. Copyright 2004, American Chemical Society.
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because of the feature's breadth). In agreement with Ref. [102], this study
assigned a negative feature at 1524 cm−1 to the νasym(COO−) mode of
CP43–E354 in the S1 state and concluded that CP43–E354 serves a as a
bridging ligand between two Mn ions in the S1 state [103]. However,
this study was unable to confirm that the coordination mode of CP43–
E354 changes during the S1 to S2 transition because the νsym(COO−)
mode of CP354 could not be identified unambiguously. In this study,
CP43–E354Q PSII core complexes were found to have an unusually stable
S2 state and to be heterogeneous, with most PSII reaction centers unable
to advance beyond the S3 state, but with some (approximately 20% of
the total) able to advance through the S state transitions with normal S
state parameters [103]. In a subsequent polarized attenuated total reflec-
tion FTIR study, it was concluded that CP43–E354 changes its orientation
by ~8° during the S1 to S2 transition [100]. This reorientation would be
consistent with changing from bridging to chelating coordination [100].
The S3-minus-S2 FTIR difference spectrum was unaltered by the CP43–
E354Qmutation [102], showing that the protein's response to the chang-
es in the Mn4CaO5 cluster's geometry that occur during the S2 to S3 tran-
sition is not changed by the mutation.

2.1.3. D1-Asp170, D1-Glu189, D1-Glu333, and D1-Asp342
The mutations D1-D170H [104,105], D1-E189Q [106,107], D1-

E189R [107], D1-E333Q [108], and D1-D342N [109] produced no signif-
icant changes in any of the Sn + 1-minus-Sn FTIR difference spectra; that
is, they produced no changes greater than those caused by mutations
created far from the Mn4CaO5 cluster (e.g., D2-H189Q, near YD) or by
differences in handling wild-type samples [107]. In particular, none of
these mutations eliminated any carboxylate stretching modes and
noneproduced any significant changes in polypeptide backbone confor-
mations as shown by a lack of significant mutation-induced alterations
to the amide I and amide II regions of the spectra.1 This result was en-
tirely unexpected. It had long been assumed that most of the features
1 There is a report that the D1-D170E mutation causes spectral alterations consistent
with a change in carboxylate coordination to Mn or Ca during the S1 to S2 transition
[110], but thewild-type control spectrum in this study is unlike that observed by any other
laboratory and is undoubtedly dominated by artifacts (see Footnote 2 of Ref. [94]).
in the Sn + 1-minus-Sn FTIR difference spectra would correspond to the
Mn4CaO5 cluster's amino acid ligands. Indeed, one of the most striking
results of the FTIR studies on PSII is that the individual FTIR difference
spectra are insensitive to the individual mutation of four of the
Mn4CaO5 cluster's six carboxylate ligands. Evidently, most of the fea-
tures in the mid-frequency Sn + 1-minus-Sn FTIR difference spectra
correspond to residues in the cluster's second coordination sphere or
beyond and reflect the broad response of the protein to the electrostatic
influences that arise from the positive charge that develops on the
Mn4CaO5 cluster during the S1 to S2 transition [44,111–120] and to the
structural changes that are associated with the S2 to S3, S3 to S0, and S0
to S1 transitions [31,121–123]. Indeed, mutations of residues located
5–11 Å from the nearest Mn ion and thought to participate in proton
egress pathways cause the greatest changes in the Sn + 1-minus-Sn
FTIR difference spectra [124–126] (e.g., see Fig. 2 and see below,
Section 3.2). The simplest explanation for the insensitivity of the S2-
minus-S1 FTIR difference spectrum to the individual mutation of most
the cluster's carboxylate ligands is that the positive charge that develops
on the Mn4CaO5 cluster during the S1 to S2 transition is highly
delocalized at ambient temperatures. There is precedent for such
delocalization in mixed-valence inorganic metal complexes [127–129].
Furthermore, comparative resonant inelastic X-ray scattering (RIXS)
studies of Mn oxides, Mn coordination complexes, and spinach PSII
membranes have provided strong evidence that the oxidations of the
Mn4CaO5 cluster that occur during the S state transitions involve
electrons that are strongly delocalized throughout the cluster and may
involve the cluster's ligands [130,131]. Delocalization would also be
consistent with the conclusions of the QM/MM analyses mentioned
above [36,98,99]. Consequently, the reason that one or more carboxyl-
ate stretching modes of D1-A344 [94,95,97] and CP43–E354 [102,103]
shift during the S1 to S2 transition may be that the carboxylate group
of the former changes its orientation and the carboxylate group of the
latter changes its coordination mode during this transition.

2.2. Low frequency region

Vibrations of the Mn4CaO5 cluster's core and of its metal-ligand
bonds appear between 650 and 350 cm−1. The first S2-minus-S1
FTIR difference spectrum of this region appeared in 2000 [132], the
first S3-minus-S2 difference spectrum of this region appeared in
2001 [133], and the first set of complete Sn + 1-minus-Sn difference
spectra in this region appeared in 2005 [134]. In the S2-minus-S1
difference spectrum, a positive band at 606 cm−1 and a negative
band at 625 cm−1 downshifted ~10 cm−1 in samples that had been
exchanged into H2

