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Abstract--Based on the simplest well-known integration rules (such as the forward Euler scheme and the 
"classical" Runge--Kutta method), an extension is proposed to enlarge the real stability boundary. The 
main characteristic of the resulting schemes is that the computational complexity is hardly increased. 

1. INTRODUCTION 

In solving a parabolic partial differential equation (PDE), a widely used approach is to follow the 
"method of lines" [1]. This means that first the spatial differential operators are replaced by e.g. 
finite difference or finite element approximations; this part of the solution process is usually termed 
the semi-discretization. Then, the time-continuous system of ordinary differential equations (ODEs) 
is integrated in time by some numerical integration method. Following this technique, several 
choices have to be made: for the semi-discretization as well as for the time integration one has to 
select a particular method and, for both discretizations, the size of the mesh one is going to use. 
We will briefly discuss these choices: 

(i) The particular way in which the semi-discretization is performed. Finite 
difference and finite element approximations are frequently used. As it does not 
fit in with the scope of this paper, we do not go into detail about these techniques 
(the reader is referred to Refs [1, 2] for a comprehensive discussion of these 
methods). Suffice to say that one could be led by the shape of the spatial domain 
(finite element approximations are more natural when the domain is irregular) 
and, of course, by one's personal preference and familiarity with (one of) the 
methods. 

(ii) A second choice to be made, and which is of direct impact to the contents of 
this paper, is the size of the spatial mesh used in the semi-discretization. Usually, 
one will choose a mesh that is fine enough to represent adequately the spatial 
variation of the solution one is expected to find. This is, of course, a bit vague; 
firstly, because it is not known a priori what this spatial variation will be and 
secondly, it is hard to say what the relation is between the spatial meshsize and 
the accuracy of the final solution. Therefore, one has to make a guess about the 
mesh and, eventually, solve the problem once more on a different mesh. Then, 
a comparison of both solutions will give an indication about the accuracy. What 
we mean by "represent adequately the spatial variation" depends, of course, on 
the specific problem. In a PDE context, a modest accuracy is usually sufficient 
for practical purposes. However, even for these low-accuracy demands (i.e. a 
relatively coarse mesh), the resulting system of ODEs will possess some stiffness; 
moreover, if the meshsize used in the semi-discretization becomes smaller, then 
the stiffness of the system increases. For a discussion on stiff systems of ODEs, 
we refer to Ref. [3]. It is this stiffness which has a serious effect on the third 
choice we have to make: 

(iii) The time integration method. Typically, in almost all scientific subroutine 
libraries, like NAG and IMSL, parabolic equations (and stiff problems in 
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general) are integrated in time by means of implicit methods. This approach is 
nowadays generally accepted as the most efficient one. The reason for the success 
of these methods is that they can efficiently cope with the stiffness of the ODE; 
or, more precisely, in applying a suitable implicit method, the time step can be 
chosen independent of the stiffness and therefore is merely determined by 
accuracy considerations. This is in sharp contrast with explicit methods, where 
the stiffness will impose a severe restriction on the time step. If this condition 
is disobeyed, then the resulting time integration process is unstable, which means 
that rounding errors will be amplified in each step. This amplification can be 
so drastic that already after a small number of steps the solution is completely 
destroyed by these amplified errors. Hence, in choosing an explicit method it is 
necessary to satisfy this stringent condition on the time step. This brings us to 
the fourth choice: 

(iv) The time integration stepsize. As mentioned before, the choice of this parameter 
strongly depends on the integration method. In using an explicit method, we will 
encounter a stepsize restriction for stability reasons which forces us to take 
unrealistically small time steps. Implicit methods on the other hand, does not 
impose such a restrictive condition. 

After the above discussion, one might ask: "Is there any room for explicit methods in integrating 
parabolic equations?" Every day's experience says: "there is", because people continue to use these 
methods. Most likely, the reason for their popularity is the simplicity of these methods. Evidently, 
this simplicity is of decisive importance if one has to program the time integrator oneself. In case 
no standard software is available, the reasoning will then be: "in the time I need to program the 
implicit method, the computer has already solved my problem using a lot of explicit time steps". 
Another point may be the storage requirements. Since explicit methods usually need considerably 
less storage than implicit methods, especially for higher-dimensional parabolic PDEs, this could 
be another motivation to choose an explicit integrator. However, one should realize that when 
standard software is available and can be called as a "black box", and when storage is no problem, 
then the algorithms based on implicit methods are the best choice because they are more efficient 
in terms of computer time. 