18O but were unaffected by replacing 40Ca with
44Ca [132]. On the basis of these observations and comparisons
with model compounds, the bands were assigned to a Mn\O\Mn
cluster mode in a multiply bridged structure that might include
additional oxo or carboxylate bridges [132,135]. Many of the bands
in the low-frequency S2-minus-S1 difference spectrum, including
the 606 cm−1 band, were shifted by global labeling with 13C and/or
15N [90]. These bands were proposed to include vibrational modes
of bonds between Mn ions and carbon-containing or nitrogen-
containing groups (e.g., Mn\COO− bending modes). A negative
band at 577 cm−1 was shifted by neither 13C nor 15N (nor 18O
[132]) and was attributed a skeletal vibration of the Mn4CaO5 cluster
or to a Mn\O vibrational mode involving a non-18O-exchangeable
oxygen atom [90]. The 606 cm−1 band in the S2 state appeared to
change sign and intensity during the S state cycle [134], implying S
state-dependent changes in the core structure of the Mn4CaO5

cluster. Other prominent bands between 638 and 594 cm−1 also
changed sign and intensity during the S state cycle [134]. Some of
these were also assigned to Mn4CaO5 cluster modes on the basis of
their sensitivity to H2

18O substitution and insensitivity to D2O substi-
tution [134]. Other low-frequency bands were sensitive to D2O
substitution, but were insensitive to H2

18O substitution [134]. These

image of Fig.�3
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were assigned to modes from amino acid side chains and polypep-
tide backbones associated with exchangeable hydrogen in hydro-
philic environments [134]. Still other bands were sensitive to both
H2

18O and D2O exchange and were attributed to Mn\O and/or
Mn\OH2 stretching modes, to wagging modes of Mn-bound water
molecules, or possibly to Ca\OH and/or Ca\OH2 modes [134].

The 606 cm−1 band in the S2 state shifts to ~618 cm−1 when Ca is
replaced with Sr [132,135,136], shifts to ~613 cm−1 in the mutants
D1-D170H [104] and D1-A344G [137], and shifts to ~623 cm−1 in the
mutant D1-E189Q [106]. These observations show that D1-D170 and
D1-E189 are coupled structurally to the Mn4CaO5 cluster, despite the
absence of changes in themid-frequency region produced by themuta-
tions D1-D170H [104,105] and D1-E189Q [106,107]. Other features in
the 640 to 570 cm−1 region were also perturbed by the mutations D1-
D170H [104], D1-A344G [137], and D1-E189Q [106]. In particular, a
negative band near 617 cm−1 appears diminished by all three muta-
tions. The latter feature was also diminished slightly when D1-Ala344
was specifically labeled with 13C [95]. Recently, the 606 cm−1 mode in
the S2 state was shown to be eliminated or shifted to 623 cm−1 by am-
monia [138]. Ammonia has been proposed to either exchange into an
oxo bridge [138,139] (proposed to be O5 [10,75,138]), or to exchange
for W1 on MnA4 [26,27,140] (see competing discussions in Refs. [26,
27,140] versus [10]). The mutations and treatments that alter the
606 cm−1 band all have been directed at the face of the Mn4CaO5 that
includes the Ca ion,MnA4,MnD1, andO5. It would be of interest to exam-
ine the low-frequency FTIR difference spectra of mutations constructed
at D1-E333, D1-D342, and CP43–E354 to see if the 606 cm−1 feature is
altered by mutations on the other “side” of the Mn4CaO5 cluster.
3. Networks of hydrogen bonds

3.1. Arginine

In recent proposals, the oxidation of the Mn4CaO5 cluster during the
S2 to S3 and S3 to S4 transitions involves the simultaneous transfer of a
proton from the Mn4CaO5 cluster to a deprotonated CP43–R357 or a
deprotonated water cluster. To test whether CP47–Arg357 is coupled
structurally with the Mn4CaO4 cluster, a strain of Synechocystis sp. PCC
6803 was engineered to be deficient in arginine biosynthesis and cells
were propagated in the presence of [η1,2-15N2]Arg or [ζ-13C]Arg [141].
The S2-minus-S1 FTIR difference spectra of [η1,2-15N2]Arg-labeled PSII
core complexes showed Arg-attributable bands between 1700 and
1600 cm−1. The S2-minus-S1 FTIR difference spectra of [ζ-13C]Arg-la-
beled PSII core complexes showed Arg-attributable bands between
1700 and 1550 cm−1. These bands were assigned to the CN/NH2 vibra-
tions of a guanidinium group [141]. Their frequencies are similar to
those of 15N-labeled and 13C-labeled arginine in aqueous solution.
These observations provide spectroscopic evidence that the fully pro-
tonated guanidinium group of an arginine residue (presumed to be
CP43–R357, the only Arg residue within 10 Å of the Mn4CaO5 cluster)
is coupled structurally with theMn4CaO5 cluster, presumably by partic-
ipating in hydrogen bondswith ligands ofMn or Ca [141]. A direct inter-
action between CP43–R357 and the first coordination shell of the
Mn4CaO5 cluster was confirmed by the 1.9 Å crystallographic structural
model [12,13]. In this model, one of the η nitrogen atoms of the
guanidino group of CP43–Arg357 forms a hydrogen bond to each of
the Mn4CaO5 cluster's O2 and O4 oxo bridges and the other η nitrogen
atom form hydrogen bonds with the carboxylate groups of D1-D170
and D1-A344. Mims ENDOR experiments performed with [η1,2-15N2]
Arg-labeled PSII core complexes purified from an independently con-
structed strain of Synechocystis showed the presence of 15N couplings
to the S2 state of the Mn4CaO5 cluster, providing addition evidence of
structural coupling between the guanidinium group of an Arg residue
(also presumed to be CP43–R357) and the Mn4CaO5 cluster (P. Oyala,
R J. Debus, and R. D Britt, unpublished).
3.2. The carbonyl stretching modes of carboxylic acids