If however, one has reasons to choose an explicit method, for example because of the above 
mentioned reasons, then the stepsize restriction will be encountered and very small time steps are 
necessary to obtain stability. A consequence of such small time steps is that, usually, the error in 
the time integration process will be much smaller than the error due to the semi-discretization. 
Recall that the spatial grid was chosen on the basis ofmodest accuracy requirements. Hence, the overall 
error is completely determined by the semi-discretization error, i.e. the difference between the ODE 
solution and the solution of the PDE. In other words, we cannot take profit, in terms of accuracy, 
from the small time steps. Therefore, one would like to have a mechanism by which accuracy and 
stability can be exchanged. That is, we would like to take larger time steps (to reduce the number 
of steps and thus the amount of computer time) and we are willing to sacrifice the accuracy of the 
time integration. Technically spoken, we need explicit methods with a larger stability boundary. 

In the literature, several of such methods have been proposed. Du Fort and Frankel [4] introduce 
a method for the linear one-dimensional PDE Ou/Ot = O2u/Ox2, which can be regarded as being 
explicit but nevertheless unconditionally stable. However, this method has the disadvantage that, 
for reasons of convergence, the time step should tend faster to zero than the meshsize of the spatial 
grid. If this condition is violated, then the numerical solution converges to the solution of a different 
PDE (see also Ref. [5, p. 176] for a discussion of this method). Zlatev and Osterby [6], and more 
generally, Jeltsch and Nevanlinna [7] discuss explicit linear multistep methods containing free 
parameters which can be utilized to enlarge the stability boundary. These methods possess the 
difficulty that the "scaled error constant" (which determines to a large extent the accuracy) 
deteriorates if the parameters are chosen to generate a large' stability boundary. However, similar 
to our aim, these methods offer the possibility to exchange accuracy and stability. 

These deficiencies are not encountered in the stabilized Runge-Kutta methods described in van 
der Houwen [8] and in the generalized predictor-corrector methods of van der Houwen and 



Increasing the real stability boundary of explicit methods 39 

tn_  1 t n t .  + F-h tn+l  

t 

Fig. 1. Method (4). 

Sommeijer [9]. These schemes allow arbitrary time steps, but here the price is that many evaluations 
of  the right-hand side of the ODE are required per step to maintain stability. Moreover, these 
methods are more complicated than the ones we are aiming at in this paper. 

After this introduction we are able to formulate our aim: in this paper we will construct methods 
based on the simplest well-known integration rules (like the forward Euler method or "the 
classical" Runge-Kutta  method), and which allow for considerably larger time steps. The resulting 
methods, which are almost of the same simplicity as the basic methods, exhibit a time integration 
error that is in better accordance with the semi-discretization error. Similar to the methods 
described in Refs [6, 7], these schemes contain a parameter. The effect of increasing this parameter 
is that both the stability boundary as well as the "inaccuracy" is enlarged. Finally, we remark that 
the schemes we will describe are mainly based on Runge-Kutta methods, and therefore do not fall 
in the class of (linear multistep) methods considered in Refs [6, 7]. 

In Section 2, the general idea is outlined and in four subsections methods of orders 1 up to 4 
are constructed and analysed. Numerical results and comparisons are presented in Section 3 and 
finally, in Section 4, some conclusions are formulated. 

2. G E N E R A L  IDEA OF THE METHOD 

As we have seen, the severe stability condition forces us to take time steps which are so small 
that, in most cases, the time integration error is negligible with respect to the semi-discretization 
error. Therefore, we propose the following modification to proceed the solution over a large 
time step: 

First, we "bridge" a substantial part of this step by extrapolating approximations 
obtained in previous step points. 

Next, we apply a simple explicit integrator to perform the actual integration over the 
remaining (small) part of the step (see also Fig. 1). 

Since a substantial part of the step is "integrated" by a simple extrapolation, which is a 
very crude way to advance the solution of  the ODE, we cannot expect the result in the end point 
of  the step to be very accurate. Hence, in this part of the solution process we have sacrificed 
accuracy. 

As a consequence of  this extrapolation, the integrator is now applied to the remaining small part 
of  the step; therefore, its "effective" step is much smaller. This results in a less stringent stability 
condition. Hence, in this part of the solution process we have recovered stability and thus we have 
exactly obtained what we are aiming at. We will now give a definition of the scheme. 

Suppose we are given the initial value problem 

d 
-~y( t )  =f( t ,y( t ) ) ,  t >i to, y(to) =Yo. (1) 

Let us define an equidistant grid on the t-axis by tn,=to+n .h ,n  = 1,2 . . . . .  where h is the 
integration step and let y,  denote a numerical approximation to the exact solution y(t) at t = t,. 
Furthermore, let R(h; t, y) denote a one-step method to advance the solution over a step h, starting 
with the approximation y at time t. 
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Now, for n = k, k + 1 . . . .  we consider the method 

k 

y*  = ~ aj(l~)Yn-k, (2a) 
j = 0  

Y,+l = R((1 - #)h; t, +/zh, y*),  (2b) 

where # is real number in [0, 1). In equation (2a) we calculate y*,  which is an approximation to 
y(tn + lah). The coefficients aj(#) are used to obtain a certain order of accuracy. In equation (2b) 
the integrator R starts in t, +/~h with the approximation y* and integrates over the interval 
[t~ +/ah, t~÷ ~]. Notice that a classical step-by-step application of R (i.e./~ = 0) would result in the 
process y~ + l = R (h; t~, yn), n = 0, 1 . . . . .  