The region between 1790 and 1710 cm−1 contains the carbonyl
stretching [ν(C_O)] modes of protonated carboxylate residues [70,
71,142] as well as the keto and ester C_O vibrations of chlorophyll,
pheophytin, heme, and lipids [143]. Deuteration helps distinguish
between these modes because it removes the weak coupling that ex-
ists between the C_O stretching and C\O\H bending modes of the
COOH group. The elimination of this coupling causes the ν(C_O)
mode to downshift by 4–20 cm−1 [142,144–147]. This D2O-
induced downshift is diagnostic for the ν(C_O) mode of protonated
carboxylate residues and has been used as such in many systems, in-
cluding bacteriorhodopsin [144,148–151], rhodopsin [152,153], bac-
terial reaction centers [154–157], heme-copper oxidases [158–161]
and photoactive yellow protein [162]. In PSII core complexes from
Synechocystis sp. PCC 6803, a negative feature is observed at
~1747 cm−1 in the S2-minus-S1 difference spectrum, a positive fea-
ture is observed at ~1745 cm−1 in the S3-minus-S2 difference spec-
trum, a positive feature is observed at ~1746 cm−1 in the S0-minus-
S3 difference spectrum, and a derivative-shaped feature is observed
at ~1751(+)/1744(−) cm−1 in the S1-minus-S0 difference spectrum
[124,125]. These features downshift 4–7 cm−1 after exchange into
buffers containing D2O [124,125] (see Fig. 4). On the basis of these
downshifts, it was concluded that these features correspond to the
ν(C_O) modes of protonated carboxylate groups [124,125]. The fre-
quency of the ν(C_O) mode of a carboxylic acid residue depends on
the number and strengths of hydrogen bonds involving its C_O and
O\H moieties [142,144–147]. Their frequencies in the Sn + 1-minus-
Sn FTIR difference spectra suggest that each of the protonated car-
boxylate groups giving rise to these features participates in a single
hydrogen bond that involves the C_O moiety [146,147], although
participation in two hydrogen bonds, with one involving the oxygen
of the C\O\H group [147], could not be excluded.

3.2.1. Network of hydrogen bonds extending at least 20 Å
The negative feature at ~1747 cm−1 in the S2-minus-S1 spectrum of

PSII core complexes from Synechocystis sp. PCC 6803 has been proposed
to correspond to a carboxylate group whose pKa value decreases in re-
sponse to the increased charge that develops on the Mn4CaO5 cluster
during the S1 to S2 transition [124,125]. It was proposed that (i) the
structural response of PSII to the charge that develops on the Mn4CaO5

cluster during this transition is transmitted electrostatically and
through networks of hydrogen bonds, and (ii) this structural response
alters the environment of the carboxylate group responsible for the
~1747 cm−1 feature, causing its pKa value to decrease [124,125]. This
feature is eliminated by the mutations D1-E65A, D2-E312A, and D1-
E329Q [124], is diminished substantially by the mutations D1-D61A
[126] and D1-R334A [125], and is diminished or eliminated by the
over-dehydration of samples [124] (see Fig. 5). Consequently, it was
proposed that (i) D1-D61, D1-E65, D1-E329, D1-R334, and D2-E312
participate in the same network of hydrogen bonds as the unidentified
carboxylate group responsible for the negative ~1747 cm−1 feature and
(ii) themutation of any of these residues to a non-protonatable residue,
or the over dehydration of samples, disrupts the network sufficiently
that the structural perturbations associated with S1 to S2 transition are
either transmitted to the unidentified carboxylate less efficiently or
not at all, thereby diminishing or eliminating the ~1747 cm−1 feature
[124,125]. Because D1-E329 is located over 20 Å from the D1-D61 and
the interacting D1-E65/D2-E312/D1-R334 triad, this network of hydro-
gen bonds must extend at least 20 Å across the lumenal face of the
Mn4CaO5 cluster (see Figs. 1 and 6). It is an open question whether ele-
ments of the proposed network exist only transiently like the networks
of hydrogen bonds that transiently connect hydrophilic pockets in a re-
cent molecular dynamics study [59].

The unidentified carboxylate group that corresponds to the negative
~1747 cm−1 feature could be the side chain of D1-E65, D2-E312, or D1-



Fig. 4. Comparison of the protonated carboxylic acid carbonyl stretching regions of wild-type PSII core complexes in the presence of H2O and D2O. Note the different vertical scales.
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E329 or another carboxylate residue located in the same proposed net-
work of hydrogen bonds. It is not D1-D61 because the D1-D61A muta-
tion does not eliminate the feature. Some constraints on the location
of the unidentified carboxylate residue are provided by the observation
that the feature is unaltered by the D1-Q165E, D2-E307Q, D2-D308N,
D2-E310Q, and D2-E323Qmutations [125]. Because D1-Q165 is located
across theMn4CaO5 cluster from D1-D61 and the D1-E65/D2-E312/D1-
R334 triad, and because D2-E307, D2-D308, D2-E310, and D2-E323 lie
even farther from the Mn4CaO5 cluster (see Fig. 6), it was concluded
that the unidentified carboxylate residue must be D1-E65, D2-E312, a
residue in their vicinity, or a residue between the D1-E65/D2-E312/
D1-R334 triad and D1-E329. The residue D1-D59 was suggested as
one possibility [125]. The closest distance between the carboxylate oxy-
gens of this residue and those of D1-E65 is 6.9 Å.