In the sequel we will consider methods in which the extrapolation as well as the method R are 
both of order p, resulting in order p for the overall method (2). A straightforward Taylor-expansion 
reveals that the extrapolation is of order p = k if the coefficients aj (#) , j  = 0 . . . . .  k satisfy the linear 
system 

I - -  

1 1 1 1 . . .  1 a o ( ~ )  1 
0 1 2 3 . . .  k al(#) -/~ 
0 1 25 32 k 2 a2 (/.t) ~2 

"'" = (3) 

0 1 2 k 3 k . . .  k k _ak(la)_ (--1)k/Z g 

In the following subsections we derive methods of increasing orders of accuracy. For the one-step 
method R we will throughout choose a pth-order, p-stage Runge-Kutta  (RK) method. 

2.1. First-order methods 

Let us first consider the case k = 1. System (3) reduces to 

(1 ° = ( , ) , a  

and we find the first-order extrapolation 

y* = (1 + #)Yn -- #Yn-t. (4a) 

Let us combine this with the first-order forward Euler-method, which is the most simple RK 
scheme, to obtain (see also Fig. l) 

Y~+~ = Yu* + (1 - I~)hf(tn + #h, y*).  (4b) 

To start with, we will derive the local truncation error of method (4), following the definition 
given by Lambert [10]. It is readily verified that this error is given by 

y(t ,+~) - y ~ + t  = C2h2y"(t~) + O(h3), C2 = [½-  l#(1 - 2 p ) ] .  (5) 

From this expression we see that the method is first-order consistent. Furthermore, if/~ - .  1 the error 
constant C:--* 1. However, for linear multistep methods, Henrici defines a "scaled error constant" 
[11, p. 223], by dividing the usual error constant by the sum of the coefficients in front of the 
derivative function f .  Following Henrici's definition, we would obtain for method (4) the scaled 
error constant C2/(1-/~),  which increases i f / z ~ l .  This has, of course, consequences for the 
accuracy (see also the discussion on zero-stability, below). Since we are willing to accept a loss of 
accuracy in the time integration process as far as stability is recovered, this behaviour of the error 
constant does not need to be disastrous, as we shall see in the experiments. 

Next, we will study the stability. Applying scheme (4) to the linear test equation y '  = 2y, 2 ~ C, 
we obtain the characteristic equation 

~2 _ P((1 - /~)z)  (1 +/~)( + P((1 - / z )z )#  = O, (6) 
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where z,=h2 and P denotes the stability polynomial of Euler's method. As usual (see Ref. [10]), 
the stability region is defined by the set of (complex) z-points for which the roots ¢ of equation (6) 
are inside the unit circle and the method is said to be stable for a particular z-value if this z belongs 
to its stability region. The real stability boundary [3 is defined as the length of  the largest interval 
(-[3, 0) on the negative real axis which is still contained in the stability region. The following 
analysis is restricted to real values of z; hence, we will investigate what values can be obtained for 
the real stability boundary [3. 

Applying the Hurwitz-conditions (see Ref. [10, p. 80]) to equation (6) reveals that the method 
is stable if 

- 1  
- -  < P ( ( 1  - # ) z )  < 1. ( 7 )  
1 + 2 #  

Since for Euler's method P(z)= 1 + z, we easily find that z has to satisfy 

- 2 ( I  + # )  
- [3(#) . .= < z < 0. (8) 

(1 + 2#)(1 - #) 

From this expression we see that the stability boundary/~ can be made arbitrarily large by choosing 
# sufficiently close to 1. For such #-values, we have [3 .~ 4/3(1 - # ) .  For practical purposes this 
means that, given a certain problem (i.e. a given 2-value) and a certain stepsize h (determined on 
the basis of  accuracy) we choose # such that z = h2 satisfies condition (8). For two values of # we 
have plotted the stability region in the complex z-plane. These plots can be found in Appendix II. 

Finally, since we are dealing with a multistep method, we discuss the concept of zero-stability 
(see Ref. [10]). Therefore we substitute P -- 1 into equation (6) and require the roots to be on the 
unit disc, and those on the unit circle to be simple. We find 

¢2 _ (1 + #)¢ + # = (¢ - 1)(¢ - #) = 0, (6') 

and clearly the method is zero-stable for all # in [0, 1). Here, we remark that the concept of 
zero-stability is closely related to the scaled error constant, mentioned above. We see from equation 
(6') that if # --, 1, the spurious root ¢ = # converges to the so-called principal root ¢ = 1. According 
to the definition, this means that the method tends to a zero-un stable method for # ~ 1, which in 
turn results in an increasing scaled error constant. 