3.2.2. Network of hydrogen bonds extending at least 13 Å
The positive feature at ~1745 cm−1 in the S3-minus-S2 FTIR

difference spectrum of PSII core complexes from Synechocystis sp. PCC
6803 was proposed to correspond to a second carboxylic acid group,
one whose pKa value increases during the S2 to S3 transition [125]. The
structural response of PSII to the geometric changes in the Mn4CaO5

cluster that accompany this transition [31,121–123] was presumed to
be transmitted through networks of hydrogen bonds, altering the
environment of the unidentified carboxylate group responsible for the
positive ~1745 cm−1 feature, causing its pKa value to increase. The
~1745 cm−1 feature was eliminated by the mutations D1-E329Q [124]
and D1-Q165E [125]. Consequently, it was proposed that D1-E329 and
D1-Q165 participate in the same network of hydrogen bonds as the un-
identified carboxylate group responsible for the positive ~1745 cm−1

feature and that the mutation of either of these residues disrupts the
network sufficiently that the structural perturbations associated with
S2 to S3 transition are no longer transmitted to the unidentified carbox-
ylate, thereby eliminating the ~1745 cm−1 feature [125]. Although the
D1-Q165E mutation eliminates the ~1745 cm−1 feature from the S3-
minus-S2 difference spectrum, it has no effect on the ~1747 cm−1
feature in the S2-minus-S1 difference spectrum [125]. The mutation's
disparate effect on the ~1747 and ~1745 cm−1 features was taken to
provide a constraint on the identity of this second carboxylate residue:
it must be located closer to D1-Q165 than to the D1-E65/D2-E312/D1-
R334 triad. One possibility is D1-E329. The mutation D1-E329Q would
then eliminate the positive ~1745 cm−1 feature from the S3-minus-S2
spectrum directly and eliminate the negative ~1747 cm−1 feature
from the S2-minus-S1 spectrum by disrupting the network of hydrogen
bonds discussed in Section 3.2.1. Because the side chain of D1-E329 is
located approximately 13 Å from the side chain of D1-Q165, this
network must extend at least 13 Å across face of the Mn4CaO5 cluster
opposite from the D1-E65/D2-E312/D1-R334 triad (see Figs. 1 and 6).
Because D1-E329 also participates in a network of hydrogen bonds
that includes D1-D61 and the D1-E65/D2-E312/D1-R334 triad (see
Section 3.2.1), the overall network must be quite extensive. Indeed,
the ~1745 cm−1 feature in the S3-minus-S2 difference spectrum is
altered by the D1-D61A mutation [126], showing that D1-D61 partici-
pates in a network of hydrogen bonds extending to D1-Q165. The
participation of D1-Q165 in such an extensive network of hydrogen
bonds is expected on the basis of the 1.9 Å structural model [12,13]
and is supported by a recent QM/MM study [163]. In the 1.9 Å structural
model, W4 forms hydrogen bonds with both D1-Q165 and the phenolic
oxygen of YZ (D1-Y161) and participates in an extensive network of hy-
drogen bonds that extends across the Mn4CaO5 cluster and via the Cl−

(1) ion and D2-K317 to the lumenal surface. This network includes
D1-E189 and several water molecules including W3, the other water
ligand of the Ca ion, and W2, one of two water ligands of the dangling
MnA4 ion. A possible role for D1-Q165 in a channel consisting of an
extensive network of hydrogen bonds had been suggested on the
basis of analyses conducted before the 1.9 Å structural model became
available [50,56,58]. As noted previously, it is an open questionwhether
elements of the proposed networks exist only transiently.

The pKa shifts giving rise to the negative ~1747 cm−1 feature in the
S2-minus-S1 difference spectrum and the positive ~1745 cm−1 feature
in the S3-minus-S2 difference spectrum appear to be reversed during
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Fig. 5. Comparison of the protonated carboxylic acid carbonyl stretching regions of (A)wild-type PSII core complexesmaintained at a relative humidity of 99% (black) or 85% (blue) or as a
dry film in the sample cell (red), (B) wild-type (black) and D1-R334A (red) PSII core complexes, (C) wild-type (black) and D1-D61A (red) PSII core complexes, (D) wild-type (black) and
D1-E65A (red) PSII core complexes, (E) wild-type (black) and D1-E312A (red) PSII core complexes, and (F) wild-type (black) and D1-E329Q (red) PSII core complexes.
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the S3 to S0 transition, with the positive amplitude of the ~1746 cm−1

feature in the S0-minus-S3 FTIR difference spectrum reflecting the larger
amplitude of the negative ~1747 cm−1 feature in the S2-minus-S1
difference spectrum compared to the positive ~1745 cm−1 feature in
the S3-minus-S2 difference spectrum (Fig. 4) [125]. The derivative
nature of the ~1751(+)/1744(−) cm−1 feature in the S1-minus-S0
spectrum was proposed to reflect a change in the environment of a
third carboxylic acid group during the S0 to S1 transition that does not
change this group's pKa value. Although this environmental change
would be expected to reverse during the other S state transitions, the
amplitude of this feature is sufficiently weak that any such reversal is
probably lost beneath the larger ~1747 and ~1745 cm−1 features in
the other Sn + 1-minus-Sn FTIR difference spectra.

The features at 1747 and 1745 cm−1 discussed in the preceding
paragraphs have not been observed in PSII core complexes from
Thermosynechococcus elongatus [85,87,89,164–166], PSII membranes
from spinach [79,80,86,136], or in some preparations of PSII core
complexes from Synechocystis sp. PCC 6803 [95,102,104,106,137].
Their absence in T. elongatus and spinach might derive from the slight
differences between the amino acid sequences of the PSII polypeptides
in different organisms. However, the observation of these features
may depend on preparation. In any case, we have observed these
features under a variety of conditions in Synechocystis sp. PCC 6803
[103,105,107–109,124–126,167]. The sensitivity of these features to
the extent of sample hydration and to the mutation of selected single
amino acid residues shows the sensitivity of the corresponding carbox-
ylate groups to minor changes in protein environment.