We collect the above results in the following theorem. 

Theorem 2.1 

Method (4) is first-order consistent and zero-stable for all # e [0, 1); its real stability boundary 
is given by [3(#) = 2(1 + #)/((1 + 2#)(1 - #)). [] 

2.2. Second-order methods 

Next we study what is possible for k = 2. System (3) reduces to 

1 2/ /a,(#) /= 
1 4JLa2(#) j Lu J 

and is solved by 

(3-) 

a0(#) =½(# + 1)(# +2) ,  a , ( # ) =  - # ( #  +2) ,  as(#)½#(# + 1). (9) 

Hence we start with the second-order extrapolation 

y* = ½(# + 1)(# + 2)y. - #(# + 2)y,_, + ½#(# + 1)y,_2. (10a) 

To integrate the remaining part of the step we select the second-order improved Euler method 
[10, p. 119], resulting in 

_ _  ~ I y,+, - yu + 3(1 - #)h[f* +f( t ,+, ,  y* + (1 - #)hf*)] (10b) 

with f *  = f ( t ,  + #h, y*). 
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Obviously, there are many possible choices for the integrator within the class of second-order, 
2-stage RK methods. Any other choice is conceivable as well. Moreover, for p ~< 4, any pth-order, 
p-stage RK method has the same stability region; hence, its choice does not influence the linear 
stability analysis of  the total scheme (10). On the other hand, the particular choice of the integrator 
does have influence on the local truncation error and it might be possible to make a better selection 
with respect to accuracy. However, as it is our intention to describe an algorithm based on simple 
and well-known RK methods, we selected the improved Euler method. 

Again following Lambert's definition, a straightforward Taylor-expansion of method (10) yields 

y(tn+ 1) - Yn+ , = h3(C31f2yf + C32fyyf 2) + O(h4), ( l l a )  

where the error constants are given by 

C3~ = ~(6# 2 - # + 1) and C32 = ~2(3# 3 + 3# 2 + 7# -- 1). ( l ib)  

Hence, the method is of second-order accuracy and we see that the local truncation error tends 
to h 3 y ' ( t , ) +  O ( h ' )  if # ~ 1 .  

The characteristic equation associated with method (10) is given by 

(3 _ P((1 - #)z)a0(#)( 2 - P((1 - # ) z ) a !  Ot) (  - P((1 - #)z)a2(#) = 0, (12) 

where, again, P denotes the stability polynomial of the RK method, viz. P ( z )  = 1 + z + ½z ~, and 
the coefficients aj0~) are given in equation (9). Application of the Hurwitz-conditions reveals that 
the method is stable if 

- 1  
< P < 1 (13a) 

2#2+4#  + 1 

and 

The first condition is fulfilled if 

#3 + 2#2 _ 2 < 0. (13b) 

2 
- /~(#) ,= - -  < z < 0; (14a) 

(l -#) 

however, to satisfy the second constraint, we should restrict # to the interval 

0 ~< # < 0.839 .... (14b) 

Combining both results shows that the optimal real stability boundary is obtained by choosing # 
as large as allowed. However, from our tests it appeared that it is advisable to choose # slightly 
smaller than maximally allowed; therefore, in the experiments in Section 3 we will use # = 0.825, 
resulting in /~ ~ I 1.43. Since the stability boundary of the underlying improved Euler method 
equals 2, a gain factor of approx. 5.7 is possible. The stability region for # = 0.825 is plotted in 
Fig. A.3 (see Appendix II). It turned out that for smaller values of # the typical shape of this 
stability region is preserved, although less far extended along the negative real axis. 

Next we consider the zero-stability of method (I0). Substitution of P ~ I into equation (12) gives 

(£ - 1 ) ( ~  2 - ½#(#  + 3)~  + ½ # ( #  + 1)) = 0 ,  ( 1 2 ' )  

from which it can be deduced (for example, by applying the Hurwitz-conditions to the quadratic 
factor) that the method is zero-stable for all # e [0, 1). 

Finally we remark that, for # ffi 0.825, the roots of equation (12') are given by ~ = 1 and 
~O,7889 _ 0.3612. i; thus, at the origin, the spurious roots are approximately 0.8677 in modulus. 
To complete this subsection, we summarize the results in the following theorem. 