3.2.3. A dominant proton egress pathway
The kinetically efficient transfer of protons through a potential

channel requires finely tuned pKa differences between key residues
and the transient formation of clusters of water molecules [168–171].
Consequently, mutation of key residues in a dominant proton egress
pathway would be expected to slow oxidation of the Mn4CaO5 cluster
in the same manner that mutations that impair proton uptake slow
electron transfer from QA

•− to QB
•− in reaction centers of Rhodobacter

sphaeroides [172–174] and the reduction of O2 to H2O in cytochrome c
oxidase [175–177]. A network of hydrogen bonds leading from the
Mn4CaO5 cluster to the thylakoid lumen via D1-D61 and the D1-E65/
D2-E312/D1-R334 triad can been inferred from the distribution of
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Fig. 6. TheMn4CaO5 cluster and selected nearby residues in the 1.9 Å structuralmodel of PSII [12], including the cluster ligands D1-D170, D1-E189, D1-H332, andD1-E333. Except as noted
otherwise, all residues are from the D1 polypeptide. Purple spheres, manganese ions; yellow sphere, calcium; green sphere, chloride; large red spheres, μ-oxo bridges; small red spheres,
water molecules. The dangling MnA4 ion, oxygen O5, and two of the cluster's water ligands (W1 and W4) are labeled.
Adapted with permission from Ref. [125]. Copyright 2004, American Chemical Society.
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watermolecules in the 1.9 Å structuralmodel of PSII [12,53,54]. Themu-
tation of any of these four residues [54,124–126,178–181], or the over-
dehydration of wild-type samples [87], substantially decreases the effi-
ciency of the S state transitions. On the basis of these observations, it
was proposed that D1-D61, D1-E65, D2-E312, and D1-R334 form part
of a dominant proton egress pathway leading from theMn4CaO5 cluster
to the lumen [124,125]. Themutation of residues in this putative proton
egress pathway produces far more perturbations to the Sn + 1-minus-Sn
FTIR difference spectra thanmutation of any of the carboxylate ligands of
the Mn4CaO5 cluster. For example, the amplitudes of the carboxylate and
amide II features at 1586(+), 1552(+), 1543(−) and 1509(+) cm−1 in
the S2-minus-S1 FTIR difference spectrum are substantially diminished
in D1-D61A, D1-E65A, D2-E312Q, and D1-R334A PSII core complexes
and in overly-dehydrated samples [124,125] (for example, see Fig. 2).
These spectral changes may reflect similar perturbations of the polypep-
tide backbone that are caused by disruption of a common network of hy-
drogen bonds. Similarly, a derivative feature at 1530(+)/1522(−) cm−1

in the S2-minus-S1 FTIR difference spectrum is eliminated by the D1-
D61A, D2-E312A, and D1-R334A mutations [124–126] and by mutations
of residues that coordinate the nearby Cl−(1) ion, such as D2-K317A
[167] and D1-N181A (R.J.D., unpublished). The elimination of the same
feature by mutations constructed at D1-D61, D1-N181, D1-R334, D2-
E312, and D2-K317 suggests the partial disruption of a common network
of hydrogen bonds that includes D1-D61 and the Cl−(1) ion.

3.3. Highly polarized hydrogen bonds — the region between 3100 and
2150 cm−1

A broad feature centered at 3000 cm−1 in the S2-minus-S1 FTIR
difference spectrum of PSII core complexes from T. elongatus has been
assigned to changes in the polarization of a highly polarized network
of strong hydrogen bonds (known as Zundel polarizability) near the
Mn4CaO5 cluster [47,164]. Similar broad features in the S3-minus-S2,
S0-minus-S3, and S1-minus-S0 spectra, centered at 2700, 2550, and
2600 cm−1, respectively, were assigned to the same origin [47,164].
These features were sharply diminished or eliminated by hydration
with D2

16O [164]. The higher frequency of the features in the S2-minus-
S1 spectrum was attributed to the Mn4CaO5 cluster's lack of
deprotonation during the S1 to S2 transition: compared to the other S
state transitions, the extra proton would strengthen the hydrogen
bond network, providing lower frequency features. Similar features
have been observed in PSII core complexes from Synechocystis sp. PCC
6803 [126]. In the latter organism, hydration with D2

16O diminishes
the broad feature in the S2-minus-S1 spectrum, but the broad features
in the other Sn + 1-minus-Sn difference spectra were obscured by O\D
stretching modes after hydration with D2

16O or D2
18O, preventing confir-

mation that these broad features are diminished by hydration with
D2
16O or D2

18O [126].
The broad feature in the S2-minus-S1 FTIR difference spectrum was

eliminated by the D1-D61A mutation [126] (Fig. 7). Its absence was
confirmed by the similarity of the mutant spectrum (hydrated with
H2
16O) to the spectrum of the mutant after hydration with D2

16O or
D2
18O: evidently, no broad feature remained in the mutant to be elimi-

nated by deuteration. It was concluded that the highly polarizable
network of hydrogen bonds whose polarizability or protonation state
increases during the S1 to S2 transition involves D1-D61. Because the
broad feature centered near 2600 cm−1 in the wild-type S3-minus-S2
spectrum remained present in the mutant (albeit with a lower ampli-
tude), it was concluded that the highly polarizable network of hydrogen
bonds whose polarizability or protonation state increases during the S2
to S3 transition does not include D1-D61 [126].

It was reported recently that a substrate-containing cluster of five
water molecules accepts a proton from the Mn4CaO5 cluster during
the S1 to S2 transition [182]. This conclusion was based on the analysis
of a broad positive feature at 2880 cm−1 in the S2-minus-S1 FTIR differ-
ence spectra of Ca-reconstituted spinach PSII core complexes. This fea-
ture undoubtedly corresponds to the broad feature in the S2-minus-S1
FTIR difference spectrum observed in PSII core complexes from
T. elongatus [47,164] and Synechocystis sp. PCC 6803 [126]. In Ref.
[182], this feature was eliminated by a variety of treatments including
exchange of H2

16O for D2
16O, extraction of Ca, replacement of Ca with Sr

or Mg, and treatment with ammonia. However, the spectrum of Ca-
reconstituted PSII presented in Ref. [182] lacks many of the features
that are present in the corresponding S2-minus-S1 FTIR difference spec-
tra of T. elongatus [47,83,164] and Synechocystis sp. PCC 6803 [126]. In
T. elongatus and Synechocystis sp. PCC 6803, awealth of features overlays

image of Fig.�6


Fig. 7. Comparison of the FTIR difference spectra of wild-type (black) and D1-D61A (red) PSII core complexes between 3100 and 2150 cm−1 in response to four successive flash illumi-
nations applied at 0 °C. The data in the upper left panel include the S2-minus-S1 FTIR difference spectra of D1-D61A between 3100 and 2650 cm−1 after hydrationwith D2

16O (blue) orD2
18O

(green). The “S0-minus-S3” and “S1-minus-S0” spectra of D1-D61A probably correspond to a mixture of S state transitions .
Reprinted with permission from Ref. [126]. Copyright 2014, American Chemical Society.
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the broad feature in the S2-minus-S1 spectrum (e.g., see Fig. 7, upper left
panel). These features have been attributed to a mixture of C\H
stretching vibrations from aliphatic groups and N\H stretching vibra-
tions and their Fermi resonance overtones from the imidazole
group(s) of one or more histidine residues [83,164,183]. Most of these
features are missing from the S2-minus-S1 difference spectrum of Ca-
reconstituted PSII presented in Ref. [182], especially after the exchange
of H2

16O for D2
18O. Unfortunately, the authors of Ref. [182] presented no

mid-frequency FTIR difference spectra other than a schematic illustra-
tion of the S2-minus-S1 spectrum of presumably untreated spinach PSII
core complexes. This omission makes it impossible for the reader to in-
dependently assess the quality of the treated samples after being dried
onto the FTIR windows. In contrast to the data presented in Ref. [182],
the broad feature was not eliminated by the replacement of Ca by Sr
in T. elongatus (see Figure S5 of Ref. [39]) or Synechocystis sp. PCC
6803 (R.J. Debus, unpublished) and was not eliminated by treatment
with ammonia in an earlier study of spinach PSII membranes (see
Figure S5 of Ref. [39]). The omission of mid-frequency spectra in Ref.
[182] also makes it impossible to independently assess the extent to
which advancement to the S3 or S0 states was achieved in response to
the appropriate number of actinic flashes. Although the authors of Ref.
[182] attributed the negative features near 2880 cm−1 in their S3-
minus-S2, S0-minus-S3, and S1-minus-S0 spectra to the deprotonation of
a cationic water cluster during the S2 to S3, S3 to S0, and S0 to S1
transitions, they presented no H2

16O/D2
16O exchange data to support

the assignment of these features to vibrational modes of water mole-
cules. In T. elongatus [164] and Synechocystis sp. PCC 6803 [126], the fea-
tures near 2900 cm−1 in the S3-minus-S2, S0-minus-S3, and S1-minus-S0
spectra are largely insensitive to hydration with D2

16O. Instead, D2
16O-

sensitive positive features centered at 2700, 2550, and 2600 cm−1

were reported [164]. These features were not observed in Ref. [182] as
pointed out by the authors of Ref. [182] and demonstrated in their
Figure S3. Regarding the absence of these features, it should be noted
that the spectra of the weakly H-bonding O\H stretching region pre-
sented in Ref. [182] also contained no reproducible features above the
baseline, as was also pointed out by the authors of Ref. [182] and also
demonstrated in their Figure S3. In contrast, reproducible spectral
features in this region have been presented by several laboratories
in PSII core complexes isolated from T. elongatus [164,183,184],
Synechocystis sp. PCC 6803 [102,108,126], and spinach [138] (see
below, Section 4).

Broad features in the 3000–2000 cm−1 region that are sensitive to
H2O/D2O exchange suggest the existence of one or more delocalized
protons in a highly polarizable network of hydrogen bonds made up
of amino acid side chains and water molecules [164,185–188]. The po-
larizability is caused by the fluctuations of protons within the network
of hydrogen bonds. The extreme breath of the features is caused by
strong interactions between the fluctuating protons and local electro-
static fields. The broad features that appear in all the Sn + 1-minus-Sn
spectra in Refs. [47,126,164] all have positive amplitudes. The positive
amplitudes imply that the concentration and/or the polarizability of
the protons in the network increases during each S state transition. It re-
mains unclear whether the broad features originate from an increase of
the polarizability of the protons in the network, from increased proton-
ation of the network, or from a combination of both effects. Because the
broad feature in the S2-minus-S1 spectrum is centered at a higher fre-
quency than the features in the other transitions, a different combina-
tion of effects may take place during the S1 to S2 transition and may
be related to thedevelopment of positive charge on theMn4CaO5 cluster
that is believed to accompany this transition on the basis of a variety of
measurements [44,111–120]. The conclusion that a broad feature at
2880 cm−1 corresponds to a substrate-containing cluster of five water
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Fig. 8. Comparison of the FTIR difference spectra of wild-type (black) and D1-D61A (red) PSII core complexes in the weakly hydrogen bonded O\H stretching region in response to four
successive flash illuminations applied at 0 °C. The “S0-minus-S3” and “S1-minus-S0” spectra of D1-D61A probably correspond to a mixture of S state transitions . Note the different vertical
scales.
Reprinted with permission from Ref. [126]. Copyright 2014, American Chemical Society.
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molecules that accepts a proton from theMn4CaO5 cluster during the S1
to S2 transition and that deprotonates during the subsequent S state
transitions [182] needs to be reassessed.