Theorem 2.2  

Method (10) is second-order accurate and zero-stable for all # ~ [0, 1); its real stability boundary 
is given by/~(#) = 2/(1 - # ) ,  where # is restricted to the interval [0, 0.839...].  [] 
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Fig. 2. The allowed domain for the polynomial P. 
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2.3. Third-order methods 

Proceeding as in the previous subsections, we start with solving system (3). For k = 3 we obtain 

a0(it) = git + 1)(it + 2)(it + 3), a,(it) = -~u0~ + 2)(it + 3), 

a2(p) = ½it(it + l)(it + 3), a3(u) = -~#Oz + 1)(u + 2). (lSa) 

Hence, these coefficients define the third-order extrapolation, which will be combined with a 
third-order, 3-stage RK method. Among the many possible choices we select Kutta's  third-order 
method (of. Ref. [10, p. 120]). Applied to the interval [t, +#h ,  t,+l], this method reads 

, I y,+ j = yu + ~(1 - #)h[kl + 4k2 + k3], 

k, = f ( t .  + Ith, y*) ,  

k2 = f ( t .  + g l  + It)h, y*  + g l  - It)hk, ), 

k3 = f ( t ,+  i, y* - (1 - It)hlc, + 2(1 - It)hk2). (15b) 

The characteristic equation associated with method (15) reads 

(4 _ e( ( l  - It)z)a0(au)( 3 - P((I - It)z)al (It)~2 

- P((1 - It)z)a2(u)( - e((1 - It)z)a3(It) = 0. (16) 

Applying the Hurwitz-conditions to this equation would result in too complicated inequalities to 
be treated analytically. Therefore, we resorted to a numerical approach. 

Considering P for the moment as an independent variable, we calculated for a large number of 
It-values ~[0, 1) the bounds on P, such that the roots of equation (16) are within the unit circle. 
The upper bound is given by P = 1 and the lower bound is a It-dependent curve, )'(It) say, which 
is plotted in Fig. 2. 

This plot shows that up to/~ = 0 .632. . .  there is a rather wide range for P to move in; however, 
beyond this critical It-value, one of the nonlinear Hurwitz-conditions seems to become active, 
resulting in a small "freedom" for P. This means that the polynomial P((1 - I t ) z )  leaves the safe 
area for z-values close to the origin. Therefore, we have to choose/z ¢ [0, 0.632] and, for each It, 
the real stability boundary fl(It) is found by solving 

P((I - /~)z) ,=  1 + (1 --/z)z + (1 - -  It)2Z2/2 + (1 - - / A ) a z 3 / 6  = )'(It) for z. 

For It = 0.632 we found fl(0.632) ,~ 4.80. In passing, we remark that the polynomial P associated 
with Kutta 's  method monotonically decreases if its argument runs from 0 along the negative axis. 
Furthermore, we checked the zero-stability of method (15) as a function of It. It turned out that 
the scheme is zero-stable for 0 ~< It ~< 0.73 . . . .  In our experiments we take It = 0.625, which is a 
safe value with respect to (zero-)stability. The corresponding//-value equals 4.72, and the stability 
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region is shown in Fig. A.4 in Appendix II. Finally, we calculated the roots of equation (16) for 
P - 1 and # = 0.625. These roots are given by ~ = 1, ~ = 0.5271 and ~ = 0.5250 + 0.7532. i; hence, 
the largest spurious roots have modulus 0.9181 . . .  at the origin. 

In conclusion, we can formulate the following theorem. 

Theorem 2.3 

Method (15) is third-order accurate for all # ~ [0, 1) and zero-stable for # v [0, 0 .73 . . .  ]. The 
largest real stability boundary is obtained for # = 0.632. . .  and is given by/3 = 4.80 . . . .  [] 

2.4. Fourth-order methods 

Finally, we consider the case k = 4. The solution of equation (3) for this k-value is given by 

a0(#) = ~(# + 1)(# + 2)(# + 3)(# + 4), a,(#) = _ t # ( #  + 2)(# + 3)(# + 4), 

a2(#) = ¼#(# + 1)(# + 3)(# + 4), a3(#) = --~/z(# + 1)(# + 2)(# + 4), 

a4(#) = ~#(#  + 1)(# + 2)(# + 3). (lVa) 

For the integrator R we take the "classical" fourth-order, 4-stage RK method (el. Ref. [10, p. 120]), 
resulting in 

y.+, = y* + ~(1 - #)h[k~ + 2k 2 + 2k 3 + k4], 

k, =f(t .  + #h, y*), k2 =f(t .  + ½(1 + #)h,y* + ~1 - #)hkl), 

k3=f( t .+I ( l+#)h ,y*+½(1-#)hk2) ,  k4=f( t .+l ,y*+(1-#)hk3) .  (17b) 

Similar to the previous subsection, the stability analysis of the fourth-order method (17) is 
performed numerically. Based on the characteristic equation, which is now of degree 5, we 
calculated the lower bound curve ?(#) for the polynomial P. This curve is plotted in Fig. 3, the 
analogue of Fig. 2. We see that up to # = 0.441 . . . .  there is sufficient room for the polynomial 
P to yield a large real stability boundary (P assumes values in [0.27, 1] for the relevant argument 
values) but if /~ exceeds this value, then the polynomial P will quickly leave the safe area. 
Consequently, we have to require # ~ [0, 0.441]. Solving 

P((I - #)z):=l  + (1 - #)z + (1 - -  # ) 2 z 2 / 2  q- (1 -- #)3z3/6 q- (1 -- #)4z4/24 = y(#) 

for the optimal #-value, the real stability boundary is easily found to be/3(0.441) ~ 4.98. By a 
numerical search the method is verified to be zero-stable for 0 ~< # ~< 0.46 . . . .  In testing this 
method, we will use # = 0.435. For this #-value the stability boundary equals/3 ~ 4.93, and the 
stability region is plotted in Fig. A.5 (see Appendix II). The characteristic roots at the origin are 
given by ~ = 1, ~ = 0.4392 +_ 0.1949. i and ~ = 0.1698 _+ 0.9557. i; hence, the spurious roots have 
modulus 0.4805 and 0.9707, respectively. We summarize these results in the following theorem. 
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Table 1. sd-values for problem (18) 
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Method Order /~ /~ h -I sd(T = I) sd(T = 10) sd(T = 20) 

(4) 1 0 2 400 1.7 1.7 1.7 
0.5 3 267 1.8 1.8 1.8 
0.75 5.6 143 1.9 1.9 1.9 
0.90 13.6 59 1.6 1.6 1.6 
0.925 18.0 45 1.1 1.2 1.2 
0.95 26.9 30 0.5 0.4 1.2 

(10) 2 0 2 400 1.7 1.7 1.7 
0.825 11.4 70 1.7 1.7 1.7 

(15) 3 0 2.5 319 1.7 1.7 1.7 
0.625 4.7 170 1.7 1.7 1.7 

(17) 4 0 2.8 288 1.7 1.7 1.7 
0.435 4.9 163 1.7 1.7 1.7 

Theorem 2.4 
Method (17) is fourth-order accurate for all/~ e [0, 1) and zero-stable for/~ ~ [0, 0 .46 . . .  ]. The 

largest real stability boundary is obtained for/z = 0.441 . . .  and is given by fl = 4.98 . . . .  []  

3. N U M E R I C A L  E X P E R I M E N T S  

To investigate the effect on the accuracy of  the final results, caused by an increase of  the stability 
boundary, we will apply the methods described in the preceding subsections to a parabolic PDE. 
Furthermore, the second-order scheme (10) will be compared with second-order explicit methods 
described in the literature, which also possess an enlarged stability boundary (see also the 
introduction). 

As our test example, we consider the linear, two-dimensional problem 

c3u 1 I'd2u c32u~ 17 
O--~ =-~-~x21+-~x~) - - ~ u ,  t >>, O, (18a) 

defined on the unit square in the (xl, x2)-plane and supplemented with initial and Dirichlet 
boundary conditions taken from the exact solution 

u(t, xl, x2) = e x p ( -  t + ~(xl + x2)). (18b) 

The semi-discrete system of ODEs is obtained by using symmetric, 3-point finite difference 
approximations on a uniform mesh with meshsize Axl = Ax2 = 1/20. The spectral radius p of  the 
Jacobian matrix of  the resulting system is approximately given by 

l 8 
p ~ ~ ( A - ~ )  2 = 800. (19) 

The stepsizes are chosen maximal with respect to the stability condition which reads 

h .  p ~< 13 (#). (20) 

In the end point t = T of  the integration interval, we compare the components of  the discrete 
solution vector with exact solution (18b) in the corresponding grid points and selected the 
component yielding the largest relative error. In the tables of  results we present the quantity 

sd,=logl0([lrelative error of  the fully discrete solution][~); (21) 

hence, sd denotes the number of  significant digits for the component with the largest (relative) error. 
It turned out that the semi-discretization error for this problem and this spatial grid equals 

approx. 10 -1'7. By this error we mean the (relative) difference between tbe exact solution of  the 
ODE and the solution of  the PDE (restricted to the grid points), measured in the maximum norm. 
Hence, an exact integration would result in an sd-value ,~ 1.7. Now, our hope is that by taking 
large time steps--and, consequently, introducing a time integration error--this accuracy is not 
destroyed (too much). In Table 1 the results for T = 1 of  the various time integration methods are 
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presented for several values of the parameter #. To see the effects of a long-term integration we 
also added the results for T = 10 and T = 20. 

From Table 1 it is clear that the methods of order p >i 2 can take their maximal stable time step 
without influencing the t o ta l  accuracy. However, for the first-order scheme, where the stability 
boundary can be enlarged without restriction, we see that a grow factor up to ~6.5 (i.e. # ~< 0.9) 
has no serious consequences for the accuracy. Increasing # beyond this value, drastically decreases 
the accuracy. For such #-values, the scaled error constant blows up to such an extent that now 
the time integration error dominates the semi-discretization error. 