4. Weakly H-bonding OH stretching region

The high frequency region (3700–3500 cm−1) includes the O\H
stretching vibrations of water molecules participating in relatively
weak hydrogen bonds. In PSII core complexes from T. elongatus [164,
183,184] and spinach [138], the S2-minus-S1 FTIR difference spectrum
exhibits a derivative-shaped feature having a negative peak at 3585–
3588 cm−1 and a positive peak at 3613–3618 cm−1. These peaks down-
shift ~12 cm−1 in the presence of H2

18O and 930–940 cm−1 in the pres-
ence of D2O [183], confirming that they correspond to the O\H
stretching vibrations of water molecules. On the basis of decoupling ex-
periments employing a 1:1 mixture of H2O and D2O, the derivative-
shaped feature was attributed to a water molecule coupled or bound
to the Mn4CaO5 cluster that has an asymmetric hydrogen-bonding
structure in the S1 state and an even greater asymmetry of hydrogen-
bonding in the S2 state [183]. In the presence of ammonia, the two
modes of this feature shift 2–3 cm−1, showing that ammonia structur-
ally perturbs this asymmetrically hydrogen-bonded water molecule,
but does not replace it as a possible ligand to Mn [138]. In T. elongatus,
the S3-minus-S2, S0-minus-S3, and S1-minus-S0 difference spectra exhibit
broad negative features having minima at 3634, 3621, and 3612 cm−1,
respectively [164,184]. These features also downshift in the presence of
H2
18O and D2O and have been attributed to water molecules that are lo-

cated on or near the Mn4CaO5 cluster and that either deprotonate or
form stronger hydrogen bonds (i.e., weakly hydrogen-bonded OH
groups become strongly hydrogen-bonded) during the S2 to S3, S3 to
S0, and S0 to S1 transitions [164,184].

In the S2-minus-S1 difference spectrum of PSII core complexes from
Synechocystis sp. PCC 6803, the negative and positive peaks discussed
in the previous paragraph appear at 3584 cm−1 and 3616 cm−1 respec-
tively, with the positive peak being less distinct than that in T. elongatus
or spinach [102,108,126]. These peaks were substantially altered by the
CP43–E354Q mutation [102], leading the authors of this study to con-
clude that the water molecule corresponding to these peaks binds to
one of the Mn ions that is ligated by this residue. Interestingly, the ex-
change rates of the rapidly exchanging and slowly exchanging substrate
water molecules in the S3 state increased eight-fold and two-fold in this
mutant [103].

The S2-minus-S1 difference spectrum in Synechocystis sp. PCC 6803
also contains a negative feature at 3663 cm−1 [108,126]. Only a weak
vestige of this peak is present in T. elongatus [164,183] and it has not
been reported in spinach [138]. This feature also downshifts in the pres-
ence of H2

18O and D2O [108,126], confirming that it also corresponds to
an O\H stretching vibration of a water molecule. This feature has
been assigned to a water molecule on or near the Mn4CaO5 cluster
that either deprotonates or forms a stronger hydrogen bond during
the S1 to S2 transition [108,126]. The greater prominence of this feature
in Synechocystis sp. PCC 6803 might be caused by a higher hydration of
samples (99% Relative Humidity) compared to those examined in
T. elongatus or spinach. The extent of sample hydration is known to sub-
stantially affect the amplitudes of features in the Sn + 1-minus-Sn FTIR
difference spectra [87,124,189]. The S3-minus-S2, S0-minus-S3, and S1-
minus-S0 spectra in Synechocystis sp. PCC 6803 also exhibit broad nega-
tive features, although their minima are shifted slightly from those
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Fig. 9. Comparison of the D2
16O-minus-D2

18O double difference spectra of wild-type (black) and D1-D61A (red) PSII core complexes between 1275 and 1125 cm−1 in response to four suc-
cessive flashes applied at 0 °C. The “S0-minus-S3” and “S1-minus-S0” spectra of D1-D61A probably correspond to a mixture of S state transitions. Note the different vertical scales.
Reprinted with permission from Ref. [126]. Copyright 2014, American Chemical Society.
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observed in T. elongatus, particularly the minimum in the S3-minus-S2
spectrum [108,126]. These shifts may reflect slight differences between
the networks of hydrogen bonds around theMn4CaO5 cluster in the two
species of cyanobacteria.