In Ref. [7, p. 81], Jeltsch and Nevanlinna prove that, for any k >1 2, there exists an explicit linear 
k-step method of order k - 1 with an arbitrary large real stability boundary. This is of course a 
much stronger result than obtained in the present paper. However, if large stability boundaries are 
to be obtained, then the resulting methods quickly loose accuracy. Since such schemes are not 
explicitly given in Ref. [7], we constructed (following the proof of its existence) a 3-step 
second-order method. This method will be compared with scheme (10), which has the same step 
number and order. Adopting the notation used in Ref. [7], this method is defined by its 
characteristic polynomials 

p~.,(() = 6-2(~ _ 1)(( - 1 4- 62)(A( + B), 

a~.,(~) = 6 -'(~ - 1 + ~)(~ - 1 + e). (22a) 

The parameters A and B serve to make the method of second-order accuracy, resulting in 

A = 1 - e ~ - 2 ( ½ 6 2 + 6 - 1 ) ,  B = E - A .  (22b) 

Since this linear multistep method requires only one f-evaluation per step, a fair comparison with 
scheme (10) is achieved if method (22) is applied with half the stepsize. Or, in other words, method 
(22) needs only half the stability boundary that is needed by scheme (10). In Ref. [7] it is not 
explicitly stated how to choose the parameters 6 and E. By trial and error we determined several 
combinations of these parameters, yielding the required stability boundary. We did not make an 
attempt to find optimal parameter values. In Table 2 we give the results obtained by method (22). 

From Table 2 we observe that the sd-values for T = 1 are larger than 1.7, which would be 
obtained by exact integration, indicating that the time integration error and the semi-discretization 
error interfere in a favourable way. However, upon continuing the integration to the end points 
T = 10 and T = 20, the accuracy of the numerical solution steadily decreases. Apparently, this is 
due to the scaled error constant which is large and gets even larger if more stability is required. 
Therefore, the existence of arbitrarily large stability boundaries within this class of explicit linear 
multistep methods is more of theoretical interest than of practical value. 

Next, we compare scheme (10) with the method analysed by Zlatev and Osterby [6], which is 
also a 3-step second-order method, requiring one f-evaluation per step. It is given by 

Y.+ l = a2y .  + a t y . _  ~ + (1 - a2 --  a l ) Y . _  2 + h [ b 2 f ( t . ,  y . )  + (4,5 - 2a2 - 0.5al - 2b2) 

x f ( t . _ ~ , y . _ ~ ) + ( - 1 . 5 - O . 5 a ~  + b 2 ) f ( t . _ z , y . _ 2 ) ] ,  (23) 

where 

a2 = 2.98, at = -2.961, b~ = 0.17, 

and possesses the real stability boundary fl .~ 12.4. We applied this method to problem (18) for 
several values of the stepsize. The results can be found in Table 3. 

Again, the scaled error constant has blown up to such an extent that the obtained accuracies 
are substantially lower than for scheme (10), especially if the integration is continued over a long 
interval. 

Table 2. sd-values for method (22) applied to problem (18) 

Method Order ~ E h =1 sd(Tffi I) sd (T=  10) sd(T ffi 20) 

(22) 2 0.39 .0002 140 2.0 -2.1 -6 .3  
0.38 .005 140 2.4 0.6 -0 .7  
0.37 .009 140 2.0 1.3 1.2 



I n c r e a s i n g  the  real  s tab i l i ty  b o u n d a r y  o f  expl ici t  m e t h o d s  

Table 3. sd-values for method (23) applied to problem (18) 

Method Order h - i  sd(T = I) sd(T = 10) sd(T = 20) 

(23) 2 140 1.6 - 1 . 3  - 5 . 5  
70 0.8 - 2 . 7  - 7 . 1  
65(max) 0.8 - 2.7 - 6.9 

Table 4. sd-values for method (24) applied to problem (18) 

Method Order h - i  sd(T = l) sd(T = 10) sd(T = 20) 

(24) 2 I 0 0.2 - 2.4 - 6.2 
20 0.6 0.9 0.6 
35 1.5 1.5 1.5 
70 2.2 2.2 2.2 

140 1.8 1.8 1.8 
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Finally, we have implemented a straightforward generalization of the method of Du Fort and 
Frankel [4, 5] for the inhomogeneous linear equation (18a). This generalization reads 

Uy"+' U~;  1 I ( U ~  _ t r n + l  , r , - '  , , _ , , , + '  t r , - '  U" ) .k -- = -  +l,k ~j ,k  --  ~j .k  + U~--i,k Uj, k+l '-'j,k -- "~j.k + ) ,k- I  

/ 

171N/Tn + I - , ~ u ~ . k  ) ,  ( 2 4 )  ~ j , k  + (1 - 2~)U~,k + , - I  

where j and k run through the grid points, U~.k represents an approximation to the exact solution 
u ( n h , j A X l ,  k A x 2 )  and ~ is a parameter. This two-step method is second-order in time. For each 
(j, k) separately, the unknowns tr,+l ,~j,k can be explicitly solved from equation (24). For several values 
of the stepsize h and parameter-values 0t e [0, 0.5], we applied this method to the test problem. The 
influence of the choice of ~ turned out be negligible. The results are given in Table 4. 

From these results we conclude that method (24) is able to take large time steps, but does not 
behave unconditionally stable. Clearly, for h/> 1/20 the results are not satisfactory. For h = 1/35, 
a slight drop in accuracy is noticed and for the smaller time steps the method behaves well. 
As an advantage of this scheme we mention its lower storage requirements in comparison with 
the other explicit methods; a disadvantage is that for nonlinear problems a (scalar) equation 
has to be solved for each component. Moreover, for such problems the generalization is less 
straightforward. 

4. CONCLUSIONS 

In this paper we have proposed an extension to very simple integration rules, i.e. one-step 
explicit Runge-Kutta  methods. This extension results in an increased real stability boundary, 
while the algorithmic and computational advantages of these simple schemes are maintained. 
Methods of orders 1 . . . . .  4 have been analysed. For the methods of order 3 and 4, the resulting 
stability boundary is found to be approximately twice as large. For the first- and second-order 
method, however, an increase with a factor 6 turns out to be possible in a realistic application. 
When properly used, e.g. in the context of semi-discrete parabolic equations, the enlarged 
(truncation) error of the new schemes will usually not influence the accuracy of the fully discrete 
solution of the PDE. 

Hence, if one persists in using an explicit method, also in cases where the ODE possesses some 
stiffness, then these methods may help to relax the severe time step restriction. 

As a disadvantage of the new methods we mention the fact that the algorithm has changed 
from a one-s tep  method into a mul t i s tep  method. This means that we have to calculate a few 
additional starting values prior to the actual application of the methods. However, with the help 
of the underlying simple (RK) method, these additional values can be easily obtained (see also 
Appendix I, where we describe an implementation). 

Finally, it should be remarked that these schemes are not recommended to be used in case of 
hyperbolic PDEs or, in general, in case of ODEs where the Jacobian matrix has a more or less 
imaginary spectrum. This directly follows from an inspection of the stability regions plotted in 
Appendix II. 
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A P P E N D I X  I 

Here we describe a possible implementation (in a pseudo computer language) of the methods proposed in this paper. 
As an example, we use the second-order scheme (10), but the other methods are implemented quite similarly. 

Suppose we have the "subroutine". 

RK2(NEQN, T, H, Y,N, ]rouT), which performs one single integration step of size H, given the initial 
vector Y,N (of dimension NEQN) at time T and yielding the result vector 
YouT, i.e. the numerical result at T + H of Euler's improved method. 

Now, the implementation of scheme (10) could read (remarks between # # can be considered as comment): 

be~in 

declaration of the arrays Y, YN, YN-I, YN-2, Y* (of size NEQN) 

T :=tO; YN-2 := Y0 # to, Y0 are the initial values # 

# determine the maximally stable stepsize HEUI~t for the RK2 method (i.e., for Ix=0) # 

# select a it-valuc (viz. tt=0.625) and determine the c , o ~ g  stable stepsize H # 

~^cr , :~  .= r , , i . ~ , ~ l  # where r • 1 means rounded to the next targer inU~ger # 

HEULER := H / FAC'IX3R 

YN := Y0 
to FACTOR do 

CaII R.K2 (NEQN, T, HEIJLER, YN, Y) 

YN : -  Y; T :~ T+ HEULER 
¢~ldo 
YN-I := Y 
to FACTOR do 

call t~,2 0~QN, T, X ~ j ~ ,  YN, Y) 

YN := Y; T := T + Hetn.~ 

enddo 

TRNb- to - 2  # TEm~ denotes the end point of the intesnttion interval, andi t i s  NSTEPS := H 
assumed that the length of this interval is an inteser m~fiple of 

the stepsize # 

to NSTm~ do 

:= 21-(~+1) ~+2) vN- ~ 0,+2) vN-t + ~ ¢~+1) vN-2 y* 

call xx2 (t~_.QN, T+~.H, 0"~)'~, Y*, Y) 

YN.2 := YN.I; YN.I := YN; YN := Y; T : = T + H  # shift the dale and increMe T # 

enddo 
# now, Y will contain the numeaical solution at the end point TEND # 

end 
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APPENDIX II 

Here we present plots of the stability regions (in the complex z-plane) for the various methods described in Section 2. 
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Fig. A.1. The stability region for method (4) with/~ =0 .90  (fl = 13.6). 
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Fig. A.2. The stability region for method (4) with # = 0.95 ~ = 26.9). 
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Fig. A.3.  The stabi l i ty region fo r  method (10) w i th /~  = 0,825 (8 = 11.4), 
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Fig. A.4. The stability region for method 05 )  with/~ = 0.625 (fl = 4.7). 
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Fig. A.5. The stability region for method (17) with/~ = 0.435 (fl = 4.9). 
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