The D1-D61Amutation of Synechocystis sp. PCC 6803 eliminates the
negative feature at 3663 cm−1 from the S2-minus-S1 spectrumand splits
the broad negative feature in the S3-minus-S2 spectrum into separate
minima at 3619 cm−1 and 3593 cm−1 (see Fig. 8). Because the negative
feature at 3663 cm−1 corresponds to a water molecule on or near the
Mn4CaO5 cluster that either deprotonates or forms a stronger hydrogen
bond during the S1 to S2 transition, it was concluded that the hydrogen-
bonding properties of this water molecule are altered by the mutation.
This negative feature is also eliminated by the D1-E333Q [108] and
D2-K317A (R.J.D., unpublished) mutations, but not by the D1-D170H
mutation (R.J.D., unpublished), suggesting that the group in question
may be a water molecule located near the Cl−(1) ion. The split of the
broad negative feature in the S3-minus-S2 spectrum into two separate
minima suggests that at least some of the water molecules that
deprotonate or form stronger hydrogen bonds during the S2 to S3 tran-
sition are located near D1-D61.

5. DOD bending region

The H\O\H bending mode appears near 1640 cm−1, is sensitive
to hydrogen bonding, and disappears when the H2O molecule is
deprotonated [190]. Consequently, H\O\H bending modes would
seem an attractive probe of water reactions in PSII. Unfortunately,
these modes are weak and the 1640 cm−1 region overlaps the strong
absorption bands of the amide I groups of the polypeptide backbone.
However, the D\O\D bending mode can be monitored near
1210 cm−1, a region that is practically devoid of other protein vibra-
tional modes [190]. The D\O\D bending modes are also weak. Con-
sequently, they are best observed in D2

16O-minus-D2
18O double

difference spectra [190]. Such spectra have been reported in PSII
core complexes from T. elongatus [190] and Synechocystis sp. PCC
6803 [126] for all the S state transitions (Fig. 9). In a D2

16O-minus-
D2
18O double difference spectrum, the alteration of a single D\O\D

bending mode during an S state transition will cause four peaks to
appear (two from D2

16O and two from D2
18O). In contrast, if a D2O

molecule deprotonates during a transition, the bending mode will
disappear and only two peaks will appear in the double difference
spectrum. One complication is that some positive and negative
peaks may overlap and cancel their intensities, decreasing the num-
ber of bands observed. In T. elongatus, six to eight peaks were ob-
served for each S state transition [190] and at least four peaks were
observed in similar spectra obtained in Synechocystis sp. PCC 6803
(Fig. 9) [126]. The observations imply that up to two D2O molecules
have their D\O\D bending modes altered during each S state tran-
sition. These D2O molecules likely reside in the first or second coor-
dination sphere of the Mn4CaO5 cluster or in a nearby network of
hydrogen bonds. Most of the peaks in the double difference spectra
oscillate during the S state transitions, implying that most of the al-
terations to the D\O\D bending modes are reversed during the S
state cycle. However, negative features near 1240 cm−1 in the S3-
minus-S2 and S0-minus-S3 double difference spectra have no appar-
ent positive counterparts in the other double difference spectra.
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These were attributed to substrate water molecules that insert into
the Mn4CaO5 cluster from a cluster of water molecules within PSII
during the S2 to S3 and S3 to S0 transitions [190], although these
water molecules may bind to “holding” sites and become substrate
on the next turnover.

The D1-D61A mutation eliminates the 1222(−), 1211(+), and
1180(+) features from the D2

16O-minus-D2
18O double difference spec-

trum of the S1 to S2 transition in Synechocystis sp. PCC 6803 (Fig. 9,
upper left panel) [126]. It was concluded that one of the D2O molecules
whose D\O\D bending mode changes during the S1 to S2 transition is
no longer present in themutant and that this D2Omolecule forms a hy-
drogen bond to D1-D61 in wild-type PSII [126]. The absence of this H2O
molecule in D1-D61A may impede proton egress from the Mn4CaO5

cluster, thereby contributing to the decreased efficiency of the S state
transitions in this mutant. Most of the features that are present in the
D2
16O-minus-D2

18O double difference spectrum of the S2 to S3 transition
in wild-type PSII appear to be present in the spectrum of the mutant
(Fig. 9, lower left panel). Consequently, it seems likely that theD2Omol-
ecules whose D\O\D bending modes change during the S2 to S3 tran-
sition do not interact directly with D1-D61.

6. Concluding remarks

Light-induced FTIR difference spectroscopy has become one of
the primary tools for investigating the mechanism of photosynthetic
water oxidation because of its utility in detecting changes in bond
strengths and hydrogen bond structures. Studies published over
the last two decades have provided information about structural
changes that occur during the O2-evolving catalytic cycle, including
those involving the Mn4CaO5 cluster's core and amino acid ligands,
nearby networks of hydrogen bonds, and nearby water molecules.
The crystallographic structural models of PSII, especially the recent
1.9 Å structural model [12,13] and its computational refinements
[14–19], have dramatically improved the power of FTIR spectroscopy
to provide mechanistic insight by serving as invaluable guides for
studies designed to elucidate the roles of specific amino acid residues
participating in networks of hydrogen bonds comprising substrate
(water) access and proton egress pathways and interacting with
specific water molecules, including substrate. Assigning spectral fea-
tures to specific water molecules and characterizing the interactions
of these water molecules with nearby residues is crucial for under-
standing mechanism and attempts to make these assignments are
just beginning. Both static FTIR difference spectroscopy (reviewed
here) and time resolved IR studies (e.g., [47], reviewed elsewhere
in this issue [77]), will play increasingly crucial roles in elucidating
mechanistic details, complementing computational studies (e.g.,
[14–22,24–30,32,140,163]) and information obtained by X-ray crys-
tallography (e.g., [191,192]), spectroscopic methods such as EPR
(e.g. [23,26,27]) and X-ray absorption (e.g., [31,192]), and other
methods such as time-resolved membrane inlet mass spectrometry
(TR-MIMS) (e.g., [9,193,194]).
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